THE CITY COLLEGE DEPARTMENT OF MATHEMATICS Mathematics 392 Final Examination Spring 2005

Instructions: Show all work. Calculators may not be used.

PART ONE: ANSWER SIX COMPLETE QUESTIONS (12 points each)

1. a) Write down a system of equations whose augmented matrix is given by the following matrix. Then use Gaussian elimination to get the general solution of the system.

(0)	0	0	1	0	1	-2)
1	3	-2	0	0	-1	0
2	6	-4	1	0	0	0
(1)	3	-2	1	0	1	0)

b) Compute the vector which describes the direction of greatest increase for the function $f(x,y) = x^2y^3$ at the point with coordinates (2,1).

		3	4	-1)	
2.	a) Find the inverse of the matrix	1	0	3	
		2	5	-4)	

		3x	+4y - z = 10
b) Use your answer to part (a) to solve	ł	х	+ $3z = 5$
		2x	+5y-3z=-5

3. a) Find the eigenvalues and eigenvectors of the matrix A = $\begin{pmatrix} 4 & -1 \\ 5 & -2 \end{pmatrix}$

b) Use your answer from a) to solve the following system of differential equations for $y_1(t)$ and $y_2(t)$ subject to the initial conditions $y_1(0) = 4$ and $y_2(0) = 2$:

$$y'_1 = 4y_1 - y_2$$

 $y'_2 = 5y_1 - 2y_2$

4. a) Use Cramer's Rule to solve for *w* ONLY:

2x	+4y	+2w	= 0
x	+3y	+ w	= 0
x	+4y	+z + w	= 1
3x		+4z + w	= 2

b) Find the equation of the tangent plane for the surface given by the equation $z = x^2y^3$ at the point with (x,y) = (2,1). *Part I continues on the other side of this page.* 5. a) Find the surface area of the part of the paraboloid $z = 4 - x^2 - y^2$ contained in the first octant $x \ge 0$; $y \ge 0$; $z \ge 0$.

b) Compute the directional derivative of the function $f(x,y) = x^2y^3$ in the direction from (1,2) to (4,-2).

6. a) For the vectorfield $\mathbf{F} = (ye^{xy} - z\sin(xz))\mathbf{i} + (xe^{xy} + y^2)\mathbf{j} + (-x\sin(xz))\mathbf{k}$ compute a potential function U(x,y,z) so the $\nabla U = \mathbf{F}$.

b) Use your answer to part (a) to compute the line integral $\int_C \mathbf{F} \cdot d\mathbf{r}$ from (0,1,0) to (1,2, π) along the path parametrized by < t, t² + 1, 2 arcsin(t) > with 0 ≤ t ≤ 1.

7. a) For the path parametrized by $\mathbf{r}(t) = \langle t, \sin(t), e^{2t} \rangle$, compute parametric equations for the tangent line at the point (π , 0, $e^{2\pi}$).

b) Compute the line integral $\int_C \mathbf{F} \cdot d\mathbf{r}$ along the path given in part (a) from t = 0 to $t = \pi$ where $\mathbf{F} = y \cos(x) \mathbf{i} + y^2 \mathbf{j} + z^2 \mathbf{k}$.

PART TWO: ANSWER TWO COMPLETE QUESTIONS (14 POINTS EACH)

8. Let R be the region $x + 2y \le 4$; $x \ge 0$; $y \ge 0$ in the x,y-plane. Let C be the boundary of R, oriented counterclockwise. Evaluate $\int_{C} (\sin(x) + y^2) dx + 2y dy$

a) directly as a line integral, and

b) as a double integral, by using Green's Theorem.

9. Let S be the portion of the plane z = 2 - 2x - y which lies in the first octant. Let C be the boundary curve of S, oriented counterclockwise as seen from above and let \vec{F} be the vector field x i + y j + xyz k. Evaluate $\int_{\vec{F}} \vec{F} \cdot d\vec{r}$

a) directly as a line integral, and

b) as a surface integral, by using Stokes' Theorem.

10. Let *T* be the solid $x^2 + y^2 \le 1$; $0 \le z \le 1$. Let S be the surface (including the top, bottom, and side) of *T* and let \vec{n} be the outward pointing unit normal vector. Let \vec{w} be the vector field $y^2 \mathbf{i} + x^2 \mathbf{j} + \sin^2(\pi z) \mathbf{k}$. Evaluate $\iint \vec{w} \cdot d\mathbf{S}$

a) directly as a surface integral, and

b) as a triple integral, by using the Divergence Theorem.

END OF EXAM. Make sure you answered 6 complete questions from Part I and 2 complete questions from Part II.