Session

Contact

Department of Mathematics
The City College of New York
NAC 8/133
Convent Ave at 138th Street
New York, NY 10031

Phone: (212) 650-5346
Fax: (212) 650-6294
math@ccny.cuny.edu

Math 201 Video Lessons

These video lessons are intended to be complete, time-efficient lessons covering each topic in the Calculus series. They are offered as a supplemental resource for students, and as the basis for hybrid or online courses.

The full set of video lessons for Math 201, Calculus I, can be found as a YouTube playlist here:

The full set of pdf files to accompany the videos is zipped here:
Calc I Lessons 01-29.zip

Lesson 01 Functions
video: http://youtu.be/6YBwvOTBk0c
pdf: Calc I Lesson 01 Functions.pdf

Lesson 02 Important Functions to Know
video: http://youtu.be/NDUzleKSeJE
pdf: Calc I Lesson 02 Important Functions to Know.pdf

Lesson 03 An Introduction to Limits
video: http://youtu.be/6PpxtrSJBaw
pdf: Calc I Lesson 03 An Introduction to Limits.pdf

Lesson 04 Calculating Limits
video: http://youtu.be/YQ6qXFnKGtg
pdf: Calc I Lesson 04 Calculating Limits.pdf

Lesson 05 The Squeeze Theorem
video: http://youtu.be/uP-ydO3J4L0
pdf: Calc I Lesson 05 The Squeeze Theorem.pdf

Lesson 06 Continuity
video: http://youtu.be/_y92JKQn4B0
pdf: Calc I Lesson 06 Continuity.pdf

Lesson 07 Limits Involving Infinity
video: http://youtu.be/MQyumZmn3J8
pdf: Calc I Lesson 07 Limits Involving Infinity.pdf

Lesson 08 The Derivative at a Point
video: http://youtu.be/VYEiSf03EY0
pdf: Calc I Lesson 08 The Derivative at a Point.pdf

Lesson 09 The Derivative Function
video: http://youtu.be/Mbp54X-IHVU
pdf: Calc I Lesson 09 The Derivative Function.pdf

Lesson 10 Basic Differentiation Formulas
video: http://youtu.be/hMQ7Gpey214
pdf: Calc I Lesson 10 Basic Differentiation Formulas.pdf

Lesson 11 The Product and Quotient Rules
pdf: Calc I Lesson 11 The Product and Quotient Rules.pdf

Lesson 12 The Chain Rule
video: http://youtu.be/XcCGKDqCt1A
pdf: Calc I Lesson 12 The Chain Rule.pdf

Lesson 13 Implicit Differentiation
video: http://youtu.be/uZQb6yL9Qp4
pdf: Calc I Lesson 13 Implicit Differentiation.pdf

Lesson 14 Related Rates
video: http://youtu.be/e5-_Mf4qqCM
pdf: Calc I Lesson 14 Related Rates.pdf

Lesson 15 Linear Approximations and Differentials
video: http://youtu.be/1GQz6O_JvPE
pdf: Calc I Lesson 15 Linear Approximations and Differentials.pdf

Lesson 16 Absolute Extrema
video: http://youtu.be/RNqUGlD5-rM
pdf: Calc I Lesson 16 Absolute Extrema.pdf

Lesson 17 The Mean Value Theorem
video: http://youtu.be/n9p5YD3w554
pdf: Calc I Lesson 17 The Mean Value Theorem.pdf

Lesson 18 Relative Extrema
video: http://youtu.be/52wsMg6J18Y
pdf: Calc I Lesson 18 Relative Extrema.pdf

Lesson 19 Concavity
video: http://youtu.be/jmDEH77ugcU
pdf: Calc I Lesson 19 Concavity.pdf

Lesson 20 Curve Sketching
video: http://youtu.be/4_pgd8f1Mvs
pdf: Calc I Lesson 20 Curve Sketching.pdf

Lesson 21 Optimization
video: http://youtu.be/EYoMJKvfUXE
pdf: Calc I Lesson 21 Optimization.pdf

Lesson 22 Antiderivatives
video: http://youtu.be/o_OpJBXyXPM
pdf: Calc I Lesson 22 Antiderivatives.pdf

Lesson 23 Sigma Notation
video: http://youtu.be/jBU1u4PtLe8
pdf: Calc I Lesson 23 Sigma Notation.pdf

Lesson 24 Area Under a Curve
video: http://youtu.be/sUbuaFKXJRw
pdf: Calc I Lesson 24 Area Under a Curve.pdf

Lesson 25 The Definite Integral
video: http://youtu.be/95izd3SSpmE
pdf: Calc I Lesson 25 The Definite Integral.pdf

Lesson 26 The First Fundamental Theorem
video: http://youtu.be/ZnoYVR5hfpo
pdf: Calc I Lesson 26 The First Fundamental Theorem.pdf

Lesson 27 Indefinite Integrals
video: http://youtu.be/FRiDZfLrZZY
pdf: Calc I Lesson 27 Indefinite Integrals.pdf

Lesson 28 The Second Fundamental Theorem
video: http://youtu.be/euyNzT-FKS4
pdf: Calc I Lesson 28 The Second Fundamental Theorem.pdf

Lesson 29 Integration by Substitution
video: http://youtu.be/0PzTo9WAE-8
pdf: Calc I Lesson 29 Integration by Substitution.pdf

These videos were created by Dr. AndrĂ©a Marchese in collaboration with Prof. Shelley Ring, thanks to a Technology Grant for Transforming Teaching and Learning through the Office of the Provost and the Center for Excellence in Teaching and Learning.