
 Why do students fail calculus? 

 

Stanley Ocken 

Department of Mathematics 

The City College of C. U. N. Y. 

 

 

Abstract:  Received doctrine that permeates the literature and practice of K-12 

mathematics education, if implemented uncritically, will obstruct the development 

of skills that are critical for the study of calculus. The following related false 

dichotomies are addressed in this paper: 

 Blind rote is always bad and leads to error, whereas thinking about what 

you are doing is always good and leads to success. 

 Solving problems by using algebra is bad, whereas concretizing problems by 

using physical and visual models is good.   

 

Introduction 

 

This paper is an attempt to enlist the assistance of mathematics educators in an effort to 

reduce the unreasonably high failure rate of students in calculus courses in New York 

City and nationwide.  Any attempt to do so must consider the critical role K-12 educators 

play in helping students acquire tools for success in college mathematics. 

 

A dichotomy that looms large in discussions of mathematics education is that of “blind 

rote,” typically identified with formal arithmetic or algebraic symbol manipulation, 

versus “conceptual understanding,” as evidenced by the ability to concretize symbolic 

processes by referring to everyday experience.  Many K-12 educators assert that 

adherence to blind rote is the source of student’s weak mathematics performance, which 

can be ameliorated only by insistence on understanding. Herein that belief is challenged 

by reference to specific and significant examples that arise in the calculus curriculum. 

One conclusion is that the standard dogma, if accepted and implemented uncritically by 

mathematics educators and curriculum developers, poses a clear and present danger to the 

mathematical development of children who hope to study calculus in college.   

 

The important role of calculus in the college curriculum and the American job market is 

suggested by two independent statistics.  In fall 2000, 1,156,000 June high school 

graduates began their freshman year at a four year college in the United States. [BLS]  At 

the same time, about 463,000 students in those institutions enrolled in first semester 

calculus. Comparing the two numbers, one might estimate that forty per cent of freshman 

took calculus. In fact, the actual percentage was considerably lower, since a significant 

portion of non-freshmen were re-taking first semester calculus, having failed the course 

previously one or more times  The author is unaware of any reliable estimate of the 

number of students in this category.  There is widespread agreement, however, that far 

too many students fail calculus and are thereby precluded from pursuing their career of 

choice.  

 



In the United States and worldwide, one or more years of calculus is required of students 

who wish to pursue programs in science, mathematics, engineering, business, 

architecture, medicine, secondary math education, and many other fields.  Many of these 

students will use calculus as an integral part of their professional activities.   Nearly all 

will use the analytic and algebraic skills honed in calculus courses, and it is the frequent 

lack of precisely these skills that this paper will discuss.  

 

It is borne out by long experience that students with flawless algebra skills usually do 

well in calculus, while those with even moderate weaknesses in algebra perform poorly.   

In this respect, mathematics is unique. An essay with a few spelling and grammar 

mistakes is still intelligible. A couple of missed notes in the performance of a piano 

sonata don’t make a difference.  In mathematics, however, there is much less room for 

error.  If a student makes an algebra mistake at the beginning of a problem, the remainder 

of the solution may be rendered completely irrelevant to the stated problem, and partial 

credit can be awarded only out of sympathy and without academic justification. The 

plight of a student who doesn’t notice that the algebra has gone astray is analogous to that 

of a pianist who doesn’t notice her hands slipping laterally a key or two. Cacophony 

ensues. 

 

This essay is an attempt by a mathematician with experience teaching all levels of 

calculus to engage K-12 educators constructively in an outcome-oriented discussion of 

current mathematics education reform. The author is no defender of the existing order. 

For decades, there clearly have been severe deficiencies in the mathematics preparation 

of entering students in the nation’s colleges and universities. However, the present essay 

argues that present trends in mathematics education will exacerbate rather than alleviate 

those deficiencies. 

 

The means for improving students’ success rate in calculus are already at hand and are 

embodied in an important and useful principle of mathematics reform: the need for 

multiple approaches to problem solving. In the author’s view, the current wave of 

curriculum reform has interpreted and implemented this doctrine far too narrowly. The 

need for multiple approaches applies in a far wider context than most K-12 mathematics 

educators imagine. Indeed, the examples elucidated herein demonstrate that in a 

curriculum designed to enable students to succeed in calculus, few patterns of 

mathematical thought or practice are either all good or all bad.  This essay will argue, 

among other unorthodoxies, that   

 

 Relying on blind rote is often good and is sometimes necessary.   

 The attempt to “understand” underlying principles is sometimes irrelevant and 

counterproductive. 

 Manipulatives must be used with discrimination, for reliance thereon can foster 

habits of mind that damage students’ mathematical development.   

 Understanding and symbol manipulation skill are closely related.  

