1. \((\cos y + 1)y' + \sin y - x^2\) may be written in the form \(M + N y' = (-x^2 + \sin y) + (\cos y + 1)y' = 0\). This is an exact equation, since \(M_y = N_x = \cos y\). An implicit solution \(F(x, y) = 0\) is found by letting \(F = -x^2 + \cos y + x^2 + \cos y = g(x, y)\). Set \(P = N = \cos y + 1\), \(Q = M = -x^2 + \cos y + x^2\). Therefore, \(q' = 1\), \(g = y\), and an implicit solution to the differential equation \(\Lambda = x^2 + \cos y + x^2 = y\). We have \(y = 2x\) and \(y = x\).

2. (a) Separate variables to solve \(2xy' = x^2 - 3\), \(x > 0\). \(y(1) = 1\) \(\Rightarrow y' = 2x/x - 3/y = 2x + \sqrt{3x}/x\), \(y'/4 = 3\sqrt{3}/x\), \(y' = 1\). \(\Rightarrow y = x + c\), so \(c = -3\) and \(y = -3x\). (b) The equation \(2xy' = 2x^2 + x^2 y^2 = 0\) may be separated into two ordinary differential equations by substituting a solution of the form \(u(x, y) = x(\sqrt{y})\) into the original equation:

\[
\pi X^2 + 2X Y' + x^2 Y = 0 \Rightarrow \pi x^2 (X' + xY' = -2XY' \Rightarrow x^2 X + e Y = x^2 X / X - 2x^2 / x^2 \]
For last series to be identically equal to 0, each coefficient must be 0:

\[(n+2)(n+1)a_{n+2} - (n+2)a_{n} = 0, \quad \text{or} \quad a_{n+2} = \frac{(n+2)a_{n}}{(n+1)}\]

for all nonnegative integers \(n\). Thus, \(a_{0}\) and \(a_{1}\) may be chosen arbitrarily, and \(a_{n}\), for \(n\) even, may be found by substituting \(n = 0, 2, \ldots\) into the recursion relation:

\[a_{n} = -2a_{n}/2 = -a_{n}/2, \quad a_{0} = a_{0}/2, \quad a_{2} = a_{2}/2, \quad \ldots\]

and continuing in this fashion we see \(a_{n} = 0\) for all even values of \(n\) greater than 2. So that answer to part (b) is \(\sum a_{n} = 0\). Similarly, by interchanging \(n = 1, 3, \ldots\) we obtain \(a_{n} = -a_{n}/6\) and \(a_{0} = a_{0}/6 = a_{0}/60\). Substituting these values into the original series \(y = \sum a_{n}\) and factoring \(a_{0}\) and \(n\) out, where possible, we obtain the that the answer to (a) may be written as \(y = a_{0}(1 - z^2) + a_{2}(z^2 - 2z^2/3 - 2z^2/5 - \ldots)\).

7. To solve the equation \(y' = -y\), with \(y(0) = 0\) and \(y'(0) = 1\), we denote the Laplace transforms of the solution \(y\) by \(Y\), equate the Laplace transforms of the two sides of the differential equation, solve for \(Y\), and find a partial fraction expansion: \(sY - y(0) - y'(0) + Y = 1/s\) and

\[Y = \frac{1}{s^2 + 1}\]

Equation coefficients: \(A = B = 0\), \(C = 1\), and \(A = 1\), so that \(A = 4\), \(B = -4\) and \(C = 2\). Thus, \(Y = 4/(s^2 + 1)\) and \(y = 4\cos t + 2\sin t\).

8. If 1 gal/min of water with 20 mg/gal of impurities flows into a 10 gallon tank filled with pure water, then the rate of impurities flow in is \(Q_{in} = 20(10 - t)\) gal/min. If the mixed solution exits the tank at 2 gal/min, impurities flow out at a rate of \(Q_{out} = 2Q_{out} = 20 - 10 = 10\). Thus, differential equation, which may be written as \(Q_{in} + 2 = 0\), can be solved using the integrating factor \(\mu = e^{\int (10 - t) dt} = 1/(10 - t)^2\).

Then

\[Q(t) = \int \frac{20}{(10 - t)^2} dt = -\frac{20}{10 - t} + C\]

Now, \(Q(0) = 0\) and \(s = 2\), so \(Q(t) = \frac{20}{10 - t}\).

9. Since a 4 lb weight stretches the spring by 1/2 a foot, we obtain from \(F = ks\) that \(4 = k(1/2) = k/2\). The force of the weight is found by substituting into \(F = mg\): \(4 = 32 - m\) and \(m = 28\). For air resistance of \(8\) lb at a velocity of \(8\) feet/sec, we obtain from \(F = mg + \frac{1}{2}CV^2\) that \(m = 7\) or \(G = 1\). Thus, the equation \(m \ddot{y} + 2y = 0\) becomes \((1/2)\ddot{y} + \dot{y} + y = 0\), whose characteristic equation has solution \(r^2 + 2 = 0\) or \(r = \pm \sqrt{2}\). Then, \(u(t) = e^{-t}\), and by differentiation, \(u(t) = -e^{-t}\).

