- 1. State whether each inequality is true or false
 - (a) $\frac{111}{112} < \frac{11}{12}$ (b) $-\frac{5}{6} \ge -1$.
- 2. Evaluate $(\frac{1}{2})^4 \cdot (\frac{5}{2})^{-2}$ and simplify completely.
- 3. Perform the indicated multiplication and simplify as much as possible $\frac{x^2+2x-3}{x^2+8x+16} \cdot \frac{3x+12}{x-1}$.
- 4. Find all real solutions to $x^2 + 5x = 24$.
- 5. Simplify $\left(\frac{2a^{-1}b}{a^{3}b^{-2}}\right)^{-4}$ and eliminate any negative exponents.
- 6. Find the sum, difference, or product when $17 (5 8y)^2$. Simplify your answer completely.
- 7. Find all real solutions of $x + 5 = 14 \frac{1}{2}x$.
- 8. Find an equation of the line passing through (-3, 5) and perpendicular to the line $y = -\frac{1}{2}x + 2$.
- 9. Perform the subtraction and simplify $\frac{x^2}{x^2-4} \frac{x+1}{x+2}$.
- 10. Evaluate the function $f(x) = \frac{x^2+1}{2}$ at the given values
 - (a) f(-1)
 - (b) f(1-a).
- 11. Sketch the graph of the function f(x) = |x 1| 3, not by plotting points, but by starting with the graph of a standard function and applying transformations.
- 12. Use f(x) = 2x 5 and $g(x) = 3 x^2$ to evaluate and simplify f(f(2)) + g(g(-2)).
- 13. Find the inverse function g^{-1} when $F = g(C) = \frac{9}{5}C + 32$.
- 14. Find the domain of the function $f(t) = \sqrt{t+5}$. Write your answer in interval notation.
- 15. Sketch the graph of the function $f(x) = x^2 + 4x + 4$. Label the vertex and all intercepts on your graph.
- 16. The angle of elevation to the top of a building is found to be 30° from the ground at a distance 50 meters from the building. Using this information, find the height of the building.
- 17. Find the exact value of $\tan\left(\frac{4\pi}{3}\right)$.
- 18. (a) Find the radian measure of 315°
 - (b) Find the degree measure of $\frac{10\pi}{3}$.
- 19. Find all solutions of the system of equations

$$\begin{cases} x^2 - 2y = 19\\ x^2 + 2y = 31 \end{cases}$$

- 20. This question uses the graph of the function in Figure 1.
 - (a) Determine the interval(s) on which the function is increasing.
 - (b) Determine the interval(s) on which the function is decreasing.
 - (c) Approximate all local maximum and minimum values as well as the value of x at which each occurs.

Figure 1: