Getting ready for college math

In all the following $f=F^{\prime}$ and $g=G^{\prime}$.

1. Product Rule. Given F, f, G, g find $F g+f G$

Example: If $F=\left(x^{2}+1\right)^{3}, G=(2 x+7)^{3}, f=$ $3\left(x^{2}+1\right)^{2}, g=6(2 x+7)^{2}$
Find $\mathrm{Fg}+f G$ and factor your answer completely.
2. Quotient Rule

Given F, f, G, g find $(F / G)^{\prime}=\frac{f G-F g}{G^{2}}$
Example: $F=\left(x^{2}+1\right)^{m} \quad G=\left(x^{2}+x\right)^{n}$
$f=2 m x\left(x^{2}+1\right)^{m-1} \quad g=2 n(x+1)\left(x^{2}+x\right)^{n-1}$.
3. Given $F(x)$ and $f(x)=F^{\prime}(x)$. Find $F(a), F(b), f(a), f(b)$, and $\frac{F(b)-F(a)}{b-a}$.
4. Rewrite $\frac{x^{n}+1+x^{m} \sqrt{x}}{x^{k}}$ without radical signs.

Rewrite $\frac{x^{n}+1+x^{m} x^{\frac{1}{2}}}{x^{k}}$ without negative exponents.
5. Implicit differentiation:

Solve $3 y^{2} D+y^{3} x=\left(x^{2}-1\right) D+x$ for D.
6. Given $F(x)$ and $f(x)$,

- Find equation of line through $(a, F(a))$ with slope $f(a)$.
- Solve $y-F(a)=f(a)(x-a)$ for y
- Solve $\frac{y-F(a)}{x-a}=f(a)$ for y.

7. a) Let $x=a$ and $x=b$ (with $a<b$) be the solutions of $u(x)=v(x)$. Find $F(b)-F(a)$.
b) Let $x=a$ and $x=b$ and $x=c$ (with $a<b<c$) be the solutions of $u(x)=v(x)$. Find $F(b)-F(a)+F(b)-F(c)$.
8. Given F,
simplify the difference quotient $\frac{F(a+h)-F(a)}{h}$
9. Given f (a first or second derivative)
a) Solve $f(x)=0$.
b) In what intervals is $f(x)$ positive? negative?
10. Given F, find and simplify $\frac{F(b)-F(a)}{b-a}$
11. Suppose $F(x)=x^{3}+b x^{2}+c x+d$ and $f(x)=3 x^{2}+2 b x+c$.
If $F(1)=0$ and $F(2)=4$ and $f(2)=3$,
find $F(x), f(x), f(a)$, etc.
12. Order of operations problems such as

- $3 x(x+1)^{2}-x^{2}(3-2 x)$.
- Given $f(x)=x+1$ and $g(x)=2-x$ find $f(x)-2 g(x)-f(x) g(x)$.

Getting ready for college math

1. Warmup for Product rule Let $F=A^{3} ; \quad G=B^{3} ; \quad f=3 A^{2}$; and $g=6 B^{2}$. Find $F g+f G$ and factor your answer completely.

Getting ready for college math

1. Warmup for Product rule Let $F=A^{3} ; \quad G=B^{3} ; \quad f=3 A^{2}$; and $g=6 B^{2}$. Find $F g+f G$ and factor your answer completely.
Solution: Scroll slowly. Try each step before you look at the answer.
Substitute the given polynomials into $\mathrm{Fg}+f G$

Getting ready for college math

1. Warmup for Product rule Let $F=A^{3} ; \quad G=B^{3} ; \quad f=3 A^{2}$; and $g=6 B^{2}$. Find $F g+f G$ and factor your answer completely.
Solution: Scroll slowly. Try each step before you look at the answer.
Substitute the given polynomials into $F g+f G \quad A^{3}\left(6 B^{2}\right)+\left(3 A^{2}\right)\left(B^{3}\right)$
Recognize as sum of two terms

Getting ready for college math

1. Warmup for Product rule Let $F=A^{3} ; \quad G=B^{3} ; \quad f=3 A^{2}$; and $g=6 B^{2}$. Find $F g+f G$ and factor your answer completely.
Solution: Scroll slowly. Try each step before you look at the answer.
Substitute the given polynomials into $F g+f G \quad A^{3}\left(6 B^{2}\right)+\left(3 A^{2}\right)\left(B^{3}\right)$
Recognize as sum of two terms $=A^{3}\left(6 B^{2}\right)+\left(3 A^{2}\right)\left(B^{3}\right)$
Rewrite each term with constant at left

Getting ready for college math

1. Warmup for Product rule Let $F=A^{3} ; \quad G=B^{3} ; \quad f=3 A^{2}$; and $g=6 B^{2}$. Find $F g+f G$ and factor your answer completely.
Solution: Scroll slowly. Try each step before you look at the answer.
Substitute the given polynomials into $F g+f G \quad A^{3}\left(6 B^{2}\right)+\left(3 A^{2}\right)\left(B^{3}\right)$
Recognize as sum of two terms $=A^{3}\left(6 B^{2}\right)+\left(3 A^{2}\right)\left(B^{3}\right)$
Rewrite each term with constant at left $=6 A^{3} B^{2}+3 A^{2} B^{3}$
Pull out common factor 3

Getting ready for college math

1. Warmup for Product rule Let $F=A^{3} ; \quad G=B^{3} ; \quad f=3 A^{2}$; and $g=6 B^{2}$. Find $F g+f G$ and factor your answer completely.
Solution: Scroll slowly. Try each step before you look at the answer.
Substitute the given polynomials into $F g+f G \quad A^{3}\left(6 B^{2}\right)+\left(3 A^{2}\right)\left(B^{3}\right)$
Recognize as sum of two terms $=A^{3}\left(6 B^{2}\right)+\left(3 A^{2}\right)\left(B^{3}\right)$
Rewrite each term with constant at left $=6 A^{3} B^{2}+3 A^{2} B^{3}$
Pull out common factor $3=3\left(2 A^{3} B^{2}+A^{2} B^{3}\right)$
Pull out the lowest common power A^{2} of A

Getting ready for college math

1. Warmup for Product rule Let $F=A^{3} ; \quad G=B^{3} ; \quad f=3 A^{2}$; and $g=6 B^{2}$. Find $F g+f G$ and factor your answer completely.
Solution: Scroll slowly. Try each step before you look at the answer.
Substitute the given polynomials into $F g+f G \quad A^{3}\left(6 B^{2}\right)+\left(3 A^{2}\right)\left(B^{3}\right)$
Recognize as sum of two terms $=A^{3}\left(6 B^{2}\right)+\left(3 A^{2}\right)\left(B^{3}\right)$
Rewrite each term with constant at left $=6 A^{3} B^{2}+3 A^{2} B^{3}$
Pull out common factor $3=3\left(2 A^{3} B^{2}+A^{2} B^{3}\right)$
Pull out the lowest common power A^{2} of $A=3 A^{2}\left(2 A^{3-2} B^{2}+B^{3}\right)$
Pull out lowest common power B^{2} of B

Getting ready for college math

1. Warmup for Product rule Let $F=A^{3} ; \quad G=B^{3} ; \quad f=3 A^{2}$; and $g=6 B^{2}$. Find $F g+f G$ and factor your answer completely.
Solution: Scroll slowly. Try each step before you look at the answer.
Substitute the given polynomials into $F g+f G \quad A^{3}\left(6 B^{2}\right)+\left(3 A^{2}\right)\left(B^{3}\right)$
Recognize as sum of two terms $=A^{3}\left(6 B^{2}\right)+\left(3 A^{2}\right)\left(B^{3}\right)$
Rewrite each term with constant at left $=6 A^{3} B^{2}+3 A^{2} B^{3}$
Pull out common factor $3=3\left(2 A^{3} B^{2}+A^{2} B^{3}\right)$
Pull out the lowest common power A^{2} of $A=3 A^{2}\left(2 A^{3-2} B^{2}+B^{3}\right)$
Pull out lowest common power B^{2} of $B=3 A^{2} B^{2}\left(2 A^{3-2}+B^{3-2}\right)$

Getting ready for college math

1. Warmup for Product rule Let $F=A^{3} ; \quad G=B^{3} ; \quad f=3 A^{2}$; and $g=6 B^{2}$. Find $F g+f G$ and factor your answer completely.
Solution: Scroll slowly. Try each step before you look at the answer.
Substitute the given polynomials into $F g+f G \quad A^{3}\left(6 B^{2}\right)+\left(3 A^{2}\right)\left(B^{3}\right)$
Recognize as sum of two terms $=A^{3}\left(6 B^{2}\right)+\left(3 A^{2}\right)\left(B^{3}\right)$
Rewrite each term with constant at left $=6 A^{3} B^{2}+3 A^{2} B^{3}$
Pull out common factor $3=3\left(2 A^{3} B^{2}+A^{2} B^{3}\right)$
Pull out the lowest common power A^{2} of $A=3 A^{2}\left(2 A^{3-2} B^{2}+B^{3}\right)$
Pull out lowest common power B^{2} of $B=3 A^{2} B^{2}\left(2 A^{3-2}+B^{3-2}\right)$
Subtract exponents

Getting ready for college math

1. Warmup for Product rule Let $F=A^{3} ; \quad G=B^{3} ; \quad f=3 A^{2}$; and $g=6 B^{2}$. Find $F g+f G$ and factor your answer completely.
Solution: Scroll slowly. Try each step before you look at the answer.
Substitute the given polynomials into $F g+f G \quad A^{3}\left(6 B^{2}\right)+\left(3 A^{2}\right)\left(B^{3}\right)$
Recognize as sum of two terms $=A^{3}\left(6 B^{2}\right)+\left(3 A^{2}\right)\left(B^{3}\right)$
Rewrite each term with constant at left $=6 A^{3} B^{2}+3 A^{2} B^{3}$
Pull out common factor $3=3\left(2 A^{3} B^{2}+A^{2} B^{3}\right)$
Pull out the lowest common power A^{2} of $A=3 A^{2}\left(2 A^{3-2} B^{2}+B^{3}\right)$
Pull out lowest common power B^{2} of $B=3 A^{2} B^{2}\left(2 A^{3-2}+B^{3-2}\right)$
Subtract exponents $=3 A^{2} B^{2}\left(2 A^{1}+B^{1}\right)$

Getting ready for college math

1. Warmup for Product rule Let $F=A^{3} ; \quad G=B^{3} ; \quad f=3 A^{2}$; and $g=6 B^{2}$. Find $F g+f G$ and factor your answer completely.
Solution: Scroll slowly. Try each step before you look at the answer.
Substitute the given polynomials into $F g+f G \quad A^{3}\left(6 B^{2}\right)+\left(3 A^{2}\right)\left(B^{3}\right)$
Recognize as sum of two terms $=A^{3}\left(6 B^{2}\right)+\left(3 A^{2}\right)\left(B^{3}\right)$
Rewrite each term with constant at left $=6 A^{3} B^{2}+3 A^{2} B^{3}$
Pull out common factor $3=3\left(2 A^{3} B^{2}+A^{2} B^{3}\right)$
Pull out the lowest common power A^{2} of $A=3 A^{2}\left(2 A^{3-2} B^{2}+B^{3}\right)$
Pull out lowest common power B^{2} of $B=3 A^{2} B^{2}\left(2 A^{3-2}+B^{3-2}\right)$
Subtract exponents $=3 A^{2} B^{2}\left(2 A^{1}+B^{1}\right)$
This is the final answer

Getting ready for college math

1. Warmup for Product rule Let $F=A^{3} ; \quad G=B^{3} ; \quad f=3 A^{2}$; and $g=6 B^{2}$. Find $F g+f G$ and factor your answer completely.
Solution: Scroll slowly. Try each step before you look at the answer.
Substitute the given polynomials into $F g+f G \quad A^{3}\left(6 B^{2}\right)+\left(3 A^{2}\right)\left(B^{3}\right)$
Recognize as sum of two terms $=A^{3}\left(6 B^{2}\right)+\left(3 A^{2}\right)\left(B^{3}\right)$
Rewrite each term with constant at left $=6 A^{3} B^{2}+3 A^{2} B^{3}$
Pull out common factor $3=3\left(2 A^{3} B^{2}+A^{2} B^{3}\right)$
Pull out the lowest common power A^{2} of $A=3 A^{2}\left(2 A^{3-2} B^{2}+B^{3}\right)$
Pull out lowest common power B^{2} of $B=3 A^{2} B^{2}\left(2 A^{3-2}+B^{3-2}\right)$
Subtract exponents $=3 A^{2} B^{2}\left(2 A^{1}+B^{1}\right)$
This is the final answer $=3 A^{2} B^{2}(2 A+B)$

Preparation for Product rule Let $F=\left(x^{2}+1\right)^{3} ; \quad G=(2 x+7)^{3} ; \quad f=3\left(x^{2}+1\right)^{2}$; and $g=6(2 x+7)^{2}$. Find $F g+f G$ and factor your answer completely.

Preparation for Product rule Let $F=\left(x^{2}+1\right)^{3} ; \quad G=(2 x+7)^{3} ; \quad f=3\left(x^{2}+1\right)^{2} ;$ and $g=6(2 x+7)^{2}$. Find $F g+f G$ and factor your answer completely.
Solution: This problem was obtained by substituting $x^{2}+1$ for A and $2 x+7$ for B in the warmup problem. This problem seems harder, simply because there are more symbols.

Substitute the given polynomials into $\mathrm{Fg}+f G$

Preparation for Product rule Let $F=\left(x^{2}+1\right)^{3} ; \quad G=(2 x+7)^{3} ; \quad f=3\left(x^{2}+1\right)^{2} ;$ and $g=6(2 x+7)^{2}$. Find $F g+f G$ and factor your answer completely.
Solution: This problem was obtained by substituting $x^{2}+1$ for A and $2 x+7$ for B in the warmup problem. This problem seems harder, simply because there are more symbols.

Substitute the given polynomials into $F g+f G \quad\left(x^{2}+1\right)^{3}\left(6(2 x+7)^{2}\right)+\left(3\left(x^{2}+1\right)^{2}\right)\left((2 x+7)^{3}\right)$
Recognize as sum of two terms $=$

Preparation for Product rule Let $F=\left(x^{2}+1\right)^{3} ; \quad G=(2 x+7)^{3} ; \quad f=3\left(x^{2}+1\right)^{2} ;$ and $g=6(2 x+7)^{2}$. Find $F g+f G$ and factor your answer completely.
Solution: This problem was obtained by substituting $x^{2}+1$ for A and $2 x+7$ for B in the warmup problem. This problem seems harder, simply because there are more symbols.

Substitute the given polynomials into $F g+f G \quad\left(x^{2}+1\right)^{3}\left(6(2 x+7)^{2}\right)+\left(3\left(x^{2}+1\right)^{2}\right)\left((2 x+7)^{3}\right)$
Recognize as sum of two terms $=\left(x^{2}+1\right)^{3}\left(6(2 x+7)^{2}\right)+\left(3\left(x^{2}+1\right)^{2}\right)\left((2 x+7)^{3}\right)$
Rewrite each term with constant at left =

Preparation for Product rule Let $F=\left(x^{2}+1\right)^{3} ; \quad G=(2 x+7)^{3} ; \quad f=3\left(x^{2}+1\right)^{2}$; and $g=6(2 x+7)^{2}$. Find $F g+f G$ and factor your answer completely.
Solution: This problem was obtained by substituting $x^{2}+1$ for A and $2 x+7$ for B in the warmup problem. This problem seems harder, simply because there are more symbols.

Substitute the given polynomials into $F g+f G \quad\left(x^{2}+1\right)^{3}\left(6(2 x+7)^{2}\right)+\left(3\left(x^{2}+1\right)^{2}\right)\left((2 x+7)^{3}\right)$
Recognize as sum of two terms $=\left(x^{2}+1\right)^{3}\left(6(2 x+7)^{2}\right)+\left(3\left(x^{2}+1\right)^{2}\right)\left((2 x+7)^{3}\right)$
Rewrite each term with constant at left $=6\left(x^{2}+1\right)^{3}(2 x+7)^{2}+3\left(x^{2}+1\right)^{2}(2 x+7)^{3}$
Factor out common factor $3=$

Preparation for Product rule Let $F=\left(x^{2}+1\right)^{3} ; \quad G=(2 x+7)^{3} ; \quad f=3\left(x^{2}+1\right)^{2} ;$ and $g=6(2 x+7)^{2}$. Find $F g+f G$ and factor your answer completely.
Solution: This problem was obtained by substituting $x^{2}+1$ for A and $2 x+7$ for B in the warmup problem. This problem seems harder, simply because there are more symbols.

Substitute the given polynomials into $\mathrm{Fg}+f G$

$$
\left(x^{2}+1\right)^{3}\left(6(2 x+7)^{2}\right)+\left(3\left(x^{2}+1\right)^{2}\right)\left((2 x+7)^{3}\right)
$$

$$
\text { Recognize as sum of two terms }=\left(x^{2}+1\right)^{3}\left(6(2 x+7)^{2}\right)+\left(3\left(x^{2}+1\right)^{2}\right)\left((2 x+7)^{3}\right)
$$

$$
\text { Rewrite each term with constant at left }=6\left(x^{2}+1\right)^{3}(2 x+7)^{2}+3\left(x^{2}+1\right)^{2}(2 x+7)^{3}
$$

$$
\text { Factor out common factor } 3=3\left(2\left(x^{2}+1\right)^{3}(2 x+7)^{2}+\left(x^{2}+1\right)^{2}(2 x+7)^{3}\right)
$$

Factor $\left(x^{2}+1\right)^{2}$ from both terms. $=$

Preparation for Product rule Let $F=\left(x^{2}+1\right)^{3} ; \quad G=(2 x+7)^{3} ; \quad f=3\left(x^{2}+1\right)^{2}$; and $g=6(2 x+7)^{2}$. Find $F g+f G$ and factor your answer completely.
Solution: This problem was obtained by substituting $x^{2}+1$ for A and $2 x+7$ for B in the warmup problem. This problem seems harder, simply because there are more symbols.

Substitute the given polynomials into $\mathrm{Fg}+f G$

$$
\left(x^{2}+1\right)^{3}\left(6(2 x+7)^{2}\right)+\left(3\left(x^{2}+1\right)^{2}\right)\left((2 x+7)^{3}\right)
$$

Recognize as sum of two terms $=\left(x^{2}+1\right)^{3}\left(6(2 x+7)^{2}\right)+\left(3\left(x^{2}+1\right)^{2}\right)\left((2 x+7)^{3}\right)$
Rewrite each term with constant at left $=6\left(x^{2}+1\right)^{3}(2 x+7)^{2}+3\left(x^{2}+1\right)^{2}(2 x+7)^{3}$
Factor out common factor $3=3\left(2\left(x^{2}+1\right)^{3}(2 x+7)^{2}+\left(x^{2}+1\right)^{2}(2 x+7)^{3}\right)$
Factor $\left(x^{2}+1\right)^{2}$ from both terms. $=3\left(x^{2}+1\right)^{2}\left(2\left(x^{2}+1\right)^{3-2}(2 x+7)^{2}+(2 x+7)^{3}\right)$
Factor $(2 x+7)^{2}$ from both terms. $=$

Preparation for Product rule Let $F=\left(x^{2}+1\right)^{3} ; \quad G=(2 x+7)^{3} ; \quad f=3\left(x^{2}+1\right)^{2}$; and $g=6(2 x+7)^{2}$. Find $F g+f G$ and factor your answer completely.
Solution: This problem was obtained by substituting $x^{2}+1$ for A and $2 x+7$ for B in the warmup problem. This problem seems harder, simply because there are more symbols.

Substitute the given polynomials into $\mathrm{Fg}+f G$

$$
\begin{aligned}
& \left(x^{2}+1\right)^{3}\left(6(2 x+7)^{2}\right)+\left(3\left(x^{2}+1\right)^{2}\right)\left((2 x+7)^{3}\right) \\
= & \left(x^{2}+1\right)^{3}\left(6(2 x+7)^{2}\right)+\left(3\left(x^{2}+1\right)^{2}\right)\left((2 x+7)^{3}\right) \\
= & 6\left(x^{2}+1\right)^{3}(2 x+7)^{2}+3\left(x^{2}+1\right)^{2}(2 x+7)^{3}
\end{aligned}
$$

$$
\text { Factor out common factor } 3=3\left(2\left(x^{2}+1\right)^{3}(2 x+7)^{2}+\left(x^{2}+1\right)^{2}(2 x+7)^{3}\right)
$$

$$
\text { Factor }\left(x^{2}+1\right)^{2} \text { from both terms. }=3\left(x^{2}+1\right)^{2}\left(2\left(x^{2}+1\right)^{3-2}(2 x+7)^{2}+(2 x+7)^{3}\right)
$$

$$
\text { Factor }(2 x+7)^{2} \text { from both terms. } \quad=3\left(x^{2}+1\right)^{2}(2 x+7)^{2}\left(2\left(x^{2}+1\right)^{3-2}+(2 x+7)^{3-2}\right)
$$

Preparation for Product rule Let $F=\left(x^{2}+1\right)^{3} ; \quad G=(2 x+7)^{3} ; \quad f=3\left(x^{2}+1\right)^{2}$; and $g=6(2 x+7)^{2}$. Find $F g+f G$ and factor your answer completely.
Solution: This problem was obtained by substituting $x^{2}+1$ for A and $2 x+7$ for B in the warmup problem. This problem seems harder, simply because there are more symbols.

Substitute the given polynomials into $\mathrm{Fg}+f G$

$$
\left(x^{2}+1\right)^{3}\left(6(2 x+7)^{2}\right)+\left(3\left(x^{2}+1\right)^{2}\right)\left((2 x+7)^{3}\right)
$$

$$
\text { Recognize as sum of two terms }=\left(x^{2}+1\right)^{3}\left(6(2 x+7)^{2}\right)+\left(3\left(x^{2}+1\right)^{2}\right)\left((2 x+7)^{3}\right)
$$

$$
\text { Rewrite each term with constant at left }=6\left(x^{2}+1\right)^{3}(2 x+7)^{2}+3\left(x^{2}+1\right)^{2}(2 x+7)^{3}
$$

$$
\text { Factor out common factor } 3=3\left(2\left(x^{2}+1\right)^{3}(2 x+7)^{2}+\left(x^{2}+1\right)^{2}(2 x+7)^{3}\right)
$$

$$
\text { Factor }\left(x^{2}+1\right)^{2} \text { from both terms. }=3\left(x^{2}+1\right)^{2}\left(2\left(x^{2}+1\right)^{3-2}(2 x+7)^{2}+(2 x+7)^{3}\right)
$$

$$
\text { Factor }(2 x+7)^{2} \text { from both terms. } \quad=3\left(x^{2}+1\right)^{2}(2 x+7)^{2}\left(2\left(x^{2}+1\right)^{3-2}+(2 x+7)^{3-2}\right)
$$

Subtract exponents $=$

Preparation for Product rule Let $F=\left(x^{2}+1\right)^{3} ; \quad G=(2 x+7)^{3} ; \quad f=3\left(x^{2}+1\right)^{2}$; and $g=6(2 x+7)^{2}$. Find $F g+f G$ and factor your answer completely.
Solution: This problem was obtained by substituting $x^{2}+1$ for A and $2 x+7$ for B in the warmup problem. This problem seems harder, simply because there are more symbols.

Substitute the given polynomials into $\mathrm{Fg}+f G$

$$
\left(x^{2}+1\right)^{3}\left(6(2 x+7)^{2}\right)+\left(3\left(x^{2}+1\right)^{2}\right)\left((2 x+7)^{3}\right)
$$

Recognize as sum of two terms $=\left(x^{2}+1\right)^{3}\left(6(2 x+7)^{2}\right)+\left(3\left(x^{2}+1\right)^{2}\right)\left((2 x+7)^{3}\right)$
Rewrite each term with constant at left $=6\left(x^{2}+1\right)^{3}(2 x+7)^{2}+3\left(x^{2}+1\right)^{2}(2 x+7)^{3}$
Factor out common factor $3=3\left(2\left(x^{2}+1\right)^{3}(2 x+7)^{2}+\left(x^{2}+1\right)^{2}(2 x+7)^{3}\right)$
Factor $\left(x^{2}+1\right)^{2}$ from both terms. $\quad=3\left(x^{2}+1\right)^{2}\left(2\left(x^{2}+1\right)^{3-2}(2 x+7)^{2}+(2 x+7)^{3}\right)$
Factor $(2 x+7)^{2}$ from both terms. $=3\left(x^{2}+1\right)^{2}(2 x+7)^{2}\left(2\left(x^{2}+1\right)^{3-2}+(2 x+7)^{3-2}\right)$
Subtract exponents $=3\left(x^{2}+1\right)^{2}(2 x+7)^{2}\left(2\left(x^{2}+1\right)^{1}+(2 x+7)^{1}\right)$

Preparation for Product rule Let $F=\left(x^{2}+1\right)^{3} ; \quad G=(2 x+7)^{3} ; \quad f=3\left(x^{2}+1\right)^{2}$; and $g=6(2 x+7)^{2}$. Find $F g+f G$ and factor your answer completely.
Solution: This problem was obtained by substituting $x^{2}+1$ for A and $2 x+7$ for B in the warmup problem. This problem seems harder, simply because there are more symbols.

Substitute the given polynomials into $\mathrm{Fg}+f G$

$$
\begin{aligned}
\text { omials into } F g+f G & \left(x^{2}+1\right)^{3}\left(6(2 x+7)^{2}\right)+\left(3\left(x^{2}+1\right)^{2}\right)\left((2 x+7)^{3}\right) \\
\text { as sum of two terms } & =\left(x^{2}+1\right)^{3}\left(6(2 x+7)^{2}\right)+\left(3\left(x^{2}+1\right)^{2}\right)\left((2 x+7)^{3}\right) \\
\text { with constant at left } & =6\left(x^{2}+1\right)^{3}(2 x+7)^{2}+3\left(x^{2}+1\right)^{2}(2 x+7)^{3} \\
\text { out common factor } 3 & =3\left(2\left(x^{2}+1\right)^{3}(2 x+7)^{2}+\left(x^{2}+1\right)^{2}(2 x+7)^{3}\right) \\
1)^{2} \text { from both terms. } & =3\left(x^{2}+1\right)^{2}\left(2\left(x^{2}+1\right)^{3-2}(2 x+7)^{2}+(2 x+7)^{3}\right) \\
7)^{2} \text { from both terms. } & =3\left(x^{2}+1\right)^{2}(2 x+7)^{2}\left(2\left(x^{2}+1\right)^{3-2}+(2 x+7)^{3-}\right. \\
\text { Subtract exponents } & =3\left(x^{2}+1\right)^{2}(2 x+7)^{2}\left(2\left(x^{2}+1\right)^{1}+(2 x+7)^{1}\right)
\end{aligned}
$$

$$
\text { Factor out common factor } 3=3\left(2\left(x^{2}+1\right)^{3}(2 x+7)^{2}+\left(x^{2}+1\right)^{2}(2 x+7)^{3}\right)
$$

$$
\text { Factor }\left(x^{2}+1\right)^{2} \text { from both terms. } \quad=3\left(x^{2}+1\right)^{2}\left(2\left(x^{2}+1\right)^{3-2}(2 x+7)^{2}+(2 x+7)^{3}\right)
$$

$$
\text { Factor }(2 x+7)^{2} \text { from both terms. } \quad=3\left(x^{2}+1\right)^{2}(2 x+7)^{2}\left(2\left(x^{2}+1\right)^{3-2}+(2 x+7)^{3-2}\right)
$$

Expand the remaining factor $=$

Preparation for Product rule Let $F=\left(x^{2}+1\right)^{3} ; \quad G=(2 x+7)^{3} ; \quad f=3\left(x^{2}+1\right)^{2}$; and $g=6(2 x+7)^{2}$. Find $F g+f G$ and factor your answer completely.
Solution: This problem was obtained by substituting $x^{2}+1$ for A and $2 x+7$ for B in the warmup problem. This problem seems harder, simply because there are more symbols.

Substitute the given polynomials into $F g+f G$

$$
\begin{aligned}
&\left(x^{2}+1\right)^{3}\left(6(2 x+7)^{2}\right)+\left(3\left(x^{2}+1\right)^{2}\right)\left((2 x+7)^{3}\right) \\
& \text { omials into } F g+f G=\left(x^{2}+1\right)^{3}\left(6(2 x+7)^{2}\right)+\left(3\left(x^{2}+1\right)^{2}\right)\left((2 x+7)^{3}\right) \\
& \text { as sum of two terms } \\
& \text { with constant at left }=6\left(x^{2}+1\right)^{3}(2 x+7)^{2}+3\left(x^{2}+1\right)^{2}(2 x+7)^{3} \\
& \text { out common factor } 3=3\left(2\left(x^{2}+1\right)^{3}(2 x+7)^{2}+\left(x^{2}+1\right)^{2}(2 x+7)^{3}\right) \\
&1)^{2} \text { from both terms. }=3\left(x^{2}+1\right)^{2}\left(2\left(x^{2}+1\right)^{3-2}(2 x+7)^{2}+(2 x+7)^{3}\right) \\
&7)^{2} \text { from both terms. }=3\left(x^{2}+1\right)^{2}(2 x+7)^{2}\left(2\left(x^{2}+1\right)^{3-2}+(2 x+7)^{3-}\right. \\
& \text { Subtract exponents }=3\left(x^{2}+1\right)^{2}(2 x+7)^{2}\left(2\left(x^{2}+1\right)^{1}+(2 x+7)^{1}\right)
\end{aligned}
$$

$$
\text { Factor out common factor } 3=3\left(2\left(x^{2}+1\right)^{3}(2 x+7)^{2}+\left(x^{2}+1\right)^{2}(2 x+7)^{3}\right)
$$

$$
\text { Factor }\left(x^{2}+1\right)^{2} \text { from both terms. }=3\left(x^{2}+1\right)^{2}\left(2\left(x^{2}+1\right)^{3-2}(2 x+7)^{2}+(2 x+7)^{3}\right)
$$

$$
\text { Factor }(2 x+7)^{2} \text { from both terms. }=3\left(x^{2}+1\right)^{2}(2 x+7)^{2}\left(2\left(x^{2}+1\right)^{3-2}+(2 x+7)^{3-2}\right)
$$

$$
\text { Expand the remaining factor }=3\left(x^{2}+1\right)^{2}(2 x+7)^{2}\left(\left(2 x^{2}+2\right)+(2 x+7)\right)
$$

Preparation for Product rule Let $F=\left(x^{2}+1\right)^{3} ; \quad G=(2 x+7)^{3} ; \quad f=3\left(x^{2}+1\right)^{2}$; and $g=6(2 x+7)^{2}$. Find $F g+f G$ and factor your answer completely.
Solution: This problem was obtained by substituting $x^{2}+1$ for A and $2 x+7$ for B in the warmup problem. This problem seems harder, simply because there are more symbols.

Substitute the given polynomials into $F g+f G$

$$
\begin{aligned}
& \left(x^{2}+1\right)^{3}\left(6(2 x+7)^{2}\right)+\left(3\left(x^{2}+1\right)^{2}\right)\left((2 x+7)^{3}\right) \\
\text { omials into } F g+f G & =\left(x^{2}+1\right)^{3}\left(6(2 x+7)^{2}\right)+\left(3\left(x^{2}+1\right)^{2}\right)\left((2 x+7)^{3}\right) \\
\text { as of two terms } & =6\left(x^{2}+1\right)^{3}(2 x+7)^{2}+3\left(x^{2}+1\right)^{2}(2 x+7)^{3} \\
\text { with constant at left } & =3\left(2\left(x^{2}+1\right)^{3}(2 x+7)^{2}+\left(x^{2}+1\right)^{2}(2 x+7)^{3}\right) \\
\text { out common factor } 3 & =3\left(x^{2}+1\right)^{2}\left(2\left(x^{2}+1\right)^{3-2}(2 x+7)^{2}+(2 x+7)^{3}\right) \\
1)^{2} \text { from both terms. } & =3\left(x^{2}+1\right)^{2}(2 x+7)^{2}\left(2\left(x^{2}+1\right)^{3-2}+(2 x+7)^{3-}\right. \\
7)^{2} \text { from both terms. } & =3\left(x^{2}+1\right)^{2}(2 x+7)^{2}\left(2\left(x^{2}+1\right)^{1}+(2 x+7)^{1}\right) \\
\text { Subtract exponents } & =3+(2)
\end{aligned}
$$

$$
\text { Recognize as sum of two terms }=\left(x^{2}+1\right)^{3}\left(6(2 x+7)^{2}\right)+\left(3\left(x^{2}+1\right)^{2}\right)\left((2 x+7)^{3}\right)
$$

$$
\text { Rewrite each term with constant at left }=6\left(x^{2}+1\right)^{3}(2 x+7)^{2}+3\left(x^{2}+1\right)^{2}(2 x+7)^{3}
$$

$$
\text { Factor out common factor } 3=3\left(2\left(x^{2}+1\right)^{3}(2 x+7)^{2}+\left(x^{2}+1\right)^{2}(2 x+7)^{3}\right)
$$

$$
\text { Factor }\left(x^{2}+1\right)^{2} \text { from both terms. }=3\left(x^{2}+1\right)^{2}\left(2\left(x^{2}+1\right)^{3-2}(2 x+7)^{2}+(2 x+7)^{3}\right)
$$

$$
\text { Factor }(2 x+7)^{2} \text { from both terms. }=3\left(x^{2}+1\right)^{2}(2 x+7)^{2}\left(2\left(x^{2}+1\right)^{3-2}+(2 x+7)^{3-2}\right)
$$

$$
\text { Expand the remaining factor }=3\left(x^{2}+1\right)^{2}(2 x+7)^{2}\left(\left(2 x^{2}+2\right)+(2 x+7)\right)
$$

Collect the remaining factor $=$

Preparation for Product rule Let $F=\left(x^{2}+1\right)^{3} ; \quad G=(2 x+7)^{3} ; \quad f=3\left(x^{2}+1\right)^{2}$; and $g=6(2 x+7)^{2}$. Find $F g+f G$ and factor your answer completely.
Solution: This problem was obtained by substituting $x^{2}+1$ for A and $2 x+7$ for B in the warmup problem. This problem seems harder, simply because there are more symbols.

Substitute the given polynomials into $\mathrm{Fg}+f G$

$$
\begin{aligned}
\text { omials into } F g+f G & \left(x^{2}+1\right)^{3}\left(6(2 x+7)^{2}\right)+\left(3\left(x^{2}+1\right)^{2}\right)\left((2 x+7)^{3}\right) \\
\text { as sum of two terms } & =\left(x^{2}+1\right)^{3}\left(6(2 x+7)^{2}\right)+\left(3\left(x^{2}+1\right)^{2}\right)\left((2 x+7)^{3}\right) \\
\text { with constant at left } & =6\left(x^{2}+1\right)^{3}(2 x+7)^{2}+3\left(x^{2}+1\right)^{2}(2 x+7)^{3} \\
\text { out common factor 3 } & =3\left(2\left(x^{2}+1\right)^{3}(2 x+7)^{2}+\left(x^{2}+1\right)^{2}(2 x+7)^{3}\right) \\
1)^{2} \text { from both terms. } & =3\left(x^{2}+1\right)^{2}\left(2\left(x^{2}+1\right)^{3-2}(2 x+7)^{2}+(2 x+7)^{3}\right) \\
7)^{2} \text { from both terms. } & =3\left(x^{2}+1\right)^{2}(2 x+7)^{2}\left(2\left(x^{2}+1\right)^{3-2}+(2 x+7)^{3-}\right. \\
\text { Subtract exponents } & =3\left(x^{2}+1\right)^{2}(2 x+7)^{2}\left(2\left(x^{2}+1\right)^{1}+(2 x+7)^{1}\right)
\end{aligned}
$$

$$
\text { Factor }\left(x^{2}+1\right)^{2} \text { from both terms. } \quad=3\left(x^{2}+1\right)^{2}\left(2\left(x^{2}+1\right)^{3-2}(2 x+7)^{2}+(2 x+7)^{3}\right)
$$

$$
\text { Factor }(2 x+7)^{2} \text { from both terms. } \quad=3\left(x^{2}+1\right)^{2}(2 x+7)^{2}\left(2\left(x^{2}+1\right)^{3-2}+(2 x+7)^{3-2}\right)
$$

$$
\text { Expand the remaining factor }=3\left(x^{2}+1\right)^{2}(2 x+7)^{2}\left(\left(2 x^{2}+2\right)+(2 x+7)\right)
$$

$$
\text { Collect the remaining factor }=3\left(x^{2}+1\right)^{2}(2 x+7)^{2}\left(2 x^{2}+2 x+9\right)
$$

Preparation for Product rule Let $F=\left(x^{2}+1\right)^{3} ; \quad G=(2 x+7)^{3} ; \quad f=3\left(x^{2}+1\right)^{2} ;$ and $g=6(2 x+7)^{2}$. Find $F g+f G$ and factor your answer completely.
Solution: This problem was obtained by substituting $x^{2}+1$ for A and $2 x+7$ for B in the warmup problem. This problem seems harder, simply because there are more symbols.

Substitute the given polynomials into $\mathrm{Fg}+f G$

$$
\begin{aligned}
\text { omials into } F g+f G & \left(x^{2}+1\right)^{3}\left(6(2 x+7)^{2}\right)+\left(3\left(x^{2}+1\right)^{2}\right)\left((2 x+7)^{3}\right) \\
\text { as sum of two terms } & =\left(x^{2}+1\right)^{3}\left(6(2 x+7)^{2}\right)+\left(3\left(x^{2}+1\right)^{2}\right)\left((2 x+7)^{3}\right) \\
\text { with constant at left } & =6\left(x^{2}+1\right)^{3}(2 x+7)^{2}+3\left(x^{2}+1\right)^{2}(2 x+7)^{3} \\
\text { out common factor } 3 & =3\left(2\left(x^{2}+1\right)^{3}(2 x+7)^{2}+\left(x^{2}+1\right)^{2}(2 x+7)^{3}\right) \\
1)^{2} \text { from both terms. } & =3\left(x^{2}+1\right)^{2}\left(2\left(x^{2}+1\right)^{3-2}(2 x+7)^{2}+(2 x+7)^{3}\right) \\
7)^{2} \text { from both terms. } & =3\left(x^{2}+1\right)^{2}(2 x+7)^{2}\left(2\left(x^{2}+1\right)^{3-2}+(2 x+7)^{3-}\right. \\
\text { Subtract exponents } & =3\left(x^{2}+1\right)^{2}(2 x+7)^{2}\left(2\left(x^{2}+1\right)^{1}+(2 x+7)^{1}\right)
\end{aligned}
$$

$$
\text { Recognize as sum of two terms }=\left(x^{2}+1\right)^{3}\left(6(2 x+7)^{2}\right)+\left(3\left(x^{2}+1\right)^{2}\right)\left((2 x+7)^{3}\right)
$$

$$
\text { Rewrite each term with constant at left }=6\left(x^{2}+1\right)^{3}(2 x+7)^{2}+3\left(x^{2}+1\right)^{2}(2 x+7)^{3}
$$

$$
\text { Factor out common factor } 3=3\left(2\left(x^{2}+1\right)^{3}(2 x+7)^{2}+\left(x^{2}+1\right)^{2}(2 x+7)^{3}\right)
$$

$$
\text { Factor }\left(x^{2}+1\right)^{2} \text { from both terms. } \quad=3\left(x^{2}+1\right)^{2}\left(2\left(x^{2}+1\right)^{3-2}(2 x+7)^{2}+(2 x+7)^{3}\right)
$$

$$
\text { Factor }(2 x+7)^{2} \text { from both terms. } \quad=3\left(x^{2}+1\right)^{2}(2 x+7)^{2}\left(2\left(x^{2}+1\right)^{3-2}+(2 x+7)^{3-2}\right)
$$

$$
\text { Expand the remaining factor }=3\left(x^{2}+1\right)^{2}(2 x+7)^{2}\left(\left(2 x^{2}+2\right)+(2 x+7)\right)
$$

$$
\text { Collect the remaining factor }=3\left(x^{2}+1\right)^{2}(2 x+7)^{2}\left(2 x^{2}+2 x+9\right)
$$

To be sure the boxed answer is completely factored, use the Quadratic polynomial factoring criterion to see if $2 x^{2}+2 x+9$ factors.

Preparation for Product rule Let $F=\left(x^{2}+1\right)^{3} ; \quad G=(2 x+7)^{3} ; \quad f=3\left(x^{2}+1\right)^{2}$; and $g=6(2 x+7)^{2}$. Find $F g+f G$ and factor your answer completely.
Solution: This problem was obtained by substituting $x^{2}+1$ for A and $2 x+7$ for B in the warmup problem. This problem seems harder, simply because there are more symbols.

Substitute the given polynomials into $F g+f G$

$$
\begin{aligned}
\text { omials into } F g+f G & \left(x^{2}+1\right)^{3}\left(6(2 x+7)^{2}\right)+\left(3\left(x^{2}+1\right)^{2}\right)\left((2 x+7)^{3}\right) \\
\text { as sum of two terms } & =\left(x^{2}+1\right)^{3}\left(6(2 x+7)^{2}\right)+\left(3\left(x^{2}+1\right)^{2}\right)\left((2 x+7)^{3}\right) \\
\text { with constant at left } & =6\left(x^{2}+1\right)^{3}(2 x+7)^{2}+3\left(x^{2}+1\right)^{2}(2 x+7)^{3} \\
\text { out common factor } 3 & =3\left(2\left(x^{2}+1\right)^{3}(2 x+7)^{2}+\left(x^{2}+1\right)^{2}(2 x+7)^{3}\right) \\
1)^{2} \text { from both terms. } & =3\left(x^{2}+1\right)^{2}\left(2\left(x^{2}+1\right)^{3-2}(2 x+7)^{2}+(2 x+7)^{3}\right) \\
7)^{2} \text { from both terms. } & =3\left(x^{2}+1\right)^{2}(2 x+7)^{2}\left(2\left(x^{2}+1\right)^{3-2}+(2 x+7)^{3-}\right. \\
\text { Subtract exponents } & =3\left(x^{2}+1\right)^{2}(2 x+7)^{2}\left(2\left(x^{2}+1\right)^{1}+(2 x+7)^{1}\right)
\end{aligned}
$$

$$
\text { Recognize as sum of two terms }=\left(x^{2}+1\right)^{3}\left(6(2 x+7)^{2}\right)+\left(3\left(x^{2}+1\right)^{2}\right)\left((2 x+7)^{3}\right)
$$

$$
\text { Rewrite each term with constant at left }=6\left(x^{2}+1\right)^{3}(2 x+7)^{2}+3\left(x^{2}+1\right)^{2}(2 x+7)^{3}
$$

$$
\text { Factor out common factor } 3=3\left(2\left(x^{2}+1\right)^{3}(2 x+7)^{2}+\left(x^{2}+1\right)^{2}(2 x+7)^{3}\right)
$$

$$
\text { Factor }\left(x^{2}+1\right)^{2} \text { from both terms. }=3\left(x^{2}+1\right)^{2}\left(2\left(x^{2}+1\right)^{3-2}(2 x+7)^{2}+(2 x+7)^{3}\right)
$$

$$
\text { Factor }(2 x+7)^{2} \text { from both terms. } \quad=3\left(x^{2}+1\right)^{2}(2 x+7)^{2}\left(2\left(x^{2}+1\right)^{3-2}+(2 x+7)^{3-2}\right)
$$

$$
\text { Expand the remaining factor }=3\left(x^{2}+1\right)^{2}(2 x+7)^{2}\left(\left(2 x^{2}+2\right)+(2 x+7)\right)
$$

$$
\text { Collect the remaining factor }=3\left(x^{2}+1\right)^{2}(2 x+7)^{2}\left(2 x^{2}+2 x+9\right)
$$

To be sure the boxed answer is completely factored, use the Quadratic polynomial factoring criterion to see if $2 x^{2}+2 x+9$ factors. It does not because $b^{2}-4 a c=2^{2}-4 \cdot 2 \cdot 9=4-72=-68$ is not a perfect square.

This problem was a bit much. On the next slide, we show how to use abbreviations to make it easier to handle.

Using abbreviations Let $F=\left(x^{2}+1\right)^{3} ; \quad G=(2 x+7)^{3} ; \quad f=3\left(x^{2}+1\right)^{2}$; and $g=6(2 x+7)^{2}$. Find $F g+f G$ and factor your answer completely.

Using abbreviations Let $F=\left(x^{2}+1\right)^{3} ; \quad G=(2 x+7)^{3} ; \quad f=3\left(x^{2}+1\right)^{2}$; and $g=6(2 x+7)^{2}$.
Find $F g+f G$ and factor your answer completely.
Solution: Substitute $A=x^{2}+1$ and $B=2 x+7$ in F, g, f, G to get $F=A^{3}, G=B^{3}, f=3 A^{2}, g=6 B^{2}$. Substitute the abbreviations into $\mathrm{Fg}+f G$

Using abbreviations Let $F=\left(x^{2}+1\right)^{3} ; \quad G=(2 x+7)^{3} ; \quad f=3\left(x^{2}+1\right)^{2}$; and $g=6(2 x+7)^{2}$.
Find $F g+f G$ and factor your answer completely.
Solution: Substitute $A=x^{2}+1$ and $B=2 x+7$ in F, g, f, G to get $F=A^{3}, G=B^{3}, f=3 A^{2}, g=6 B^{2}$.

$$
\text { Substitute the abbreviations into } F g+f G \quad A^{3}\left(6 B^{2}\right)+\left(3 A^{2}\right)\left(B^{3}\right)
$$

Recognize as sum of two terms $=$

Using abbreviations Let $F=\left(x^{2}+1\right)^{3} ; \quad G=(2 x+7)^{3} ; \quad f=3\left(x^{2}+1\right)^{2}$; and $g=6(2 x+7)^{2}$.
Find $F g+f G$ and factor your answer completely.
Solution: Substitute $A=x^{2}+1$ and $B=2 x+7$ in F, g, f, G to get $F=A^{3}, G=B^{3}, f=3 A^{2}, g=6 B^{2}$.
Substitute the abbreviations into $F g+f G \quad A^{3}\left(6 B^{2}\right)+\left(3 A^{2}\right)\left(B^{3}\right)$
Recognize as sum of two terms $=A^{3}\left(6 B^{2}\right)+\left(3 A^{2}\right)\left(B^{3}\right)$
Rewrite each term with constant at left =

Using abbreviations Let $F=\left(x^{2}+1\right)^{3} ; \quad G=(2 x+7)^{3} ; \quad f=3\left(x^{2}+1\right)^{2}$; and $g=6(2 x+7)^{2}$.
Find $F g+f G$ and factor your answer completely.
Solution: Substitute $A=x^{2}+1$ and $B=2 x+7$ in F, g, f, G to get $F=A^{3}, G=B^{3}, f=3 A^{2}, g=6 B^{2}$.
Substitute the abbreviations into $F g+f G \quad A^{3}\left(6 B^{2}\right)+\left(3 A^{2}\right)\left(B^{3}\right)$
Recognize as sum of two terms $=A^{3}\left(6 B^{2}\right)+\left(3 A^{2}\right)\left(B^{3}\right)$
Rewrite each term with constant at left $=6 A^{3} B^{2}+3 A^{2} B^{3}$
Pull out common factor $3=$

Using abbreviations Let $F=\left(x^{2}+1\right)^{3} ; \quad G=(2 x+7)^{3} ; \quad f=3\left(x^{2}+1\right)^{2}$; and $g=6(2 x+7)^{2}$.
Find $F g+f G$ and factor your answer completely.
Solution: Substitute $A=x^{2}+1$ and $B=2 x+7$ in F, g, f, G to get $F=A^{3}, G=B^{3}, f=3 A^{2}, g=6 B^{2}$.

$$
\begin{aligned}
\text { Substitute the abbreviations into } F g+f G & A^{3}\left(6 B^{2}\right)+\left(3 A^{2}\right)\left(B^{3}\right) \\
\text { Recognize as sum of two terms } & =A^{3}\left(6 B^{2}\right)+\left(3 A^{2}\right)\left(B^{3}\right) \\
\text { Rewrite each term with constant at left } & =6 A^{3} B^{2}+3 A^{2} B^{3} \\
\text { Pull out common factor } 3 & =3\left(2 A^{3} B^{2}+A^{2} B^{3}\right)
\end{aligned}
$$

Pull out the lowest common power A^{2} of $A=$

Using abbreviations Let $F=\left(x^{2}+1\right)^{3} ; \quad G=(2 x+7)^{3} ; \quad f=3\left(x^{2}+1\right)^{2}$; and $g=6(2 x+7)^{2}$.
Find $F g+f G$ and factor your answer completely.
Solution: Substitute $A=x^{2}+1$ and $B=2 x+7$ in F, g, f, G to get $F=A^{3}, G=B^{3}, f=3 A^{2}, g=6 B^{2}$.

$$
\begin{aligned}
\text { Substitute the abbreviations into } F g+f G & A^{3}\left(6 B^{2}\right)+\left(3 A^{2}\right)\left(B^{3}\right) \\
\text { Recognize as sum of two terms } & =A^{3}\left(6 B^{2}\right)+\left(3 A^{2}\right)\left(B^{3}\right) \\
\text { Rewrite each term with constant at left } & =6 A^{3} B^{2}+3 A^{2} B^{3} \\
\text { Pull out common factor } 3 & =3\left(2 A^{3} B^{2}+A^{2} B^{3}\right) \\
\text { Pull out the lowest common power } A^{2} \text { of } A & =3 A^{2}\left(2 A^{3-2} B^{2}+B^{3}\right) \\
\text { Pull out lowest common power } B^{2} \text { of } B & =
\end{aligned}
$$

Using abbreviations Let $F=\left(x^{2}+1\right)^{3} ; \quad G=(2 x+7)^{3} ; \quad f=3\left(x^{2}+1\right)^{2}$; and $g=6(2 x+7)^{2}$.
Find $F g+f G$ and factor your answer completely.
Solution: Substitute $A=x^{2}+1$ and $B=2 x+7$ in F, g, f, G to get $F=A^{3}, G=B^{3}, f=3 A^{2}, g=6 B^{2}$.

$$
\begin{aligned}
\text { Substitute the abbreviations into } F g+f G & A^{3}\left(6 B^{2}\right)+\left(3 A^{2}\right)\left(B^{3}\right) \\
\text { Recognize as sum of two terms } & =A^{3}\left(6 B^{2}\right)+\left(3 A^{2}\right)\left(B^{3}\right) \\
\text { Rewrite each term with constant at left } & =6 A^{3} B^{2}+3 A^{2} B^{3} \\
\text { Pull out common factor } 3 & =3\left(2 A^{3} B^{2}+A^{2} B^{3}\right) \\
\text { Pull out the lowest common power } A^{2} \text { of } A & =3 A^{2}\left(2 A^{3-2} B^{2}+B^{3}\right) \\
\text { Pull out lowest common power } B^{2} \text { of } B & =3 A^{2} B^{2}\left(2 A^{3-2}+B^{3-2}\right)
\end{aligned}
$$

Using abbreviations Let $F=\left(x^{2}+1\right)^{3} ; \quad G=(2 x+7)^{3} ; \quad f=3\left(x^{2}+1\right)^{2}$; and $g=6(2 x+7)^{2}$.
Find $F g+f G$ and factor your answer completely.
Solution: Substitute $A=x^{2}+1$ and $B=2 x+7$ in F, g, f, G to get $F=A^{3}, G=B^{3}, f=3 A^{2}, g=6 B^{2}$.

$$
\begin{aligned}
\text { Substitute the abbreviations into } F g+f G & A^{3}\left(6 B^{2}\right)+\left(3 A^{2}\right)\left(B^{3}\right) \\
\text { Recognize as sum of two terms } & =A^{3}\left(6 B^{2}\right)+\left(3 A^{2}\right)\left(B^{3}\right) \\
\text { Rewrite each term with constant at left } & =6 A^{3} B^{2}+3 A^{2} B^{3} \\
\text { Pull out common factor } 3 & =3\left(2 A^{3} B^{2}+A^{2} B^{3}\right) \\
\text { Pull out the lowest common power } A^{2} \text { of } A & =3 A^{2}\left(2 A^{3-2} B^{2}+B^{3}\right) \\
\text { Pull out lowest common power } B^{2} \text { of } B & =3 A^{2} B^{2}\left(2 A^{3-2}+B^{3-2}\right) \\
\text { Subtract exponents } & =
\end{aligned}
$$

Using abbreviations Let $F=\left(x^{2}+1\right)^{3} ; \quad G=(2 x+7)^{3} ; \quad f=3\left(x^{2}+1\right)^{2}$; and $g=6(2 x+7)^{2}$.
Find $F g+f G$ and factor your answer completely.
Solution: Substitute $A=x^{2}+1$ and $B=2 x+7$ in F, g, f, G to get $F=A^{3}, G=B^{3}, f=3 A^{2}, g=6 B^{2}$.

$$
\begin{aligned}
\text { Substitute the abbreviations into } F g+f G & A^{3}\left(6 B^{2}\right)+\left(3 A^{2}\right)\left(B^{3}\right) \\
\text { Recognize as sum of two terms } & =A^{3}\left(6 B^{2}\right)+\left(3 A^{2}\right)\left(B^{3}\right) \\
\text { Rewrite each term with constant at left } & =6 A^{3} B^{2}+3 A^{2} B^{3} \\
\text { Pull out common factor } 3 & =3\left(2 A^{3} B^{2}+A^{2} B^{3}\right) \\
\text { Pull out the lowest common power } A^{2} \text { of } A & =3 A^{2}\left(2 A^{3-2} B^{2}+B^{3}\right) \\
\text { Pull out lowest common power } B^{2} \text { of } B & =3 A^{2} B^{2}\left(2 A^{3-2}+B^{3-2}\right) \\
\text { Subtract exponents } & =3 A^{2} B^{2}\left(2 A^{1}+B^{1}\right)
\end{aligned}
$$

Using abbreviations Let $F=\left(x^{2}+1\right)^{3} ; \quad G=(2 x+7)^{3} ; \quad f=3\left(x^{2}+1\right)^{2}$; and $g=6(2 x+7)^{2}$.
Find $F g+f G$ and factor your answer completely.
Solution: Substitute $A=x^{2}+1$ and $B=2 x+7$ in F, g, f, G to get $F=A^{3}, G=B^{3}, f=3 A^{2}, g=6 B^{2}$.

$$
\begin{aligned}
\text { Substitute the abbreviations into } F g+f G & A^{3}\left(6 B^{2}\right)+\left(3 A^{2}\right)\left(B^{3}\right) \\
\text { Recognize as sum of two terms } & =A^{3}\left(6 B^{2}\right)+\left(3 A^{2}\right)\left(B^{3}\right) \\
\text { Rewrite each term with constant at left } & =6 A^{3} B^{2}+3 A^{2} B^{3} \\
\text { Pull out common factor } 3 & =3\left(2 A^{3} B^{2}+A^{2} B^{3}\right) \\
\text { Pull out the lowest common power } A^{2} \text { of } A & =3 A^{2}\left(2 A^{3-2} B^{2}+B^{3}\right) \\
\text { Pull out lowest common power } B^{2} \text { of } B & =3 A^{2} B^{2}\left(2 A^{3-2}+B^{3-2}\right) \\
\text { Subtract exponents } & =3 A^{2} B^{2}\left(2 A^{1}+B^{1}\right) \\
\text { Then } F g+f G \text {, in terms of } A \text { and } B \text { is } & =
\end{aligned}
$$

Using abbreviations Let $F=\left(x^{2}+1\right)^{3} ; \quad G=(2 x+7)^{3} ; \quad f=3\left(x^{2}+1\right)^{2}$; and $g=6(2 x+7)^{2}$.
Find $F g+f G$ and factor your answer completely.
Solution: Substitute $A=x^{2}+1$ and $B=2 x+7$ in F, g, f, G to get $F=A^{3}, G=B^{3}, f=3 A^{2}, g=6 B^{2}$.

$$
\begin{aligned}
\text { Substitute the abbreviations into } F g+f G & A^{3}\left(6 B^{2}\right)+\left(3 A^{2}\right)\left(B^{3}\right) \\
\text { Recognize as sum of two terms } & =A^{3}\left(6 B^{2}\right)+\left(3 A^{2}\right)\left(B^{3}\right) \\
\text { Rewrite each term with constant at left } & =6 A^{3} B^{2}+3 A^{2} B^{3} \\
\text { Pull out common factor } 3 & =3\left(2 A^{3} B^{2}+A^{2} B^{3}\right) \\
\text { Pull out the lowest common power } A^{2} \text { of } A & =3 A^{2}\left(2 A^{3-2} B^{2}+B^{3}\right) \\
\text { Pull out lowest common power } B^{2} \text { of } B & =3 A^{2} B^{2}\left(2 A^{3-2}+B^{3-2}\right) \\
\text { Subtract exponents } & =3 A^{2} B^{2}\left(2 A^{1}+B^{1}\right) \\
\text { Then } F g+f G \text {, in terms of } A \text { and } B \text { is } & =3 A^{2} B^{2}(2 A+B)
\end{aligned}
$$

Using abbreviations Let $F=\left(x^{2}+1\right)^{3} ; \quad G=(2 x+7)^{3} ; \quad f=3\left(x^{2}+1\right)^{2}$; and $g=6(2 x+7)^{2}$.
Find $F g+f G$ and factor your answer completely.
Solution: Substitute $A=x^{2}+1$ and $B=2 x+7$ in F, g, f, G to get $F=A^{3}, G=B^{3}, f=3 A^{2}, g=6 B^{2}$.

$$
\begin{aligned}
\text { Substitute the abbreviations into } F g+f G & A^{3}\left(6 B^{2}\right)+\left(3 A^{2}\right)\left(B^{3}\right) \\
\text { Recognize as sum of two terms } & =A^{3}\left(6 B^{2}\right)+\left(3 A^{2}\right)\left(B^{3}\right) \\
\text { Rewrite each term with constant at left } & =6 A^{3} B^{2}+3 A^{2} B^{3} \\
\text { Pull out common factor } 3 & =3\left(2 A^{3} B^{2}+A^{2} B^{3}\right) \\
\text { Pull out the lowest common power } A^{2} \text { of } A & =3 A^{2}\left(2 A^{3-2} B^{2}+B^{3}\right) \\
\text { Pull out lowest common power } B^{2} \text { of } B & =3 A^{2} B^{2}\left(2 A^{3-2}+B^{3-2}\right) \\
\text { Subtract exponents } & =3 A^{2} B^{2}\left(2 A^{1}+B^{1}\right) \\
\text { Then } F g+f G \text {, in terms of } A \text { and } B \text { is } & =3 A^{2} B^{2}(2 A+B) \\
\text { Substitute } A=x^{2}+1 \text { and } B=2 x+7 \text { in this answer } & =
\end{aligned}
$$

Using abbreviations Let $F=\left(x^{2}+1\right)^{3} ; \quad G=(2 x+7)^{3} ; \quad f=3\left(x^{2}+1\right)^{2}$; and $g=6(2 x+7)^{2}$.
Find $F g+f G$ and factor your answer completely.
Solution: Substitute $A=x^{2}+1$ and $B=2 x+7$ in F, g, f, G to get $F=A^{3}, G=B^{3}, f=3 A^{2}, g=6 B^{2}$.

$$
\begin{aligned}
& \text { Substitute the abbreviations into } F g+f G \quad A^{3}\left(6 B^{2}\right)+\left(3 A^{2}\right)\left(B^{3}\right) \\
& \text { Recognize as sum of two terms }=A^{3}\left(6 B^{2}\right)+\left(3 A^{2}\right)\left(B^{3}\right) \\
& \text { Rewrite each term with constant at left }=6 A^{3} B^{2}+3 A^{2} B^{3} \\
& \text { Pull out common factor } 3=3\left(2 A^{3} B^{2}+A^{2} B^{3}\right) \\
& \text { Pull out the lowest common power } A^{2} \text { of } A=3 A^{2}\left(2 A^{3-2} B^{2}+B^{3}\right) \\
& \text { Pull out lowest common power } B^{2} \text { of } B=3 A^{2} B^{2}\left(2 A^{3-2}+B^{3-2}\right) \\
& \text { Subtract exponents }=3 A^{2} B^{2}\left(2 A^{1}+B^{1}\right) \\
& \text { Then } F g+f G \text {, in terms of } A \text { and } B \text { is }=3 A^{2} B^{2}(2 A+B) \\
& \text { Substitute } A=x^{2}+1 \text { and } B=2 x+7 \text { in this answer } \quad=3\left(x^{2}+1\right)^{2}(2 x+7)^{2}\left(2\left(x^{2}+1\right)+(2 x+7)\right)
\end{aligned}
$$

Using abbreviations Let $F=\left(x^{2}+1\right)^{3} ; \quad G=(2 x+7)^{3} ; \quad f=3\left(x^{2}+1\right)^{2}$; and $g=6(2 x+7)^{2}$.
Find $F g+f G$ and factor your answer completely.
Solution: Substitute $A=x^{2}+1$ and $B=2 x+7$ in F, g, f, G to get $F=A^{3}, G=B^{3}, f=3 A^{2}, g=6 B^{2}$.

$$
\begin{aligned}
\text { Substitute the abbreviations into } F g+f G & A^{3}\left(6 B^{2}\right)+\left(3 A^{2}\right)\left(B^{3}\right) \\
\text { Recognize as sum of two terms } & =A^{3}\left(6 B^{2}\right)+\left(3 A^{2}\right)\left(B^{3}\right) \\
\text { Rewrite each term with constant at left } & =6 A^{3} B^{2}+3 A^{2} B^{3} \\
\text { Pull out common factor } 3 & =3\left(2 A^{3} B^{2}+A^{2} B^{3}\right) \\
\text { Pull out the lowest common power } A^{2} \text { of } A & =3 A^{2}\left(2 A^{3-2} B^{2}+B^{3}\right) \\
\text { Pull out lowest common power } B^{2} \text { of } B & =3 A^{2} B^{2}\left(2 A^{3-2}+B^{3-2}\right) \\
\text { Subtract exponents } & =3 A^{2} B^{2}\left(2 A^{1}+B^{1}\right) \\
\text { Then } F g+f G \text {, in terms of } A \text { and } B \text { is } & =3 A^{2} B^{2}(2 A+B) \\
\text { Substitute } A=x^{2}+1 \text { and } B=2 x+7 \text { in this answer } & =3\left(x^{2}+1\right)^{2}(2 x+7)^{2}\left(2\left(x^{2}+1\right)+(2 x+7)\right) \\
\text { Collect the remaining factor } & =
\end{aligned}
$$

Using abbreviations Let $F=\left(x^{2}+1\right)^{3} ; \quad G=(2 x+7)^{3} ; \quad f=3\left(x^{2}+1\right)^{2}$; and $g=6(2 x+7)^{2}$.
Find $F g+f G$ and factor your answer completely.
Solution: Substitute $A=x^{2}+1$ and $B=2 x+7$ in F, g, f, G to get $F=A^{3}, G=B^{3}, f=3 A^{2}, g=6 B^{2}$.

$$
\begin{aligned}
\text { Substitute the abbreviations into } F g+f G & A^{3}\left(6 B^{2}\right)+\left(3 A^{2}\right)\left(B^{3}\right) \\
\text { Recognize as sum of two terms } & =A^{3}\left(6 B^{2}\right)+\left(3 A^{2}\right)\left(B^{3}\right) \\
\text { Rewrite each term with constant at left } & =6 A^{3} B^{2}+3 A^{2} B^{3} \\
\text { Pull out common factor } 3 & =3\left(2 A^{3} B^{2}+A^{2} B^{3}\right) \\
\text { Pull out the lowest common power } A^{2} \text { of } A & =3 A^{2}\left(2 A^{3-2} B^{2}+B^{3}\right) \\
\text { Pull out lowest common power } B^{2} \text { of } B & =3 A^{2} B^{2}\left(2 A^{3-2}+B^{3-2}\right) \\
\text { Subtract exponents } & =3 A^{2} B^{2}\left(2 A^{1}+B^{1}\right) \\
\text { Then } F g+f G \text {, in terms of } A \text { and } B \text { is } & =3 A^{2} B^{2}(2 A+B) \\
\text { Substitute } A=x^{2}+1 \text { and } B=2 x+7 \text { in this answer } & =3\left(x^{2}+1\right)^{2}(2 x+7)^{2}\left(2\left(x^{2}+1\right)+(2 x+7)\right) \\
\text { Collect the remaining factor } & =3\left(x^{2}+1\right)^{2}(2 x+7)^{2}\left(2 x^{2}+2 x+9\right)
\end{aligned}
$$

In calculus, some expression names are written with a prime. For example, f and f^{\prime} could be the names of different polynomials, as in the next example.

Using abbreviations Let $F=\left(x^{2}+1\right)^{3} ; \quad G=(2 x+7)^{3} ; \quad f=3\left(x^{2}+1\right)^{2}$; and $g=6(2 x+7)^{2}$.
Find $F g+f G$ and factor your answer completely.
Solution: Substitute $A=x^{2}+1$ and $B=2 x+7$ in F, g, f, G to get $F=A^{3}, G=B^{3}, f=3 A^{2}, g=6 B^{2}$.

$$
\begin{aligned}
\text { Substitute the abbreviations into } F g+f G & A^{3}\left(6 B^{2}\right)+\left(3 A^{2}\right)\left(B^{3}\right) \\
\text { Recognize as sum of two terms } & =A^{3}\left(6 B^{2}\right)+\left(3 A^{2}\right)\left(B^{3}\right) \\
\text { Rewrite each term with constant at left } & =6 A^{3} B^{2}+3 A^{2} B^{3} \\
\text { Pull out common factor } 3 & =3\left(2 A^{3} B^{2}+A^{2} B^{3}\right) \\
\text { Pull out the lowest common power } A^{2} \text { of } A & =3 A^{2}\left(2 A^{3-2} B^{2}+B^{3}\right) \\
\text { Pull out lowest common power } B^{2} \text { of } B & =3 A^{2} B^{2}\left(2 A^{3-2}+B^{3-2}\right) \\
\text { Subtract exponents } & =3 A^{2} B^{2}\left(2 A^{1}+B^{1}\right) \\
\text { Then } F g+f G \text {, in terms of } A \text { and } B \text { is } & =3 A^{2} B^{2}(2 A+B) \\
\text { Substitute } A=x^{2}+1 \text { and } B=2 x+7 \text { in this answer } & =3\left(x^{2}+1\right)^{2}(2 x+7)^{2}\left(2\left(x^{2}+1\right)+(2 x+7)\right) \\
\text { Collect the remaining factor } & =3\left(x^{2}+1\right)^{2}(2 x+7)^{2}\left(2 x^{2}+2 x+9\right)
\end{aligned}
$$

In calculus, some expression names are written with a prime. For example, f and f^{\prime} could be the names of different polynomials, as in the next example.

1. Preparation for Quotient rule: Let $f=\left(x^{2}+1\right)^{4} ; \quad g=2(2 x+7)^{3}, \quad f^{\prime}=8 x\left(x^{2}+1\right)^{3}$, and $g^{\prime}=6(2 x+7)^{2}$. Find $\frac{f^{\prime} g-f g^{\prime}}{g^{2}}$ and rewrite your answer as a completely reduced fraction.
2. Preparation for Quotient rule: Let $f=\left(x^{2}+1\right)^{4} ; \quad g=2(2 x+7)^{3}, \quad f^{\prime}=8 x\left(x^{2}+1\right)^{3}$, and $g^{\prime}=6(2 x+7)^{2}$. Find $\frac{f^{\prime} g-f g^{\prime}}{g^{2}}$ and rewrite your answer as a completely reduced fraction.

Solution: Substitute the given polynomials into $\frac{f^{\prime} g-f g^{\prime}}{g^{2}}$

1. Preparation for Quotient rule: Let $f=\left(x^{2}+1\right)^{4} ; \quad g=2(2 x+7)^{3}, \quad f^{\prime}=8 x\left(x^{2}+1\right)^{3}$, and $g^{\prime}=6(2 x+7)^{2}$. Find $\frac{f^{\prime} g-f g^{\prime}}{g^{2}}$ and rewrite your answer as a completely reduced fraction.

