
CCNY 203 Fall 2010 Final Solutions

1a: We take the cross product of the vector along the line and a displacement vector from the point to a point on the line to get a
normal to plane P:

Cross@83, -1, -2<, 82, -2, 1< - 82, -3, 1<D

82, 0, 3<

That gives an equation of the plane:

2 Hx - 2L + 0 Hy + 3L + 3 Hz - 1L ã 0

1b: The distance from the plane to the origin we can get by projecting a vector from the origin to a point on the plane onto the
normal to the plane:

d =
82, 0, 3<

4 + 0 + 9
. 82, -3, 1<

7

13

2a: We take the gradient:

f = x2 y3 + ‰x+z - 2 y Sin@zD

‰x+z + x2 y3 - 2 y Sin@zD

gradf = 8D@f, xD, D@f, yD, D@f, zD<

9‰x+z + 2 x y3, 3 x2 y2 - 2 Sin@zD, ‰x+z - 2 y Cos@zD=

At the desired point, we substitute to get:

gradf ê. 8x Ø 0, y Ø 1, z Ø 0<

81, 0, -1<

The directional derivative is obtained by dotting the gradient with a unit vector in the desired direction:

81, 0, -1<.
83, 4, -12<

32 + 42 + 122

15

13

2b: Implicit differentiation with respect to x gives:

eqn = 2 x y3 + ‰Hx+zL H1 + ¶∂xz@xDL - 2 y Cos@zD ¶∂xz@xD ã 0

2 x y3 - 2 y Cos@zD z£@xD + ‰x+z H1 + z£@xDL ã 0

Solving gives:



Solve@eqn, z'@xDD

::z£@xD Ø
-‰x+z - 2 x y3

‰x+z - 2 y Cos@zD
>>

More simply, since we already have the gradient from 2a, we can divide to use: ¶∂z
¶∂x

= -
¶∂ f

¶∂x
¶∂ f

¶∂x

 in this case.

2c: Using the gradient evaluated at the point from 2a gives:

1 Hx - 0L + 0 Hy - 1L + -1 Hz - 0L ã 0

3: Taking the first partials and setting them to zero and solving gives:

f = 3 x2 - 6 x y + y3 - 9 y

3 x2 - 9 y - 6 x y + y3

Solve@8D@f, xD ã 0, D@f, yD ã 0<D

88x Ø -1, y Ø -1<, 8x Ø 3, y Ø 3<<

At the first point, we evalute the discriminant to get:

D@f, x, xD D@f, y, yD - D@f, x, yD2 ê. 88x Ø -1, y Ø -1<<

8-72<

So there is a saddle at (-1,-1).

At the  second point, we evalute the discriminant to get:

D@f, x, xD D@f, y, yD - D@f, x, yD2 ê. 88x Ø 3, y Ø 3<<

872<

Since it is positive, we look at fxx :

D@f, x, xD ê. 88x Ø 3, y Ø 3<<

86<

So there is a relative minumum at (3,3).

4: We sketch the region in the plane (a quarter disk in the first quadrant) and convert to polar:
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5: For the volume via a double integral, taking the top surface - the bottom surface to get:

‡
-2

2

‡
0

4
II9 - x2M - 5M „y „x

128

3

For the sketch, note that this is bounded below by the plane z=5, not the xy-plane:

2   fall2010sols.nb



For the sketch, note that this is bounded below by the plane z=5, not the xy-plane:

ParametricPlot3DA99x, y, 9 - x2=, 8x, y, 5<=, 8x, -2, 2<, 8y, 0, 4<E

5: Alternatively, volume via a triple integral:
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3

6a: Convergent by the alternating series test, absolute values diverge by limit comparison with ‚ 1
n

 which gives conditional

convergence
6b: Absolutely convergent by limit comparison with ‚ 1

n2

6c: Divergent by the integral test, integrating by substitution u = lnHxL

‡
1

x Log@xD
„x

2 Log@xD

7: We use the ratio test to get convergence on the interval -1<x< 5.  For x=-1, convergent by the alternating series test.  For x=5,
converent by the comparison test with‚ 1

k4
.

8a: The chain rule gives: Ç ¶∂u
¶∂s

=
¶∂ f
¶∂x

3 t2 + ¶∂ f
¶∂y

2 s t

8b: The limit along the +x direction is 1 and the limit along the +y direction is -2, so the limit doesn't exist.
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8b: The limit along the +x direction is 1 and the limit along the +y direction is -2, so the limit doesn't exist.

9: We take the first partials and setting them to zero and solving gives:

f = x2 - 2 x + y2 + 2 y

-2 x + x2 + 2 y + y2

Solve@8D@f, xD ã 0, D@f, yD ã 0<D

88x Ø 1, y Ø -1<<

Since this lies inside the disk, we evalute the function to get

f ê. 8x Ø 1, y Ø -1<

-2

On the boundary, we parameterize and consider

fb = f ê. 8x Ø 3 Cos@tD, y Ø 3 Sin@tD<

-6 Cos@tD + 9 Cos@tD2 + 6 Sin@tD + 9 Sin@tD2

notice that 9 sin2HxL + 9 cos2HxL = 9, and differentiating and solving gives:

Solve@D@-6 Cos@tD + 9 + 6 Sin@tD, tD ã 0, tD

::t Ø -
p

4
>, :t Ø

3 p

4
>>

Evaluating gives:

f ê. :x Ø 3 CosB-
p

4
F, y Ø 3 SinB-

p

4
F>

9 - 6 2

f ê. :x Ø 3 CosB
3 p

4
F, y Ø 3 SinB

3 p

4
F>

9 + 6 2

So the absolute max is 9 + 6 2  at K- 3 2
2

, 3 2
2

O and the absolute min is -2 at (1,-1)

10: this looks like the top part of a cap, with the intersection with the plane z = 5 being a circle of radius 2.  For surface area, we

integrate 1 + fx2 + fy2  over the shadow down on the x y plane, then switch to polar, to get
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K-1 + 17 17 O p
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ParametricPlot3DA9r Cos@qD, r Sin@qD, 9 -r2=, 8r, 0, 2<, 8q, 0, 2 p<E

11.  We use spherical coordinates to find the center of mass, taking the constant density to be just d=1.  We know the volume of a

hemisphere as half of the volume of a sphere so using zbar =
Mxy

M
= 1
vol

ŸŸŸ z dV we get:

zbar =
1

2 p 33
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so the center of mass is 1.125 inches below the top, in the middle layer, which is vanilla.

12:a)  use  the  geometric  series  and  substitute  x = -t3  then  multiply  to  get   3 t2(  1 - t3 + t6 - t9 + ...)  which  converges  for
-1 < t < 1.  In summation notation, that will be ⁄k=0¶ 3 H-1Lk t3 k+2

 b) integrate part a) to get  ⁄k=0
¶ 3 H-1Lk t3 k+3

3 k+3

‚
k=0

¶ 3 H-1Lk t3 k+3

3 k + 3

LogA1 + t3E
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