Instructions: Show your work. If you use a theorem or a test to help solve a problem, state the name of the theorem or test.

Question 1 Compute the limit $\underset{(x, y) \rightarrow(0,0)}{ } \frac{x^{3} y^{2}+2 y^{3}}{x^{3}+y^{3}}$ or prove that it does not exist.

Question 2 For parts a), b) and c) let $f(x, y)=x^{2}-3 x y$.
a) At the point with $x=1$ and $y=-1$ compute the unit vector pointing in the direction of greatest increase of the function $f(x, y)$ and compute the rate of increase in that direction.
b) Compute an equation for the plane tangent to the surface given by the equation $z=f(x, y)$ at the point in space with $x=1$ and $y=-1$.
c) Find the rate at which $f(x, y)$ is changing at $(1,-1)$ in the direction toward the point $(5,2)$.

Question 3 Let E be the solid bounded by $y=x^{2}, y=x, x=z$, and $z=0$ whose mass density is given by $\rho(x, y, z)=x$. Sketch E and find its mass.

Question 4 Find and classify the absolute extrema of the function $f(x, y)=x^{2}-y^{2}$ over the region $x^{2}+y^{2} \leq 1$.

Question 5 Compute $\iiint_{H} z d V$, where H is the solid region bounded above by the $x y$-plane and below by the sphere of radius 4 centered at the origin.

Question 6 Let $f(x, y)=e^{3 x-y} \cos (x-1)$. Estimate $f(.98,3.01)$ using differentials (linear approximation).

Question 7 Change the following triple integral to cylindrical coordinates and then to spherical coordinates:

$$
\int_{-3}^{3} \int_{-\sqrt{9-x^{2}}}^{\sqrt{9-x^{2}}} \int_{0}^{\sqrt{9-x^{2}-y^{2}}} z \sqrt{x^{2}+y^{2}+z^{2}} d z d y d x
$$

Now use one of the three integrals to compute the common value.
Question 8 Evaluate

$$
\oint_{C} \arctan (x) d x+(3 x-4-5 y) d y
$$

where C is the circle of radius 4 centered at $(2,5)$ parameterized counterclockwise.
Question 9 The fluid flow in a region is given by a vector field $\vec{F}=(x-2 y) \hat{i}+(2 x+$ $6 y) \hat{\mathrm{j}}$. Compute the total outward flux of the fluid passing through a rectangular box, with opposite corners at the origin and at $(4,2)$. Is there more flow into or out of the box?

Question 10 Consider the following curves:
$A=\left\{\begin{array}{l}x=3+\cos t \\ y=3+\sin t \\ t=[0,2 \pi]\end{array}, \quad B=\left\{\begin{array}{l}x=3 \sin t \\ y=3 \cos t \\ t=[0,2 \pi]\end{array}, \quad C=\left\{\begin{array}{l}x=12 \cos t \\ y=9 \sin t \\ t=[0,2 \pi]\end{array}\right.\right.\right.$
Suppose we have a vector field \vec{F} defined on all of the plane except the points $(3,3)$ and $(0,0)$. Also suppose that we know that $\nabla \cdot \vec{F}=0$ everywhere on the plane except those two points.
If $\oint_{A} \vec{F} \cdot \mathrm{n} d s=2 \pi$ and $\oint_{C} \vec{F} \cdot \mathrm{n} d s=-1$, then what is $\oint_{B} \vec{F} \cdot \mathrm{n} d s$?