 

 

 



 

 

1. Pedagogy and history 

 

 

This paper is in part a commentary on visions and perspectives of today’s mathematics 

educators. In large part, new curricula are based on a constructivist approach to childhood 

education, articulated in the 1989 Standards of the National Council of Teachers of 

Mathematics. A revised version of the Standards appeared in year 2000, but it is not at all 

obvious whether there has been a substantive change in viewpoint since the publication 

of the original document. 

 

A definitive account of the role of constructivism in mathematics education is the 

foundational treatise Reconstructing Mathematics Education [1993], by Deborah Shifter 

and Cathy Twomey Fosnot. That influential work describes sample topics from a 

constructivist curriculum and offers detailed accounts of the experiences of K-6 teachers 

who participated in an NSF sponsored teacher training program.   

 

One teacher comes to 

 

 "realize how useless most things are out of context. How nothing makes sense 

mathematically if there's no concrete picture (even in one's mind) of what it is we're 

talking about."  

 

Another opines 

 "I can solve it with algebra, but whenever I go to algebra it is a cop-out. It means that I 

can't derive what the problem is about at its core, just based on logic and the information 

given." 

 

In the entire text, there is not a single instance of algebraic notation being used to 

advantage. Every fraction, every number, and every operation on numbers is reduced to 

pictures. Every instance of "understanding" is visual (drawing diagrams) or physical 

(using number sticks and other manipulatives), to the virtual exclusion of mathematical 

notation. Symbols are viewed as obscurantist. "Understanding" and "constructing 

meaning" are synonymous with real-world modeling.  One teacher, who enters the 

program knowing how to solve word problems by applying algebraic methods, reaches 

the following epiphany:  

 

"There seems to be no middle road between understanding and applying formulas."   

 

Insofar as these teachers’ statements characterize the pedagogical philosophy of K-12 

mathematics educators, it is critical to examine their relevance and validity for students 

who are relying on those curricula to prepare for the study of calculus. 

 

The historical development of calculus illuminates the present discussion. It is generally 

understood that Newton and Leibniz, working independently, developed the main 



geometric and symbolic content of calculus. However, much less well known is that Isaac 

Barrow, Newton’s mentor, has prior claim on many of the foundational concepts of the 

subject. Nevertheless, Barrow’s name is obscured from history books because he failed to 

develop mathematical notation that would facilitate applying those ideas to the solution 

of real world problems. In short, Barrow had the right pictures (“concepts”), but without 

appropriate symbolic notation, he was unable to complete the journey to the top rank of 

mathematical achievement.   

 

The basic ideas of calculus may be summarized as follows. 

 The derivative, obtained by a limit process, describes a rate of change of a 

quantity with respect to time, as well as the slope of the tangent line to a 

curve. 

 Integration is a summation process that can be used to find areas and volumes. 

 Integration and differentiation are inverse processes. 

 

For the benefit of an audience with little formal mathematical background, informal and 

algebra-free descriptions can convey the importance of these concepts and, in a general 

way, how they are applicable to scientific inquiry.  While lacking in precision, such 

descriptions are perhaps appropriate for introductory courses in the history of 

mathematics, or for liberal arts courses once characterized as “math for poets.”  

 

Students of poetry are not the object of the current study. Today’s calculus students are 

exposed to and are expected to master the symbol-rich and algebra-based methodology of 

Newton and Leibniz. Their versions of calculus, not Barrow’s, permitted the study and 

solution of significant problems, ranging from the motion of planets to the study of 

magnetic and electric fields, planetary and atomic orbits, and the 3-D reconstruction of 

medical imaging data. All such tasks remain completely intractable without the use of 

algebraic notation and techniques.  

 

Newton’s Principia Mathematica opens with the statement:  “Herein I explain the system 

of the World [i.e., the Universe].”  That his grandiose claim is not an exaggeration is due 

in large part to his successful use of notation and formal methods to represent and 

quantify the problems of mathematical physics.  

 

This brief historical summary suggests that the above quoted teacher’s statement “I can 

solve it with algebra, but whenever I go to algebra it is a cop-out” is one of the most anti-

mathematical perspectives in the literature of K-12 mathematics education. The stated 

view runs completely counter to the needs of high school graduates who are tackling first 

semester calculus and for whom algebra is the only method that can be used to solve the 

vast majority of problems in textbooks, examinations, and the real “real-life” problems 

that they will attack in later courses and during their professional careers.                                 

 

Anti-algebra bias is even more explicit in the statement "there seems to be no middle road 

between understanding and applying formulas.” The suggested Manichean distinction 

between understanding and formalism is based on ignorance, for formalism and   

reference to visual and physical models work hand in hand to permit the resolution of 



difficult questions. Algebraic techniques are the essential tool for moving from a general 

and intuitive discussion of a physical problem to a focused and quantitative 

understanding with predictive power.  

 

All of mathematical physics can be viewed as the use of symbolism to lead a bewildered 

traveler through a dark wood of difficult concepts. And that is precisely how algebra is 

used in freshman calculus. Today’s and tomorrow’s college students need to walk into 

their first calculus lecture with well honed formal and symbolic skills. Insofar as K-12 

curricula and educators de-emphasize algebraic techniques and denigrate algebraic 

formalism, they will deny high school graduates the opportunity to pursue mathematics-

based careers.  

 

2. Examples from the calculus classroom 

 

Here are a few of the algebra errors that appear frequently on calculus exam papers:   

 canceling 2 against 4 in the fraction 
2

4

x

x




; 

 solving 2 4x    to obtain 2x , thereby omitting the negative solution ; 

 rewriting     2 2 213  as ( 13)x x  ; 

 

 rewriting  2 22  as 2x x  ; or 

 dividing both sides of  2x x  by x, concluding that x = 1, thereby omitting the 

solution 0x  . 

 

In college mathematics lectures and exams, students need to manipulate fluently dozens, 

if not hundreds, of symbolic expression, and so they will have many opportunities to 

make common mistakes similar to the five listed above.  Do students make these errors 

because they adhere to “blind rote?” Would they be less likely to make these errors if 

they “understood” more? If so, what sort of understanding is required by students if they 

are to avoid these and similar errors? 

A critical observation is that the rational expression 
2

4

x

x




 , whether it appears in a 

lecture, text, or exam, is presented to the student and must be confronted as a 

combination of symbols. In this respect it is unlike a numerical fraction, which in some 

contexts might be thought of as describing part of a unit, or a ratio, or a property of a 

physical object.  Although the expression   
2

4

x

x




may arise from representation of a real-

life model, it is impossible and/or counterproductive for the problem solver to keep track 

of the relationship between the model and its symbolic representation. 

 

To work successfully with symbolic expressions, students must decide which 

transformations (usually, but not always, simplifications) of the expression are both 

legitimate and useful for obtaining the desired answer. The decision process requires both 

intelligence and judgment. What it does not require, or even permit, is reference to 

experience. Relying on symbols, to many educators and curriculum developers, implies 



abandonment of the understanding of the underlying physical model. This is simply not 

the case in the study of non-trivial mathematical and scientific problems. Instead, the 

methodology of modern science is to convert an intuitive understanding of a physical or 

geometric principle into a symbolic representation, in order both to facilitate a deeper 

understanding of that principle as well as to providing a launching platform for 

transforming that intuition into a testable prediction. 

 

Student errors on calculus exams can usually be classified as either careless or 

systematic. An example of a careless error is miscopying the fraction 
2

2

x

x
  as   

2

2





x

x
. 

That might occur when a student turns the page of his examination booklet. 

 

 In contrast, the five errors listed earlier are both frequent and systematic, in the sense that 

students who make them once make them more or less consistently. For example, it is not 

unusual for a student to ignore the negative solutions of equations such as  2 4x   and    

2 7y   , or to incorrectly cancel expressions such as
2

4

x

x




, several times throughout the 

course of a semester’s examinations. 

 

 

In an attempt to expose the reasons for such errors, it is not illuminating to assert that 

students illegally cancel 
2

4

x

x




because they don’t understand mathematical concepts. 

They certainly need to know the underlying principle: cancellation works only for 

common factors of numerator and denominator. A precise statement of this principle 

requires a careful sequence of algebraic definitions, which students should be able to 

verbalize. In practice, however,  students who are both proficient and fluent don’t think 

about the cancellation rule when they are doing mathematics, for they have developed, 

through extensive practice, the ability to distinguish automatically between those 

situations in which cancellation is legal and those in which it is not.  

 

Students who hope to succeed in calculus need to develop an automatic facility for 

distinguishing not only between legitimate and illegitimate symbolic manipulations, but 

also for deciding which of several possible manipulations is appropriate to the problem of 

current interest.  If they don’t, they’re going to have trouble getting through a calculus 

exam or homework assignment.  

 

3. Blind rote 

 

Standard dogma asserts that understanding is the cure for mistakes that would otherwise 

arise from adherence to blind rote. The clearest counterexample involves substituting an 

expression for the argument of a function. This requires a bit of explanation.  

 

A function, it is often said, can be thought of as a little black box that acts on a number to 

produce another number. For example, after carefully observing the path of a falling 

object, one could in principle express its position, e.g., its height above the ground, as a 



function of time. Deducing the precise form of the position function is the principal goal 

of celestial mechanics, ballistics, and all applications that require predicting from a priori 

information the position of a moving object at a given future time. 

 

As an illustrative example, consider the 2x  button on most calculators, a button whose 

sole purpose in life is to square a number, i.e. to multiply that number by itself.  Fulfilling 

this duty entails three steps: 

 

1. The user types a number, called the input, which then appears in the display.  

2. The user presses the 2x  button. 

3. The calculator display switches to the output, or value, of the function, which in this 

example is calculated by multiplying the input by itself. 

 

In the absence of magic boxes such as calculators and computers, a first attempt to 

communicate to a human the action of the 2x  button might be: 

 

“The value of the squaring function at a number is the number times itself.” 

This language is cumbersome. A more concise statement (using asterisk to denote 

multiplication) would be 

 

Square of a number = number*number.  

 

The word “of” is superfluous, and is indicated more clearly by parentheses:    

Square (number) = number *number. 

 

In mathematics, brevity is essential, both because it saves paper and because it allows the 

eye to scan more easily a complex expression.  Therefore the function definition is 

abbreviated to something like: ( ) *S n n n , with the words “square” and “number” each 

indicated by their initial letter.   

 

In the algebra sentence ( ) *S n n n , the first symbol is the name of the function. The 

name of the input is enclosed in parentheses. The output, the expression to the right of the 

equal sign, is an algebraic expression that can be figured out by applying arithmetic 

operations to the input. The entire sentence is the definition of the function S . 

 

In practice, mathematical custom of long standing prefers letters at the end of the 

alphabet as names of function inputs, and the most common usage in elementary texts is 

to write the squaring function as 2( )S x x .  Reader take note: contrary to certain usages 

in mathematics and literature, the letter ‘x’ does not indicate an unknown, but is rather a 

variable quantity that can assume any desired numerical value.  For example, a student 

wishing to find the square of 5 might write 

 

Step 1) ( ) *S x x x ,  the function definition, and then  

Step 2) (5) 5*5S      to indicate that when x is 5, the output of the squaring function is   

  5*5, and finally  



Step 3)  (5) 25S        to express the output as a number. 

 

The alert reader will observe that the equals signs in 1) and 2) mean different things. Step 

1) defines a function (a rule, if you will) whereas Step 2) asserts that the result of 

applying the function to the input 5 is the output 5*5. The distinction between these two 

usages is a possible source of confusion that should be addressed, in my view, by using 

alternate notation. In fact, some computer algebra systems employ the notation S[x] := 

x*x  to make it easier for the compiler (the program that translates from algebraic 

notation  to machine language) to understand the programmer’s wish to define a function. 

The remainder of this paper will employ that notation. 

  

Step 2), the principal concern of the present discussion, is a procedure called argument 

substitution. It appears thousands of times in any calculus text and perhaps a dozen 

times during a typical calculus examination.  The above example suggests the following 

description:  replace each symbol ‘x’ in the function definition by the symbol for the 

input.  Unfortunately, this first attempt isn’t quite correct.  To see why, assume that the 

addition fact   5 + 4 = 9 is temporarily unavailable, and try to evaluate (i.e., find the value 

of) the squaring function when its input is 5 + 4. According to the proffered description, 

the value of the squaring function is obtained as follows: 

  

Step 1) ( ) : *S x x x     (the function definition)   

Step 2) (5 4) 5 4*5 4S         (Erase and replace each ‘x’ by ‘5 + 4.’) 

 

Unfortunately, the universal convention that multiplication is performed before addition 

forces the right hand side of Step 2) to be interpreted as 5 + 20 + 4, which is 29, rather 

than as 9*9, or 81, the expected function value.  

 

The resolution of this difficulty is both simple and profound. To convey the desired order 

of operations, add before multiplying, it is necessary to use parentheses: 

 

(5 4) (5 4)*(5 4)S     , after which the function value may be simplified as 

(9) 9*9 81S   . 

 

Therefore a complete description of argument substitution is as follows.   

 

Suppose a function is defined by S(x): =  [any algebraic expression] 

 

To find the value of the function at an input, erase each symbol ‘x’ to the right of the 

equals sign and replace it by the input enclosed in parentheses. 

 

It is extremely difficult to find this statement in algebra textbooks or in teacher training 

materials. This is but one instance of how insensitivity to symbolic notation imperils the 

goal of mathematical precision in student learning. 

 

 

 



A critical application of function notation is its use when the input is itself represented by 

an algebra expression rather than by a number.  

 

Example 2:   Given [ ] : * ,S x x x  find ( )S a b  without simplifying. 

Solution: ( ) ( )*( )S a b a b a b    . 

 

Most students work this problem correctly. However, one occasionally encounters the 

following error: 

 

Example 3:  Given [ ] : *S x x x , find ( 2)S a     

Error: 2)2( 2  aaS .  

  

Example 4:  Given  
x

xxF
1

:][  , find F(x + h). 

Error:  h
x

xhxF 
1

)(                Correct: 
hx

hxhxF



1

)(  

 

Example 5: Given [ ] : 3G x x  , find ( )G x h . 

Error: ( ) 3G x h x h                     Correct: ( ) 3 ( ) 3G x h x h x h        

 

The listed examples show two different invitations to error. 

 

If a student faithfully follows the argument substitution rule,  Example 4 is a giveaway. 

Therefore, it is surprising that many college fall into the error stated above. But it 

happens not infrequently, and the error cited often transforms a sophisticated problem 

into a trivial one that has not been asked. There is no sensible way to assign partial credit. 

The student has made a systematic error that will result, if not corrected, in a downward 

spiral of that students’ calculus grade and career aspirations.   

 

Why is argument substitution so difficult? Students who are exposed to anti-symbolic 

bias in their mathematics courses may be troubled by the failure of symbolic process to 

reflect any model that occurs in nature.  For example, the process of evaluating the 

function   4 2( ) : 3F x x x       when x = 2 cannot sensibly be illustrated by pictures or 

manipulatives.  Indeed, models are irrelevant, for argument substitution is a purely formal 

process.  

 

In this writer’s opinion and experience, it is pedagogically productive to describe 

argument substitution as a game played with symbols. It is not a frivolous game by any 

means. To the contrary, it is one of the important formal tools of mathematics and 

science.  And it is a game that should be played by following the argument substitution 

rule to the letter. 

 

In the above cited example, students probably are trapped by their attempt to make sense 

of a purely formal rule. The student writes F (x + h) and notices that h is being added to 



something.  Because the function definition looks like an equation, and because changing 

an equation requires doing the same thing to both sides, she decides to accord the right 

side fair treatment by adding h to it. Unfortunately for such a student, a function 

definition isn’t an equation. Argument substitution is a pure “erase and replace” operation 

that has no direct connection with addition, subtraction, fractions, or any mathematical, 

arithmetical, or algebraic idea. It is simply a procedure, a recipe if you will, for altering 

the appearance of the original function definition.  

 

My conclusion, shocking though it may sound to some readers, is that argument 

substitution should be carried out by “blind rote,” and that attempting to understand 

what’s going on may lead to errors. Indeed, the following standard dichotomy: 

 

 Rote is bad, and leads to error. 

 Thinking about what you are doing is good, and leads to success based on 

understanding. 

 

is incorrect, or is at best irrelevant, in the current context. To the contrary, a student who 

feels that he must “understand” every new mathematical idea is likely to fall into the sort 

of trap illustrated by the above example, whereas one accustomed to plugging in symbols 

and playing with them by following rules is likely to carry out the argument substitution 

rule with ease and consistent accuracy.  

 

Many subjects in mathematics offer ample opportunity to think deeply about mathematics 

and to proceed with eyes wide open. Argument substitution is not one of them.  

 

 

4. An example using limits  
 

 

A different sort of example is taken from a calculus lesson. As part of an important 

discussion of why the absolute value function f (x) = |x| fails to have a derivative at  

x = 0, the instructor asks the class to simplify the expression   

 h

|0||h0|
lim

0h



  
The reader who doesn’t understand this expression or the previous sentence is advised 

not to worry. What is important for participating as a student in the following dialogue is 

to pay careful attention to the instructor’s language. 

 

Instructor: Who can help me simplify this expression? 

Students :( Silence.) 

 

Instructor:  (2nd try): Well, just do one step: anything that will make the expression 

simpler or shorter: 

Students: (Silence.) 

 



Instructor:  (desperate, 3rd try): I don’t care if you understand what you are doing. Inside 

that scary-looking formula is something that you see every day, a few symbols that can 

be replaced by just one symbol. Please! 

Students: (many hands raised): Change 0 + h to h!  

 

In my view, the students were initially catatonic because they were worried about the 

“meaning” of the expression, and so succumbed to a syndrome that I call “symbol 

shock.”  They were worried about what the limit symbol meant, or perhaps by the use of 

vertical bars to denote absolute value. The teacher’s third attempt encouraged them to 

overcome their fears and realize that   ‘0 + h,’ even when embedded in a complicated 

expression, should (usually) be replaced by ‘h.’1  

 

At this juncture, the reader of a certain persuasion may well be thinking that the examples 

just considered are not the essence of mathematics; that that they involve useless playing 

with symbols; that a computer could do this sort of thing, and so forth. These concerns 

will be addressed in the following sections.     

  

4. Standard misconceptions 

 

In today’s sometimes acrimonious discussions of mathematics education, one encounters 

assertions that the very nature of mathematics is itself a subject for debate. Some have 

gone so far as to misinterpret Wittgenstein to buttress a claim that mathematics is socially 

constructed.  For the purposes of this essay, all such philosophical discussion is 

irrelevant. The only concern is to prepare K-12 students for the specific conception of 

mathematics defined by the STEM calculus curriculum at nearly all American colleges.  

   

A critical subtext of mathematics education reform in the twenty-first century is that 

symbol manipulation may once have been important, but is now rendered obsolete by 

technology. Initially, the availability of calculators suggested to some mathematics 

educators and curriculum developers that there is no longer a need for K-6 students to 

memorize, practice, or even to learn the traditional algorithms of arithmetic. Later, when 

computer algebra systems were implemented on hand calculators, the argument was 

extended to call into question the need for students to learn algorithms for manipulating 

algebraic expressions and solving equations.    

 

In this writer’s view, the availability of computer technology is a dubious blessing for   

mathematically challenged college students. The buck stops in the nation’s science and 

engineering classrooms. Whether the subject is chemistry, biology, physics, engineering, 

economics, or finance, a student’s most challenging task is to follow and absorb page 

after page and blackboard after blackboard of formulas and equations. Science books 

cannot be shorn of algebra, for the simple reason that all technological innovation 

depends on an algebraic description of physical phenomena. 

 

                                                 
1 A more precise statement is that the symbolic expression “0+h” should be replaced by “h” whenever that 

expression signifies adding 0 to h. Examples in which this is not the case are “30+h”  and “2^0+h.”  



The K-12 traditional curriculum is structured, partly by design and partly by historical 

accident, to bring students to the level needed to achieve the facility with formal skills 

needed to speak effectively the language of science. It follows that the availability of 

computing devices that do either arithmetic or algebra is irrelevant to students’ needs to 

be able to read and to listen to mathematical formalism. Although computer algebra 

systems have a legitimate place in advanced courses, they pose a clear liability to 

students who are not already skilled at algebraic manipulation. Students who don’t get 

adequate practice doing (i.e., writing) algebra will encounter the greatest difficulty 

understanding texts and lectures. Indeed, at my college, instructors of calculus courses 

that include a calculator or computer algebra system component note that students who 

are weak in algebra cannot enter formulas correctly into the computing device. 

 

Most disturbing to many university mathematicians is the suggestion, implemented by a 

number of NCTM Standards-based curricula, that traditional algorithms of arithmetic be 

de-emphasized or dropped entirely. The oft-stated objection that students should not 

waste time finding the answer to a problem that could be solved with a calculator entirely 

misses the core issue, which is the continuum of   logic and skills development that runs 

through the curriculum, from arithmetic to algebra to calculus. 

 

If students don’t learn the long division algorithm for whole numbers, they will have 

difficulty following the long division algorithm for polynomials when they reach that 

topic in high school algebra. If they don’t know long division of polynomials, they won’t 

have any feel for techniques of integration in elementary calculus or for Laplace 

transforms that are introduced in more advanced courses. Even if hand computation of 

the answer to a division problem is no longer important, the algebraic patterns and 

processes that lead to the answer are very important indeed.  

 

In summary, K-12 students headed for calculus need to practice algebra because all 

advanced science texts speak a universal language written with variables and is 

punctuated with subscripts, superscripts, summation signs, and other complicated 

notation. If they’re not comfortable with writing algebra, students won’t be comfortable 

reading it. If they haven’t devoted significant effort to hands-on manipulation of rational 

expressions, they will be in a total fog by the end of the first chapter of a typical science 

or engineering textbook. 

 

Nothing stated in this essay should be taken to suggest that proficiency with formal 

mathematics is sufficient for success in science. Rather, such proficiency is simply an 

absolute necessity without which students cannot survive. While there is substantial room 

for improvement at all levels of the curriculum, there is no place whatsoever for a 

perspective that calculus students can make do without algebra, or even with less algebra 

than they currently encounter. Rather, the accelerating mathematization of formerly 

descriptive sciences such as biology makes it all the more crucial for a growing cadre of 

students to acquire fluent algebra skills before they begin college. 

 

 

 



Jelly beans and limits 

 

In “Reconstructing Mathematics Education,” [FS] Fosnot and Schifter discuss at length 

the classroom experience of Ginny, a teacher who models division by distributing jelly 

beans among class members. Such a model is the sensible sort of initial learning 

experience that any capable educator or parent would provide when introducing this 

subject. From the perspective of the current paper, the critical challenge of early 

mathematics education is to follow up these initial experiences with an appropriately 

paced transition to symbolic representations. To do so, it is critical to address the details 

of that transition process. Schifter and Fosnot purport to do so in the following passage.   

 

After enough experience distributing objects, the children in Ginny’s class will be 

able to imagine sharing without having to enact it, and reflection on their actions 

will allow them to generalize from specific cases to more abstract notions of 

division, although reference to their jelly bean [sharing] problem can be called up 

as needed.  In just a few years, children's understanding of division of whole 

numbers will form the basis for constructing an understanding of division of 

fractions, and later still, for algebraic rational expressions, hyperbolic functions, 

or the limit of 1/ x  as x  increases without limit.   

 

It is important to examine the credibility of the multiple transitions enumerated in the last 

sentence. The first, from whole numbers to fractions, requires a delicate balance of 

concrete representation and abstract notation. It is critical for children to understand the 

core notion that unit fractions such as 
5

1
  represent the result of equal subdivision of a 

unit into pieces, but it is also essential for them to encounter and absorb, as early as 

possible, the purely algebraic statement that 
5

3
  is an abbreviation for 

5

1
3   To see why, 

it is useful to study a standard example of what is often attacked as blind rote: the rule for 

multiplying fractions. 

 

A balanced discussion begins with the statement that the product  
7

4

5

3
   is an 

abbreviation for 
7

1
4

5

1
3   , which in turn equals 

1 1 1 1
3 4 12

5 7 5 7
      after factors 

are rearranged . A modest reliance on notation has reduced the original problem to a 

much easier one: finding the product of unit fractions.  A variety of methods,   including 

the formal notion of inverse, or cake models, can be invoked to explain why that product 

is the unit fraction obtained by multiplying denominators of the factors.  It follows 

immediately that the desired product is 
1 12

12
35 35

    Conclusion:  to multiply fractions, 

multiply numerators and multiply denominators. 

 

The argument just presented adheres to the doctrine of using multiple representations by 

combining symbolic and model-based arguments. In contrast, mathematics educators 



have developed an uncritical adherence to a purely geometrical model: the cake model 

for multiplying fractions. The author’s observation of teacher training sessions suggests 

that this purely pictorial model is not easy to absorb, for at least two reasons.   

 

First, the pictorial representation for multiplying improper fractions is not consistent with 

that of multiplying proper fractions, in that the former produces a “product cake” that 

completely covers and therefore hides the original unit cake.  Second, the cake argument 

unnecessarily implicates an area interpretation of fractions in a situation where a linear 

representation, as the length of a stick, is more than sufficient.   Indeed, teachers in an 

observed training session were unable to respond to the trainer’s inquiry as to whether the 

product cake argument is based on counting or on area. 

 

While it is possible to entertain Schifter and Fosnot’s suggestion that division of whole 

number fractions can be modeled adequately by experience of sharing, the remaining 

quoted transitions from [FS] are implausible and unsupported. Specifically, the move 

from numerical fractions to rational expressions (quotients of polynomials) requires 

abandonment of physical models.   A student who first encounters the expression 
2

4

x

x




  

enters a new world of notation in which it is impossible and misleading to suggest that 

2

4

x

x




refers to an activity of sharing. It is irrelevant or counterproductive to describe this 

expression as standing for the distribution of x + 8 jellybeans among x + 4 children, not 

least because x is seldom a whole number in the surrounding context. The most probable 

consequence of a sharing-based exposition is that students will block out the variables, 

focus on the numerals, and cancel illegally.  Precisely for this reason, it is critical to 

impress upon students that the expression   
2

4

x

x




 is NOT related to a situation in which 2 

is divided by 4.   Only a careful explanation of factoring algebraic expressions will permit 

students to learn when cancellation is, or is not, legitimate.    

 

Next, the inclusion of hyperbolic functions in a list of activities supposedly related to 

division is puzzling indeed. For example, the role of division in the hyperbolic cosine 

function cosh( )
2

x xe e
x


  is minimal.  Hyperbolic functions are not about division, nor 

do they occupy a significant position in the basic calculus curriculum.   

 

Finally, the reference to limits invites close attention as well.   In recent years, most 

college mathematics instructors have been encountering more and more students who are 

less and less well equipped to understand the rigorous definition of limit. Indeed, that 

definition has been banished from the standard first-semester calculus course at all but a 

handful of top-rated institutions, precisely because few students graduate high school 

with the algebraic skills needed to understand and work with a rigorous formulation of 

the limit definition. 

 



College students’ understanding of this topic has deteriorated to the point that a paper in 

JRME reports a survey of students’ understanding of limits that divides student responses 

into two categories, neither of which is correct. For example, the many students who 

suggested: 

 

 The limit as x approaches 2 of f(x) = x*x is 4 because as x gets close to 2, then 

 x*x gets close to 4,  

 

are endorsing not a definition, but a vague substitute,  one that is  imprecise and contains  

potential for misunderstanding. Students who offered that response apparently believe 

that an observer first contemplates the distance from x to 2 and afterward verifies that x*x 

is close to 4. Precisely the opposite is the case: a hypothetical challenger offers an 

arbitrarily stringent criterion for x*x being close to 4, and the respondent must counter 

with a notion of x being close to 2 that suffices to meet the challenge. 

 

This hypothetical interaction is summarized elegantly in the traditional   -    definition 

of limit. Unfortunately, an increasing portion of calculus instructors, confronted by 

students who immediately collapse into symbol shock when they see the variables    

and  , are forced to revert to a mathematically imprecise quasi-definition.   

