
CCNY 203 Fall 2011 Final Solutions

1a: Take cross products of the displacement vectors to get a normal to plane P:
Cross@80, 1, 2< - 81, 0, -1<, 81, 2, 3< - 80, 1, 2<D

8-2, 4, -2<

That gives an equation of the plane from the normal vector and a point:
-2 HxL + 4 Hy - 1L - 2 Hz - 2L ã 0

-2 x + 4 H-1 + yL - 2 H-2 + zL ã 0

1b: The direction of the line is the same as the normal vector above, so parameterizing the line as P + t V gives
l = 80, 1, 2< + t 8-2, 4, -2<

8-2 t, 1 + 4 t, 2 - 2 t<

If we write this in standard form, we get x = -2 t, y = 1 + 4 t, z = 2 - 2 t.

1c: We use dot product to measure the angle:
80, 2, -2<.8-2, 4, -2<

12

The dot product is not zero and the vectors are not scalar multiples, so the vectors are neither perpendicular nor parallel.

2a: We take the gradient:

f = z + z LogAx2 + y2E

z + z LogAx2 + y2E

gradf = 8D@f, xD, D@f, yD, D@f, zD<

:
2 x z

x2 + y2
,

2 y z

x2 + y2
, 1 + LogAx2 + y2E>

At the desired point, we substitute to get:
gradf ê. 8x Ø 1, y Ø 0, z Ø 2<

84, 0, 1<

The directional derivative is obtained by dotting the gradient with a unit vector in the desired direction:

u =
84, 4, 7< - 81, 0, 2<

32 + 42 + 52

:
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Together@84, 0, 1<. uD
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2b:  This the direction of the gradient: <4,0,1>.

2c: The appropriate version of the chain rule here is ¶∂E
¶∂s

= ¶∂E
¶∂x

¶∂x
¶∂s

+ ¶∂E
¶∂y

¶∂y
¶∂s

+ ¶∂E
¶∂z

¶∂z
¶∂s

 which  at the relevant points gives

2 µ 1 + 0 µ 1 + H1 + lnH4LL 2 = 4+2 ln(4).  Or you can substitute but that is more tedious and prone to error.
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3: Taking the first partials and setting them to zero and solving gives:

f = 3 x2 - 12 x y + 8 y3

3 x2 - 12 x y + 8 y3

Solve@8D@f, xD ã 0, D@f, yD ã 0<D

88x Ø 0, y Ø 0<, 8x Ø 2, y Ø 1<<

At the first point, we evalute the discriminant to get:

D@f, x, xD D@f, y, yD - D@f, x, yD2 ê. 88x Ø 0, y Ø 0<<

8-144<

So there is a saddle at (0,0).

At the  second point, we evalute the discriminant to get:

D@f, x, xD D@f, y, yD - D@f, x, yD2 ê. 88x Ø 2, y Ø 1<<

8144<

Since it is positive, we look at fxx :
D@f, x, xD ê. 88x Ø 2, y Ø 1<<

86<

So there is a relative minimum at (2,1).

4a: We sketch the region in the plane (it’s a circle tangent to the y-axis at the origin) and convert to polar:

ParametricPlotB8t 2 Cos@qD Cos@qD, t 2 Cos@qD Sin@qD <, :q,
-p
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4
>, 8t, 0, 1<F
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4b: We differentiate and evaluate at the point and get:

f = x Iy2 + 2M
D@f, xD
D@f, yD
D@f, xD ê. 8x Ø 3, y Ø -1<
D@f, yD ê. 8x Ø 3, y Ø -1<

x I2 + y2M

2 + y2

2 x y

3

-6

which gives an equation of the tangent plane as:
z - 9 ã 3 Hx - 3L - 6 Hy + 1L

5: For the volume via a double integral, taking the integral of the (top surface -  bottom surface) over the shadow to get:
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ParametricPlot3DA88x, y, x<, 8x, y, x + y<<, 8x, 0, 1<, 9y, x2, 4=E

5: Alternatively, volume via a triple integral:
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6a: Divergent by comparison with the harmonic series.  Limit comparison does not work as the limit of the ratio does
not exist.
6b: Convergent by alternating series test,  and the absolute values are divergent by comparison with the harmonic
series, so the series is conditionally convergent.
6c: Absolutely convergent by the ratio test.
7: We use the ratio test to get convergence on the interval -9<x< 3.  For x=3, divergent by comparison with the
harmonic series.    For x=-9, converent by the alternating series test.  So the power series convergenes on the interval
[-9,3).
8a:  We use spherical coordinates to find the center of mass, and the fact that the relevant part of the cone has equation
f = p

