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Basic Integration Formulas

Formulas needed to be memorized: (*=absolutely needed)
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n p % —
* dp = C -1 —dp=In|p|+C
Ip i (n+1)+ " J‘P v n|p|
P
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jsinpa’p=—cosp+C jcospdp=sinp+C

*
*

jseczpdp=tanp+C Jcsczpdp=—cotp+C

*
*

Isecptanpdp:secp+C Icscpcotpdp:—cscp+C

. Jcscp dp =—ln|cscp+c0tp|+C

*

Isecp dp =In|sec p +tan p|+C
=ln|cscp—c0tp|+C

*
*

Itanpdp:ln|secp|+C Icotpdp:1n|sinp|+C

*
*

Isinhpdp:coshp+C Icoshpdp:sinhp+C

*

Ipz-li—az dp:étanl(§j+C J.\/rdp—SIH ( j"'c

*

J'sec3 pdp :%(secptanp+ln|secp+tanp|)+C jcsc3 pdp :%(—cscpcotp+1n|cscp—cotp|)+C

Section 7.1: Integration by Parts

The formula for integration by parts:

Iu dv:uv—J'vdu
Make sure to determine how you want to choose u and dv. Remember that your 1% choice might not be the
optimized method of solving by this technique.

There are problems that require you to apply integration by parts more than once.

Section 7.2: Trigonometric Integrals

Strategy for evaluating J. sin™ xcos” x dx
a) If the power of cosine is odd (7 =2k +1), then use cos> x=1—sin’ x:
Isin’" xcos ! x dx = .[sin”’ x(cos® x)* cos x dx = jsin'” x(1—sin* x)* cos x dx then let u =sin x
b) If the power of sine is odd (m =2k +1), then use sin”> x =1—cos” x:
Isin 2 xcos" x dx = J.(sinz x)* sin xcos” x dx = J.(l—cosz x)* cos” xsin x dx then let u = cos x

c) If both powers of sine and cosine are even, then use half angle identities:
sin? x=21(1-cos2x) cos’x=1(1+cos2x).

Sometimes this identity is helpful: sin xcos x = 5 sin 2x
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Strategy for evaluating I tan™ xsec” x dx

a) If the power of secant is even (7 = 2k ), use sec” x =1+ tan” x:
Itan’” xsec™ x dx = J.tan’" x(sec” x)" " sec? x dx :.[tanm x(1+tan” x)* " sec” x dx then let u = tanx

b) If the power of tangent is odd (m =2k +1), use tan® x =sec’ x—1:
J.tan”‘” xsec" x dx= I(tanz x)*sec”" ! xsecxtan x dx = J.(sec2 x—1)*sec” " xsecxtan x dx

then let u =secx

Recall Itanx dx = ln|secx| +C Isecx dx = 1n|secx+ tan x| +C

To evaluate the following:
a) Isin mx cos nx dx use sin Acos B = J[sin( 4 — B) +sin( A+ B)]

b) Isin mx sin nx dx use sin Asin B = 3[cos(A—B)—cos(A+ B)]

C) Icos mx cos nx dx use cos Acos B =1[cos(A—B)+cos(4+ B)]

Section 7.3: Trigonometric Substitution (TRIANGULATION)

For this section, it will be easier to recall the basic trigonometry of a right triangle. Given triangle below:

Recall: SOH CAH TOA

sing=22P_"Y cosé?=%=ﬁ tang =222 =¥
hyp r hyp r adj h

r
By Pythagorean theorem: > =v* + A’
v If we solve for hypotenuse and each of the legs, we get:
r=\V+h* v=\r’-n h=Jr’-v
0 The trick to this section is to recognize which of the following is present in the
\ problem:
W+ NP =R =y
v+ R r’—h? Pt —v?

If this expression (\/v> +h*> or V' +h%) is present then this part represents the hypotenuse of the triangle;
therefore, each part represent the legs of the triangle.

If these expressions (\7r° —h> or 7 —h*)or(Nr’—v’ or r°—v*) are present then this part represents the
leg of the triangle; therefore, the fist part is the hypotenuse and second the other leg of the triangle.

Now use this triangle to pick out 2 trigonometric relationships that involve the pairs given below:
sin®@+cos’@=1 tan’O@+1=sec’d 1+cot’@=csc’6

This is the encoding step. Then use techniques of trigonometric integration to solve the problem. After solving,
use the triangle we set up for encoding to decode our solution.
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Section 7.4: Integration of Rational Function by Partial Fractions

If f(x)= % such that deg(P(x)) > deg(Q(x)), then use the long division to obtain
X

@:S(x)+i;

X
7= 56 Ox

where S(x) and R(x) are polynomials.

Case 1: The denominator QJ(x) is a product of distinct linear factors.

This means that we can write O(x) =(a,x+b,)(a,x+b,)---(a,x+b,) where no factor is repeated. In this case
the partial fraction theorem states that there exist constants 4,, 4,,..., 4, such that

R(x): 4 " 4, Tt 4 .

O(x) ax+b a,x+Db, ax+b,

Case 2: Q(x) is a product of linear factors, some which are repeated.

Suppose the first linear factor (a,x+5,) is repeated r times; that is, (a,x+5,)" occurs in the factorization of

: : 4 . .
O(x). Then instead of the single term ————— in previous case 1, we would use
(ax+b)

v

A4 A, A
o —
(ax+b) (ax+b,) (ax+b)

Case 3: Q(x) contains irreducible quadratic factors, none of which is repeated.

If O(x) has the factor ax” +bx+c, where b* —4ac <0, then, in addition to the partial fractions in equations

R(x) will have a term of the form ;4x_+B where 4 and B are
X) ax” +bx+c

from case 1 and 2, the expression for

constants to be determined.

The term ;4x_+B can be integrated by completing the square and using the formula
ax” +bx+c

I de > =ltan_l[£j+(?.
x"+a a a

Case 4: Q(x) contains a repeated irreducible quadratic factor.
If O(x) has the factor (ax’ +bx+c)", where b> —4ac <0, then instead of the single partial fraction in case 3,
Ax+B, N A, x+ B, e Ax+B,

+
2 2 r
ax” +bx+c (ax2+bx+c) (ax2+bx+c)

the sum occurs in the partial fraction decomposition of

Rx)
O(x)

. Each of the terms above can be integrated by first completing the square.