 

The only way to restore integrity to the calculus curriculum is to provide students with a 

rich experience of symbol manipulation before they get to college. To the extent that 

reform mathematics curricula de-emphasize algebra and notation, they will enlarge rather 

than reduce the cohort of students who are improperly prepared for calculus. It is the 

responsibility of curriculum developers to provide a clear map, assuming that one exists, 

for the transition from jellybean sharing to symbolic mathematics.   

 

What is to be done? 
 

Given the increasing need for many more high school graduates to be completely fluent 

with algebra, how might one improve the algebra instruction that is currently achieving 

the desired impact on all too few students in American high schools?  The author 

suggests that students will achieve the appropriate kinds of understanding not by using  

models and manipulatives, but rather by forming a coherent overview of algebra.  

 

Students should be required to do written work and participate in discussions in which 

they detail explicitly both the definitions of the building blocks of symbolic algebra 

(term, factor, coefficient, expression,,,) and answer global procedural questions such as  

 

What’s the first thing to look at when you solve a polynomial equation? 

When do you use the quadratic formula? completing the square? factoring? 

 

What is the precise symbolic description of a function? 

What is the precise definition of the graph of a function? 

How do you convert between a function’s symbolic definition and its graph? 

 



A dozen years after the alleged revision of perspective in the NCTM Standards, it is 

simply unacceptable that the opening “Functions” chapter of a major curriculum such as 

[CPM] fails completely to answer any of the above three questions. 

 

As soon as students learn about a topic, they should be asked to write about common 

pitfalls and how to avoid them. Consider the following hypothetical precalculus quiz.  

2

3

2

2

) 3 5

) 3 5 0

) 

) 

) 4 5

) 4 6

a x

b x

c x x

d x x

e x x

f x x



 





 

 

 

Every student who wishes to achieve the facility with algebra required on typical calculus 

exams should be able to solve all of the following equations in less than five   minutes. In 

fact, relatively few students complete this quiz without falling into one or more of a 

number of systematic errors.    

  

a) is easy: divide both sides by 3 to get x = 5/3. 

 

b) is drummed into students so often that they tend to get it correct as well, by subtracting 

5 from both sides and then dividing by 3. 

 

c) trips up quite a few students. By analogy with a), students divide both sides by x and 

conclude that x = 1.   That’s clearly wrong, since x could also be 0. Any approach to 

polynomial solving must constrain students to avoid this error. The error arises because 

fractions whose denominators are 0 are meaningless, undefined, or illegal, depending on 

mathematical context as well as linguistic taste. 

 

d) is even worse. not only do students divide by x and miss the solution x = 0, but they  

compound their error by missing the negative solution of the resulting equation  

 12 x .  Very few students find all three roots. 

 

The difficulties in the previous two problems would evaporate if students knew that to 

solve a nonlinear polynomial equation, you move everything to one side, factor that side 

completely, and then set each factor to zero. 

 

e) Students sometimes factor the left side to obtain 5)4( xx . This information is 

useless. Nevertheless, it is common to see such students proceed further by writing 

x = 5 and x + 4 = 5,   or perhaps x = 5 and x + 4 = 1.  These students know that factoring 

helps solve a quadratic equation. Unfortunately, they are generalizing the operative 

principle: 

 

If a product is zero, one of the factors is zero 



 

to an incorrect but linguistically analogous statement about nonzero products. A correct 

solution is once more obtained by following the general polynomial equation solution 

procedure stated above. 

 

In f), even students who correctly transform the problem to  2 4 6 0x x    tend to get 

stuck because they try too hard to factor this expression. They don’t realize that solving a 

quadratic equation involves a decision process as to which of a number of methods is 

appropriate in a given situation. 

 

Some students have an intuitive affinity for symbolic notation and solve the listed 

problems automatically, even with a minimum of formal instruction. The vast majority do 

not, and therefore require the careful attention of curriculum developers and mathematics 

educators. They are served poorly by curricula that de-emphasize symbolic manipulation. 

 

Conclusion 

 

A principal goal of this paper has been to expose as both misguided and counter-

productive the rhetoric that identifies symbol manipulation with lack of understanding. 

Indeed, like any other subject, symbol manipulation can be studied and tested with or 

without understanding, and students are in dire need of a shift from the latter to the 

former paradigm.  

 

From a pragmatic perspective, a reasonable, albeit imperfect, measure of students’ 

understanding of algebra is their ability to perform symbol manipulation flawlessly. 

Students who consistently perform algebra without errors are prima facie demonstrating 

an internalized understanding of definitions and decision procedures. Even for these 

students, it would be beneficial to articulate their understanding as suggested above.  

 

For the far larger cohort of students whose algebra skills are not automatic, curriculum 

innovation that encourages students to verbalize algebraic procedures and algorithms, 

avoids a disjointed presentation of algebra, and provides carefully structured intensive 

practice, might reverse current trends and increase the number of students who are 

prepared properly for the study of calculus.   
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