4
:

mass = ‡
0

2 p

‡p
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p
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ShowB:ParametricPlot3DB8 2 Cos@qD Sin@fD, 2 Sin@qD Sin@fD, 2 Cos@fD <,

8q, 0, 2 p<, :f,
p

4
,

p

2
>F, ParametricPlot3DB

: t Cos@qD SinB
p

4
F, t Sin@qD SinB

p

4
F, t CosB

p

4
F >, 8q, 0, 2 p<, 8t, 0, 2<F>F

8b: We consider horizontal and vertical paths approaching the origin, which have limits of 0,
x = t;
y = 0;

LimitB
2 x Sin@yD

x2 + y2
, 8t Ø 0<F

80<

x = 0;
y = t;

LimitB
2 x Sin@yD

x2 + y2
, 8t Ø 0<F

80<

Those were the same, so either we should try to prove that limit exists or we should look at another direction. We
consider coming in along the line y=x, which gives a limit of 1 using that the limit of sinHxL

x
 is 1 as x approaches 0, so

therefore the limit does not exist:
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x = t;
y = t;

LimitB
2 x Sin@yD

x2 + y2
, 8t Ø 0<F

81<

Converting to polar coordinates is another approach- we can see that there are different limits for different values of q
as r approaches zero, which means the limit cannot exist:
x = r Cos@qD;
y = r Sin@qD;

SimplifyB
2 x Sin@yD

x2 + y2
F

2 Cos@qD Sin@r Sin@qDD

r

LimitB
2 Cos@qD Sin@r Sin@qDD

r
ê. :q Ø

p

4
>, 8r Ø 0<F

81<

LimitB
2 Cos@qD Sin@r Sin@qDD

r
ê. 8q Ø 0<, 8r Ø 0<F

80<

9a: we take the nearby point of (1,3) and use differentials from there:

f = ‰3 x-y Cos@x - 1D

‰3 x-y Cos@1 - xD

f ê. 8x Ø 1, y Ø 3<

1

D@f, xD ê. 8x Ø 1, y Ø 3<

3

D@f, yD ê. 8x Ø 1, y Ø 3<

-1

which gives us the approximation of f at that point as 1+3(-.02) + -1(.01) = .93

9b: we take the gradient of the function since the surface is given implicily:

f = 2 Sin@x - yD + ‰4 y
2-z2

‰4 y
2-z2 + 2 Sin@x - yD

f ê. 8x Ø 1, y Ø 1, z Ø 2<

1

gradf = 8D@f, xD, D@f, yD, D@f, zD< ê. 8x Ø 1, y Ø 1, z Ø 2<

82, 6, -4<

which gives an equation of 2 Hx - 1L + 6 Hy - 1L - 4 Hz - 2L = 0 for the tangent plane there.

10a:  For surface area, we integrate 1 + fx2 + fy2  over the shadow down on the x y plane, then switch to polar, to get
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10b: this is easier to recognize when we complete the square for x to get into the form Hx - 2L2 - 4 y2 - 4 z2 = 4, where
we can regonize this as a hyperboloid of 2 sheets opening up along the +x-axis and -x axis  The vertices are (0,0,0) and
(4,0,0).
11a: this is a sideways heart-shaped region, and we set up a mass integral in cylindrical coordinates
PolarPlot@2 + 2 Cos@tD, 8t, 0, 2 p<D

1 2 3 4
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-1

1

2

mass = ‡
0

2 p

‡
0

2+2 Cos@qD

‡
0

2
z r „z „r „q

12 p

12:  the  correct  series  is   ⁄n=0
¶ 1+H-2Ln

n!
xn.   To  approximate  f I 1

4
M ,  we  take  the  first  few  terms  as

2 + I
1
2
M I
1
4
M + I

-1
2!
M I
1
4
M
2
+ I

3
3!
M I
1
4
M
3
- I

7
4!
M I
1
4
M
4
+ ...   By the alternating series test, the series converges and the error is

no more than the first omitted term.  So since the second term is 1
8

, the first term is not guarranteed to be enough.  But

since the third term is -1
32

, the error in using the first two terms is less than the desired .1.  So the approximation is 2 - 1
8

.

For  the  series  of  the  derivative,  since  the  series  converges  absolutely,  we  can  differentiate  each  term  to  get
⁄n=1
¶ n 1+H-2Ln

n!
xn-1  as a description of the series for the derivative, which could be re-indexed if desired.  The first

three non-zero terms are:

fall2011sols.nb   7



‚
n=1

3

n
1 + H-2Ln
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