$\Box \frac{4}{\pi^2}$ $\Box \text{ None of These}$ $\Box \frac{1}{2} - \frac{4}{\pi^2}$

Evaluate $\int_{1}^{2} \frac{g'(x)}{g(x)} \frac{1}{\left[\ln(g(x))\right]^{2}} dx.$ [Use rlna = lna^r.] $\Box \ln(2)$ $\Box \frac{1}{\ln(4)}$

3. Let g(x) be a differentiable function such that g(1) = 2 and g(2) = 4.

 \Box 1

□ In(4)

 $\Box \frac{1}{\ln(2)}$

4. $\int_{0}^{\pi} 4\sin^{2}(x) dx =$ $\frac{\pi}{4}$ $\frac{\pi}{2}$ π 4π $\boxed{ \text{ None of These}}$

7. Which of the following integral(s) diverge?

 $\Box \text{ None of These}$ $\Box \int_{0}^{\infty} \frac{2}{\sqrt{x}(x+5)} dx$ $\Box \int_{1}^{3} \frac{1}{(x-2)^{2}} dx$ $\Box \int_{0}^{1} \frac{1}{(1-x)^{1/4}} dx$ $\Box \int_{1}^{\infty} \frac{1}{\sqrt{x-3}} dx$

8. Let f(x) be non-negative for all x. Which of the following statement(s) is/are correct?

□ If $f(x) \ge e^{-x}$ for all x, then $\int_{1}^{\infty} f(x) dx$ is divergent. □ If $f(x) \ge c > 0$ for all x, where c is a constant, then $\int_{1}^{\infty} f(x) dx$ is divergent. □ None of These □ If $f(x) = \frac{1}{x}$ for x > 0, then $\int_{1}^{\infty} f(x) dx$ is convergent. □ If $f(x) \le e^{-x}$ for all x, then $\int_{1}^{\infty} f(x) dx$ is convergent.

9. Which of the following series requires at least 2 tests to determine whether it is absolute convergent, conditional convergent or divergent?

MATH 21200 Sample Final Exam (2020 version)

$$\Box \sum_{n=1}^{\infty} \frac{(-1)^n n}{2^n}$$
$$\Box \sum_{n=1}^{\infty} \frac{(-1)^n (n^2 - n)}{n^2 + n}$$
$$\Box \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2 + n}$$
$$\Box \sum_{n=1}^{\infty} \frac{2^n}{3^{n+1}}$$
$$\Box \sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$$

10. Which of the following series diverge?

 $\Box \sum_{n=1}^{\infty} \frac{3}{n^2 \ln(n)}$ $\Box \text{ None of These}$

 $\sum_{n=1}^{\infty} \frac{3^n}{2^n}$

$$\Box \sum_{n=1}^{\infty} \frac{1}{n!}$$
$$\Box \sum_{n=1}^{\infty} \frac{1}{\sqrt{n} + 2n}$$

 $\Box \sum_{n=1}^{\infty} \frac{\sin(n)}{3^n}$

11. Find the interval of convergence of the power series $\sum_{n=0}^{\infty} \frac{(x+a)^n}{\sqrt{n+1}}$, where *a* is a constant. (-a-1, -a+1) [-a-1, -a+1] [None of These

 \Box (-a-1, -a+1]

12. For
$$f(x) = x \sin(x)$$
, an infinite series for $\int_{0}^{1/2} f(x) dx$ is

$$\Box \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2n+3)2^{2n+3}} = \frac{1}{(3)(2^{3})} - \frac{1}{(5)(2^{5})} + \frac{1}{(7)(2^{7})} \pm \cdots$$

$$\Box \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2n+1)!(2n+3)2^{n}} = \frac{1}{3} - \frac{1}{(3!)(5)(2)} + \frac{1}{(5!)(7)(2^{3})} \pm \cdots$$

$$\Box \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2n+1)!(2n+3)2^{2n+3}} = \frac{1}{(3)(2^{3})} - \frac{1}{(3!)(5)(2^{5})} + \frac{1}{(5!)(7)(2^{7})} \pm \cdots$$

$$\Box \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2n+1)!2^{2n+3}} = \frac{1}{2^{3}} - \frac{1}{(3!)(2^{5})} + \frac{1}{(5!)(2^{7})} \pm \cdots$$

$$\Box \text{ None of These}$$

13. The graph of the parametric equations $x = \sqrt{1-t^2}$, $y = 2 + (1-t^2)^{3/2}$, $-1 \le t \le 0$, is the same as the graph of

 $y = 2 + x^3, 0 \le x \le 1.$ $y = 2 + x^3, -1 \le x \le 1.$ $y = (x - 2)^3, -1 \le x \le 0.$ □ None of These $y = 2 + x^3, -1 \le x \le 0.$

14. Let ${\bm u}$ and ${\bm v}$ be orthogonal unit vectors. Which of the following is/are $\underline{{\tt NOT}}$ true?

 \Box **u** × **v** = **0**

□ None of These

 \square 3**u** – 4**v** and 4**u** + 3**v** are orthogonal

 $\Box \mathbf{u} \cdot \mathbf{v} = 0$

 \Box 3**u** – 4**v** and 3**u** + 4**v** are orthogonal

15. Find an equation for the plane which is perpendicular to both of the planes z = 2x + y and z = 3x and which passes through the point (0,5, - 4).

-x - (y - 5) - 3(z + 4) = 0

 $\Box^{5(y-1)-4(z+3)=0}$

 $\Box^{-x+y-3z=0}$

None of These

 $\Box -x + y - 5 - 3(z - 4) = 0$

16. Lines l1 and l2 have parametric equations

 $l_1: x = 1 + 2t, y = 4, z = 6 - t$

 $I_2: x = 3 + 2s, y = 4, z = 5 + s$

None of These

Which of the following statement(s) is/are true?

 $\hfill\square$ I_1 and I_2 do not intersect and are parallel.

 \Box l_1 and l_2 intersect and are both parallel to the xz-plane.

 \Box I_1 and I_2 do not intersect and are both in the *xz*-plane.

The graph of $4x^2 - 9y^2 - 36z^2 = -36$ is a

 $\hfill \square$ hyperboloid of one sheet, and the x-axis does not intersect the graph.

 $\hfill\square$ hyperboloid of two sheets, and the x-axis does not intersect the vertices

 \Box hyperboloid of one sheet, and the *x*-axis intersects the graph.

 $\hfill \square$ hyperboloid of two sheets, and the x -axis intersects the vertices.

None of These

 $\lim_{(x,y) \to (0,0)} \frac{2x^2 - \sin^2 y}{x^2 + y^2} =$ $\Box \quad 1$ $\Box \quad \text{The limit does not exist.}$ $\Box \quad 0$

$$\square$$
⁻¹
 \square ²

19. If g(t) has a continuous second derivative and $f(x,y) = xg(y) + \tan^{-1}(xy)$, then $f_{xx}(2,1) =$

 \Box Not enough information is given to find the numerical value of $f_{\rm XX}(2,1).$

 $-\frac{1}{25}$ $-\frac{1}{25}$ $-\frac{4}{25}$ $-\frac{4}{25}$

20. If $f(x,y) = \sqrt{xy}$, then $f_x f_y + f_{xy} - f_{yx} =$

