- 1. Perform the operation $3x^{\frac{3}{2}}\left(3\sqrt{x}-\frac{8}{\sqrt{x}}\right)$ and simplify as much as possible.
- 2. Solve the nonlinear inequality $x^2 > 3(x+6)$. Write your answer using interval notation.
- 3. Find all real solutions of $\frac{3}{x-3} \frac{6}{x^2} = 0$. Write your answers as a comma-separated list. If there is no real solution write NO REAL SOLUTION and explain.
- 4. Find an equation of the line that passes through the points (4, 6) and (3, 8).
- 5. Find and simplify the difference quotient $\frac{f(a+h)-f(a)}{h}$, where $h \neq 0$ and $f(x) = 6x^2 + 7$.
- 6. A function is given. $g(x) = \frac{5}{x}$; x = 1, x = a
 - (a) Determine the net change between the given values of the variable.
 - (b) Determine the average rate of change between the given values of the variable.
- 7. Sketch the graph of the piecewise defined function

$$f(x) = \begin{cases} 4 & \text{if } x \le -1, \\ x^2 + 1 & \text{if } x > -1 \end{cases}$$

- 8. Sketch the graph of the function f(x) = -|x-1|, not by plotting points, but by starting with the graph of a standard function and applying transformations.
- 9. Use the Inverse Function Property to determine whether f and g are inverses of each other. $f(x) = \frac{1}{x-12}, x \neq 12$; and $g(x) = \frac{1}{x} + 12, x \neq 0$ Explain your answer.
- 10. Sketch the graph of the function $f(x) = -x^2 + 4x 3$. Find the coordinates of the vertex and the x- and y- intercepts.
- 11. A polynomial function is given $g(x) = -x^3 + 3x^2$. Describe the end behavior of g and sketch its graph. Label all x- and y- intercepts on your graph.
- 12. Evaluate $\log_3(\frac{1}{27})$.
- 13. Solve $4 \log(7 x) = 3$ for x.
- 14. Graph the function $y = 3^{(x-3)} 1$, not by plotting points but by transforming the graph of a more basic function. Show and label all intercepts and asymptotes.
- 15. Find the exact value of $\sin\left(\frac{29\pi}{6}\right)$.
- 16. Find $\cos \theta$ if $\sin \theta = -\frac{4}{5}$ and θ is in quadrant IV.
- 17. Sketch the graph of two complete periods of the function $y = -5\sin(\pi x)$. Label all intercepts, maximums, and minimums.
- 18. Find $\tan\left(\sin^{-1}\left(-\frac{1}{2}\right)\right)$.
- 19. Verify the identity $(1 \sin^2 x)(1 + \tan^2 x) = 1$.
- 20. Find all solutions to the equation $\sqrt{2}\cos t 1 = 0$ for t in the interval $-\pi \le t \le \pi$.