## 1 Do five of the following six problems: 1–6

- 1. Prove the trigonometric identity  $\frac{\sin 2x}{1+\cos 2x} = \tan x$ .
- 2. Simplify  $\frac{x+3}{4x^2-9} \div \frac{x^2+7x+12}{2x^2+7x-15}$ .
- 3. Rewrite without parentheses or a radical sign  $y^{\frac{3}{5}}(\sqrt{y} \frac{1}{\sqrt{y}})$ .
- 4. Solve  $\frac{5}{x+2} \frac{6}{x} + 1 = 0$  for x.
- 5. Find all x that solve  $x^3 > x^2$ .
- 6. Given  $f(x) = 2x 4x^2$ . Find and simplify
  - (a) f(3-a)
  - (b)  $f(\frac{a}{2})$

## 2 Do five of the following six problems: 7–12

- 7. Show that the equation  $x^2 + y^2 + \frac{1}{2}x 2y + \frac{1}{16} = 0$  represents a circle, and find its center and radius.
- 8. Given  $f(t) = t 2t^2$ . Find and simplify the average rate of change of f from t = 2 to t = 2 + h.
- 9. Sketch the graph of the function  $y = 2 \sqrt{x+1}$ . Label at least three points on your graph including any intercepts. Begin with  $y = \sqrt{x}$  and indicate the steps needed to transform its graph to the graph of  $y = 2 \sqrt{x+1}$ .
- 10. Given  $f(x) = \frac{x}{x+1}$  and  $g(x) = \frac{2}{x}$ . Evaluate and simplify f(g(7)) g(f(7)).

11. Let

$$f(x) = \begin{cases} 1 - 2x & \text{if } x \le 1\\ 2x & \text{if } x > 1 \end{cases}$$

- (a) Evaluate f(-2) and f(1).
- (b) Sketch the graph of f(x) from x = -3 to x = 3.

12. Sketch the graph of  $p(x) = -x(x+2)^2(x-2)^3$ . Label all intercepts and indicate the end behavior.

## 3 Do five of the following six problems: 13–18

- 13. A bacteria culture starts with 900 bacteria. After one hour the count is 1000.
  - (a) Assuming that bacteria population grows exponentially, find a function that models the number of bacteria n(t) after t hours. (You may leave e, log, or ln in your answer).
  - (b) After how many hours will the number of bacteria double? (You may leave e, log, or ln in your answer).
- 14. Given the function  $f(x) = 2 x^3$ .
  - (a) Sketch the graph of f.
  - (b) Find the formula for the inverse function  $f^{-1}(x)$ .
- 15. For the graph of the function in Figure 1, determine the interval(s) on which the function is increasing.
- 16. Solve for t in each of the following parts. You may leave e, log, or ln in your answer.



Figure 1:

(a)  $5e^{2t} - 20 = 0$ 

(b) 
$$3 - \log(3 - x) = 1$$
.

17. Evaluate  $\log_3(\frac{1}{\sqrt{27}})$ .

18. Perform the subtraction  $\frac{7}{x+6} - \frac{1}{x^2+8x+12}$  and simplify.

## 4 Do five of the following six problems: 19–24

- 19. Find the exact value of  $\tan(-\frac{20\pi}{3})$ .
- 20. For  $y = -3\sin(x + \frac{\pi}{6})$  find the amplitude, period, phase shift and then graph. Label the coordinates of three points on your graph: one maximum point, one minimum point and one intercept.
- 21. Find  $\cos 105^{\circ}$ .
- 22. Find all solutions  $\theta$  to  $6\cos^2\theta 3 = 0$  for  $\theta$  in the interval  $-\pi \le \theta \le \pi$ .
- 23. Evaluate each of the following
  - (a)  $\sin^{-1}(\frac{\sqrt{2}}{2})$
  - (b)  $\arcsin(\sin(\frac{11\pi}{6}))$
- 24. Find the radius r of the circle in Figure 2 with shaded angle of measure  $\frac{1}{2}$  radians that is subtended by the arc s of length 6.



Figure 2: