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SHOW ALL WORK. Answer 5 questions from Part I and 2 from Part II 
  
 PART I.  Answer 5 complete questions from this part. (14 points each)  
 

1.  a) Let A be the matrix 
  .  
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Find the determinants of the following matrices:  i) A ,      ii)  and   iii) 2   1−A 3A

      b) Let  and C  Find i)      and      ii)  . ( )121 −=B
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2.  Use Gaussian elimination to solve each of the following systems of equations. In part 
a), write the solution as a linear combination of vectors. 
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3. a) Find the inverse of the matrix A =  .   
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    b) Use the matrix  that you found in (a) to solve the system  1−A  
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4. a) Find the surface area of the part of the sphere   that lies above the 
plane  
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    b) Let S be the surface parametrized by . Show that the 
point P with (x,y,z) co-ordinates (4,4,4) lies on S and find an equation of the tangent plane 
to S at point P. 
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5. a) Find the eigenvalues and eigenvectors of the matrix . 
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    b) Use your answer to part a) to solve  the following simultaneous differential 
equations for  and  subject to initial conditions      and : )(1 ty )(2 ty 1)0(1 =y 2)0(2 =y
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Please turn the page for the continuation of Part I and for Part II 



Part I, continued 
 

6.    Let >++=< xyxz
y
xyz
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    a) Find a potential function  for   so that ∇  and   ),,( zyxf F Ff =

    b) Evaluate  where C is the straight line segment from  to Q . rdF
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7. a) Let S be the surface described by  .    Evaluate the 

integral  . 
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    b) Find the length of the part of the parametrized curve ><= ttttr ,
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End of Part I.  Make sure you answered five complete questions from this part. 
              -------------------------------------------------------------------------------------- 

PART II: Answer 2 complete questions from this part (15 points each). 
 
8.  Let R be the region in the x,y-plane bounded by the curves  and   

Find           (where C is the boundary of R , oriented clockwise) 
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+−∫
a) directly, as a line integral AND  
b) as a double integral, by using Green's Theorem.  
 
9. Let S be the surface described by   and let C be the boundary 

curve of S with the orientation of your choice. Let .   Find  
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a) directly as a line integral AND  b) as a double integral, by using Stokes' Theorem. 
 
10.  Let T be the solid bounded below by , bounded above by , and bounded 
on the side by  . Let S be the boundary surface of T.  Let   

 .  Use the outward pointing normal vector to evaluate    
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a) directly as a surface integral AND   
b) as a triple integral, by using the Divergence Theorem. 
 
END OF EXAM.  Please check that you answered five complete questions  
from Part I and two complete questions from Part II. 


