The City College of New YorkCCNY
Department of Mathematics
Division of Science

Research at City College

Research conducted in the Mathematics Department covers a broad spectrum of contemporary mathematics. Collectively, our faculty has authored many hundreds of papers, dozens of books and research monographs, and given countless talks at research seminars and conferences both in the U.S. and abroad. Current faculty research is supported by the National Science Foundation (NSF), the National Security Agency (NSA), the Office of Naval Research (ONR), the Simons Foundation, the Sloan Foundation, as well as by CUNY, through the Faculty Research Award Program. Our faculty serve as editors and on the editorial boards of leading journals, and are sought-after referees and reviewers for publications and proposals.

We present the research of the department within the framework of a segmentation of mathematics: Algebra, Analysis, Applied Mathematics, Dynamical Systems, Geometry, Number Theory, and Probability. We elaborate below on the scope of these areas as represented within the department. Of course, the nature of much current research blurs the boundaries of this classification. As a result, many individuals will be found within more than one category.

The department has several emeritus faculty who remain research active. The names of emeriti are marked with an asterisk (*) below.

Algebra

The Department has a very active group working in the general area of algebra, with some interactions between algebra and computer science. Sean Cleary works in combinatorial and geometric group theory, including computational aspects of questions about infinite groups. The Cryptography Lab, under the direction of Vladimir Shpilrain, does research on applications of group theory to cryptography. Prof. Shpilrain also works in statistical group theory, a recent development that brings together mathematics, statistics, and theoretical computer science. Benjamin Steinberg principally works in finite semigroup theory with a focus on applications to theoretical computer science and combinatorics.

ResearcherAreas of Current Interest
Sean ClearyGeometric group theory, combinatorial group theory
Vladimir ShpilrainGroup theory and affine algebraic geometry
Benjamin SteinbergSemigroup theory, representation theory, algorithmic problems in infinite groups, self-similar groups

Analysis

The Department's researchers in analysis cover an array of topics including estimation of solutions of partial differential equations using variational methods and other geometrically based techniques. Joseph Bak has co-authored a best-selling text on complex analysis and works in approximation theory.

ResearcherAreas of Current Interest
Joseph BakApproximation theory
Pat HooperErgodic theory
Weilin LiHarmonic analysis, approximation theory
Sergiy MerenkovAnalysis on metric spaces
Christian WolfComplex analysis, ergodic theory

Applied and Computational Mathematics

Department faculty have broad interests in applied mathematics. There is a significant expertise in algebraic cryptography - a completely new viewpoint in the design of cryptographic algorithms. Vladimir Shpilrain is active in this area. Asohan Amarasingham interests are in mathematical and statistical foundations of emerging branches of the neural and cognitive sciences. Ethan Akin's contributions to population genetics rounds out the very extensive efforts by the department in this area.

ResearcherAreas of Current Interest
Ethan AkinPopulation genetics
Asohan AmarasinghamTheoretical and computational neuroscience
Shirshendu ChatterjeeStatistical learning, theoretical and computational social network analysis
Sean ClearyComputational biology, phylogenetic algorithms
Weilin LiData science, signal processing
Vladimir ShpilrainInformation security and complexity theory
Benjamin SteinbergApplications of semigroup theory to theoretical computer science
Michael ShubReal number complexity, condition numbers, and Newton's method
Christian WolfComputability in dynamical systems and evolutionary biology

Dynamical Systems

Dynamical Systems Theory is the mathematical study of change in systems governed by a time-independent evolution rule. Arising from Newtonian physics, dynamical systems theory has been applied to all the sciences. Typical questions in the area are concerned with understanding the long term behavior of dynamical systems. Famous questions of this form include questions involving the stability of the solar system, extinction of species, and behavior of gases (the Boltzmann hypothesis).

Our faculty have interests which cover a broad array of topics in the field of pure dynamical systems.

ResearcherAreas of Current Interest
Ethan AkinTopological dynamics
Pat HooperPiecewise isometries, interval exchange transformations, ergodic theory, renormalization
Tamara KucherenkoSmooth ergodic theory, thermodynamic formalism, rotation theory, and symbolic dynamics
Sergiy MerenkovComplex dynamics
Michael ShubSmooth ergodic theory, thermodynamic formalism, rotation theory, symbolic dynamics.
Christian WolfErgodic theory, non-uniformly hyperbolic dynamical systems, thermodynamic formalism, dimension theory, complex dynamics

Geometry and Topology

Geometric and topological ideas are pervasive in much of contemporary mathematics. The Department's research is well-represented in this area. Sean Cleary is an active researcher in geometric group theory, with a particular interest in Thompson's group. Pat Hooper works in low-dimensional topology and Teichmüller theory. Ethan Akin has published a number of research monographs in topological dynamics.

ResearcherAreas of Current Interest
Ethan AkinTopological dynamics
Sean ClearyMetric geometry, cohomology of groups
Pat HooperLow dimensional geometry, Teichmüller theory
Sergiy MerenkovMetric geometry

Number Theory

Number theory has its origins in ancient problems related to the study of whole number solutions to polynomial equations. The research of the number theorists in the department is unified by the common theme of counting (or parametrizing) objects of arithmetic interest, be they points on curves, or lengths of geodesics on a surface, or conjugacy classes in reductive groups.

ResearcherAreas of Current Interest
Joseph BakDiophantine equations
Gautam ChintaNumber theory, automorphic forms, L-functions
Brooke FeigonNumber theory and automorphic forms
Jay JorgensonAnalytic number theory, trace formulas

Probability and Statistics

Joseph Bak is exploring certain questions in classical probability. Vladimir Shpilrain and his collaborators have applied probabilistic methods to analyze the complexity of algorithms in algebra and logic.

ResearcherAreas of Current Interest
Asohan AmarasinghamNon-stationary point processes, conditional and simultaneous inference, and applications to neurophysiology
Joseph BakClassical probability
Shirshendu ChatterjeeProbability theory and its applications to biology, social science, physics, computer science and economics
Jack HansonPercolation/random graphs, sandpiles/other cellular automata, and issues from mathematical statistical physics
Vladimir ShpilrainAverage-case and generic-case complexity of algorithmic problems
The City College of New YorkCUNY
Instagram iconFacebook iconLinkedIn iconYouTube icon
© The City College of New York. All rights reserved.