Answer all questions 1-7 and 3 of the 4 questions 8-11.
Question 1 (a) Find the inverse of the following 3×3 matrix:

$$
\mathbf{A}=\left(\begin{array}{rrr}
1 & 1 & 4 \\
0 & 1 & 1 \\
-2 & 3 & -1
\end{array}\right)
$$

(b) Use the inverse matrix found in part (a) to solve the system of equations:

$$
\begin{aligned}
x+y+4 z & =4 \\
y+z & =8 \\
-2 x+3 y-z & =-6
\end{aligned}
$$

Question 2 (a) Calculate the eigenvalues and corresponding eigenvectors of

$$
\mathbf{A}=\left(\begin{array}{rr}
6 & 3 \\
-1 & 2
\end{array}\right)
$$

(b) Give the general solution to the system of the ordinary equations:

$$
\binom{x^{\prime}}{y^{\prime}}=\left(\begin{array}{rr}
6 & 3 \\
-1 & 2
\end{array}\right)\binom{x}{y} .
$$

Question 3 Evaluate the line integral

$$
\int_{C} 6 x^{2} d s
$$

where C is the part in the first quadrant of the circle of radius 4 in the $x y$ plane centered at the origin.

Question 4 Let

$\vec{F}=\left(y^{2} e^{x y}+6 x y^{2} z\right) \vec{i}+\left(e^{x y}+x y e^{x y}+12 z+6 x^{2} y z\right) \vec{j}+\left(12 y+3 x^{2} y^{2}\right) \vec{k}$
(a) Show that \vec{F} is conservative; that is, find a scalar function f such that $\vec{F}=\nabla f$.
(b) Find the work done by \vec{F} along the path from $(0,1,0)$ to $(3,4,-1)$ to $(1,-1,3)$ along two straight segments.

Question 5 (a) Calculate the determinant of 4×4 matrix \mathbf{A} :

$$
\left(\begin{array}{rrrr}
0 & -2 & -2 & 4 \\
1 & 4 & 6 & -3 \\
1 & 6 & -4 & 5 \\
2 & 12 & 1 & 6
\end{array}\right)
$$

(b) Calculate the determinant of the matrix $\mathbf{B}=-3 \mathbf{A}^{3}$.

Question 6 Find the general solution to the following linear system:

$$
\begin{array}{rll}
3 u-6 v+2 w+4 x-y & =2 \\
u-2 v+w+x & =1 \\
u-2 v+2 x+y+z & =6 \\
u-2 v+2 x & =3
\end{array}
$$

Express the general solution as a linear combination of column vectors.

Question 7 Calculate the surface integral to find the flux

$$
\iint_{S} \vec{F} \cdot d \vec{S}=\iint_{S} \vec{F} \cdot \vec{n} d S
$$

where S is the part of the sphere $x^{2}+y^{2}+z^{2}=9$ with $z \leq 0, y \geq 0$ and
$\vec{F}=x \vec{i}+y \vec{j}+(z+2) \vec{k}$, and \vec{n} is the unit normal vector field along S directed away from the origin.

Question 8 Evaluate the surface integral

$$
\iint_{S} 4 y z d S
$$

where S is part of an elliptic paraboloid parameterized as $\vec{r}(u, v)=<$ $u^{2}, u \sin (v), u \cos (v)>$, with $0 \leq u \leq 2$ and $0 \leq v \leq \pi$.

Question 9 Find the work done by the vector field

$$
\vec{F}=\left(e^{x}+x^{2} y\right) \vec{i}+\left(e^{y}-x y^{2}\right) \vec{j}
$$

around the circle of radius 3 centered at the origin travelled clockwise.

Question 10 Let C be the intersection curve of the surfaces $z=$ $3 x-7$ and $x^{2}+y^{2}=1$, oriented clockwise as seen from above. Let $\vec{F}=(4 z-1) \vec{i}+2 x \vec{j}+(5 y+1) \vec{k}$. Compute the work integral $\int_{c} \vec{F} \cdot d \vec{r}=\int_{c} \vec{F} \cdot \vec{T} d s$ two ways:
(a) directly as a line integral (b) as a double integral, using Stokes' Theorem.

Question 11 Let T be the part of the surface $z=9-x^{2}-y^{2}$ which lies above the $x y$ plane, with upward unit normal. Let B be the disk of radius 3 in the $x y$ plane centered at the origin with downward unit normal. Find the total combined flux of the vector field $\vec{F}=(2 x+9 y-2 y z) \vec{i}+(3 x+y-5 z) \vec{j}+\left(x^{2}+y^{2}+2 z^{2}\right) \vec{k}$ across T and B in the directions of their given normals.