10. If \(x\) is a regular singular point of the equation \(x^2 \ddot{y} + \alpha x + \beta = 0\), we substitute a solution of the form \(y = \sum_{n=0}^{\infty} a_n x^{n-r}\) into the differential equation, then we replace \(r\) by \(n - 1\) in the second sum and combine the terms:

\[\sum_{n=0}^{\infty} \sum_{r=0}^{n+r} \frac{r(r+1)\ldots(r+n-1)}{r!} a_{n-r} x^{n-r+1} = x y'' + \alpha x y' + \beta y = 0\]

\[\sum_{n=0}^{\infty} \sum_{r=0}^{n+r} \frac{r(r+1)\ldots(r+n-1)}{r!} a_{n-r} x^{n-r+1} = 0\]

\[x y'' + (\alpha + 1)x y' + \beta y = 0\]
The indicial equation is obtained by setting the constant coefficient equal to zero: \(r^2 - 2 = r^2 - 2 = 0 \); thus, \(r = 1, 2 \). The recursion relation for \(r = 2 \) is obtained by substituting \(r = 2 \) into the last displayed equation above and collecting the coefficients of \(x^{n+1}, n \geq 2 \), equal to zero: \([n+2][n+1] - 2] a_n - \alpha_1 a_{n-1} = 0 \), so that \(a_n = \alpha_1 a_{n-1} \), \(n \geq 1 \). Choose \(\alpha_1 \) arbitrarily, and substitute successive values of \(n \) into the recursion relation to obtain \(a_1 = a_0, a_2 = a_0/4, a_3 = a_0/(4 \cdot 10) \), \(a_4 = a_0/(4 \cdot 10 \cdot 10 - 25) \), and \(a_5 = a_0/(4 \cdot 10 \cdot 10 - 25) \).

The solution to the differential equation is

\[
a_k x^k \left[\frac{1}{4} + \frac{1}{40} \frac{1}{x^2} + \frac{1}{720} \frac{1}{x^4} + \frac{1}{7200} \frac{1}{x^6} + \ldots \right].
\]

11. (a) The independent solutions to the Euler equation \(t^2 y'' - 4ty' + 6y = 0 \), are of the form \(t^r \), where \(r \) is a solution to \(r(r - 1) - 6r + 6 = 0 \). Thus, \(r = 3, 1 \), and the general solution is \(c_1 t^3 + c_2 t^1 \).

(b) Rewriting the equation \(t^2 y'' - 4ty' + y = t^1 \) as an equivalent equation with \(y'' \) coefficient one:

\[
y'' - \frac{4}{t} y' + \frac{1}{t^2} y = \frac{t}{t^2}.
\]

Using the method of variation of parameters, we obtain a particular solution to the last equation in the form \(Y = y_1 \int W y_2 dy + y_2 \int W y_1 dy \), where \(y \) is the inhomogeneous term \(t \), \(W \) is the Wronskian, and \(y_1 = t^3 \) and \(y_2 = t^1 \) are independent solutions to the homogeneous equation in part (a).

(c) Calculating:

\[
W = \frac{t^2}{t^2 - t^2} = t^2 - t^2,
\]

\[
\int W \frac{y_2}{W} = \int t^2 - t^2 = t^2 - 1,
\]

\[
\int W \frac{y_1}{W} = \int t^2 - t^2 = t^2 - t^2,
\]

\[
Y = t^2(t^3 - t^3) + t^3(t^1) = t^2 t^3 - t^2 t^1,
\]

where the general solution to the inhomogeneous equation was obtained by adding the particular inhomogeneous solution \(Y \) to the general homogeneous solution found in (a).

12. (a) The equation \(y'' + \frac{a_2 - \frac{y}{a_2}}{a_2} \) is inhomogeneous in the sense that numerator and denominator of the right side are both homogeneous polynomials of the same degree. We may substitute \(u = y/x^n \) to obtain an equation which may be solved by separating variables. Calculate \(y'' = (ux^2)/x + y'' \) and write the original equations as \(y'' = (ux^2)/x + y'' \).

Thus \(y + 2y = u = y'' \). Separate variables to obtain \(\int 1/y^2 dy = \int 1/x^2 dx \), \(-1/u = \ln u, u = e^{-1}, u = 1 \), and \(y'' = y(x) \).

(b) Divide by the \(y'' \) coefficient in the equation \((x^2 - a_2)x^2 + (x + 1)y' - xy = 0 \) to obtain:

\[
y'' + \frac{x + 1}{x^2 - a_2} y' - \frac{x}{x^2 - a_2} y = 0,
\]

which has singular points \(x = 0 \). A solution including \(x_0 = 0 \) is guaranteed on any interval not containing either of the singular points. The largest such interval is \([0, \infty) \).

(c) The singular point \(x = 0 \) is irregular since the \(y'' \) coefficient has more than one power of \(x \) in the denominator, but the singular point \(x = 3 \) is regular, since the denominator of the \(y'' \) coefficient has at most one power of \(x - a_2 \) and the \(y \) coefficient has at most two (actually only one) power of \(x - a_2 \) in the denominator.