Solution: Substitute the given polynomials into $\frac{f^{\prime} g-f g^{\prime}}{g^{2}} \quad \frac{\left(8 x\left(x^{2}+1\right)^{3}\right)\left(2(2 x+7)^{3}\right)-\left(x^{2}+1\right)^{4}\left(6(2 x+7)^{2}\right)}{\left(2(2 x+7)^{3}\right)^{2}}$
Recognize as sum of two terms

1. Preparation for Quotient rule: Let $f=\left(x^{2}+1\right)^{4} ; \quad g=2(2 x+7)^{3}, \quad f^{\prime}=8 x\left(x^{2}+1\right)^{3}$, and $g^{\prime}=6(2 x+7)^{2}$. Find $\frac{f^{\prime} g-f g^{\prime}}{g^{2}}$ and rewrite your answer as a completely reduced fraction.

Solution: Substitute the given polynomials into $\frac{f^{\prime} g-f g^{\prime}}{g^{2}} \quad \frac{\left(8 x\left(x^{2}+1\right)^{3}\right)\left(2(2 x+7)^{3}\right)-\left(x^{2}+1\right)^{4}\left(6(2 x+7)^{2}\right)}{\left(2(2 x+7)^{3}\right)^{2}}$
Recognize as sum of two terms $=\frac{8 x\left(x^{2}+1\right)^{3}\left(2(2 x+7)^{3}\right)-\left(x^{2}+1\right)^{4}\left(6(2 x+7)^{2}\right)}{\left(2(2 x+7)^{3}\right)^{2}}$ Rewrite each term with constant at left

1. Preparation for Quotient rule: Let $f=\left(x^{2}+1\right)^{4} ; \quad g=2(2 x+7)^{3}, \quad f^{\prime}=8 x\left(x^{2}+1\right)^{3}$, and $g^{\prime}=6(2 x+7)^{2}$. Find $\frac{f^{\prime} g-f g^{\prime}}{g^{2}}$ and rewrite your answer as a completely reduced fraction.

Solution: Substitute the given polynomials into $\frac{f^{\prime} g-f g^{\prime}}{g^{2}} \quad \frac{\left(8 x\left(x^{2}+1\right)^{3}\right)\left(2(2 x+7)^{3}\right)-\left(x^{2}+1\right)^{4}\left(6(2 x+7)^{2}\right)}{\left(2(2 x+7)^{3}\right)^{2}}$
Recognize as sum of two terms $=\frac{8 x\left(x^{2}+1\right)^{3}\left(2(2 x+7)^{3}\right)-\left(x^{2}+1\right)^{4}\left(6(2 x+7)^{2}\right)}{\left(2(2 x+7)^{3}\right)^{2}}$ Rewrite each term with constant at left $=\frac{16 x\left(x^{2}+1\right)^{3}(2 x+7)^{3}-6\left(x^{2}+1\right)^{4}(2 x+7)^{2}}{2^{2}\left((2 x+7)^{3}\right)^{2}}$

Pull out common factor 2 from numerator

1. Preparation for Quotient rule: Let $f=\left(x^{2}+1\right)^{4} ; \quad g=2(2 x+7)^{3}, \quad f^{\prime}=8 x\left(x^{2}+1\right)^{3}$, and $g^{\prime}=6(2 x+7)^{2}$. Find $\frac{f^{\prime} g-f g^{\prime}}{g^{2}}$ and rewrite your answer as a completely reduced fraction.

Solution: Substitute the given polynomials into $\frac{f^{\prime} g-f g^{\prime}}{g^{2}} \quad \frac{\left(8 x\left(x^{2}+1\right)^{3}\right)\left(2(2 x+7)^{3}\right)-\left(x^{2}+1\right)^{4}\left(6(2 x+7)^{2}\right)}{\left(2(2 x+7)^{3}\right)^{2}}$
Recognize as sum of two terms $=\frac{8 x\left(x^{2}+1\right)^{3}\left(2(2 x+7)^{3}\right)-\left(x^{2}+1\right)^{4}\left(6(2 x+7)^{2}\right)}{\left(2(2 x+7)^{3}\right)^{2}}$
Rewrite each term with constant at left $=\frac{16 x\left(x^{2}+1\right)^{3}(2 x+7)^{3}-6\left(x^{2}+1\right)^{4}(2 x+7)^{2}}{2^{2}\left((2 x+7)^{3}\right)^{2}}$
Pull out common factor 2 from numerator $=\frac{2\left(8 x\left(x^{2}+1\right)^{3}(2 x+7)^{3}-3\left(x^{2}+1\right)^{4}\left((2 x+7)^{2}\right)\right)}{4(2 x+7)^{6}}$

1. Preparation for Quotient rule: Let $f=\left(x^{2}+1\right)^{4} ; \quad g=2(2 x+7)^{3}, \quad f^{\prime}=8 x\left(x^{2}+1\right)^{3}$, and $g^{\prime}=6(2 x+7)^{2}$. Find $\frac{f^{\prime} g-f g^{\prime}}{g^{2}}$ and rewrite your answer as a completely reduced fraction.

Solution: Substitute the given polynomials into $\frac{f^{\prime} g-f g^{\prime}}{g^{2}} \quad \frac{\left(8 x\left(x^{2}+1\right)^{3}\right)\left(2(2 x+7)^{3}\right)-\left(x^{2}+1\right)^{4}\left(6(2 x+7)^{2}\right)}{\left(2(2 x+7)^{3}\right)^{2}}$
Recognize as sum of two terms $=\frac{8 x\left(x^{2}+1\right)^{3}\left(2(2 x+7)^{3}\right)-\left(x^{2}+1\right)^{4}\left(6(2 x+7)^{2}\right)}{\left(2(2 x+7)^{3}\right)^{2}}$ Rewrite each term with constant at left $=\frac{16 x\left(x^{2}+1\right)^{3}(2 x+7)^{3}-6\left(x^{2}+1\right)^{4}(2 x+7)^{2}}{2^{2}\left((2 x+7)^{3}\right)^{2}}$ Pull out common factor 2 from numerator $=\frac{2\left(8 x\left(x^{2}+1\right)^{3}(2 x+7)^{3}-3\left(x^{2}+1\right)^{4}\left((2 x+7)^{2}\right)\right)}{4(2 x+7)^{6}}$
Cancel constant factor from numerator and denominator

1. Preparation for Quotient rule: Let $f=\left(x^{2}+1\right)^{4} ; \quad g=2(2 x+7)^{3}, \quad f^{\prime}=8 x\left(x^{2}+1\right)^{3}$, and $g^{\prime}=6(2 x+7)^{2}$. Find $\frac{f^{\prime} g-f g^{\prime}}{g^{2}}$ and rewrite your answer as a completely reduced fraction.

Solution: Substitute the given polynomials into $\frac{f^{\prime} g-f g^{\prime}}{g^{2}} \quad \frac{\left(8 x\left(x^{2}+1\right)^{3}\right)\left(2(2 x+7)^{3}\right)-\left(x^{2}+1\right)^{4}\left(6(2 x+7)^{2}\right)}{\left(2(2 x+7)^{3}\right)^{2}}$
Recognize as sum of two terms $=\frac{8 x\left(x^{2}+1\right)^{3}\left(2(2 x+7)^{3}\right)-\left(x^{2}+1\right)^{4}\left(6(2 x+7)^{2}\right)}{\left(2(2 x+7)^{3}\right)^{2}}$ Rewrite each term with constant at left $=\frac{16 x\left(x^{2}+1\right)^{3}(2 x+7)^{3}-6\left(x^{2}+1\right)^{4}(2 x+7)^{2}}{2^{2}\left((2 x+7)^{3}\right)^{2}}$
Pull out common factor 2 from numerator $=\frac{2\left(8 x\left(x^{2}+1\right)^{3}(2 x+7)^{3}-3\left(x^{2}+1\right)^{4}\left((2 x+7)^{2}\right)\right)}{4(2 x+7)^{6}}$
Cancel constant factor from numerator and denominator $=\frac{\notin\left(8 x\left(x^{2}+1\right)^{3}(2 x+7)^{3}-\left(x^{2}+1\right)^{4}\left(3(2 x+7)^{2}\right)\right)}{4(2 x+7)^{6}}$

1. Preparation for Quotient rule: Let $f=\left(x^{2}+1\right)^{4} ; \quad g=2(2 x+7)^{3}, \quad f^{\prime}=8 x\left(x^{2}+1\right)^{3}$, and $g^{\prime}=6(2 x+7)^{2}$. Find $\frac{f^{\prime} g-f g^{\prime}}{g^{2}}$ and rewrite your answer as a completely reduced fraction.

Solution: Substitute the given polynomials into $\frac{f^{\prime} g-f g^{\prime}}{g^{2}} \quad \frac{\left(8 x\left(x^{2}+1\right)^{3}\right)\left(2(2 x+7)^{3}\right)-\left(x^{2}+1\right)^{4}\left(6(2 x+7)^{2}\right)}{\left(2(2 x+7)^{3}\right)^{2}}$
Recognize as sum of two terms $=\frac{8 x\left(x^{2}+1\right)^{3}\left(2(2 x+7)^{3}\right)-\left(x^{2}+1\right)^{4}\left(6(2 x+7)^{2}\right)}{\left(2(2 x+7)^{3}\right)^{2}}$
Rewrite each term with constant at left $=\frac{16 x\left(x^{2}+1\right)^{3}(2 x+7)^{3}-6\left(x^{2}+1\right)^{4}(2 x+7)^{2}}{2^{2}\left((2 x+7)^{3}\right)^{2}}$
Pull out common factor 2 from numerator $=\frac{2\left(8 x\left(x^{2}+1\right)^{3}(2 x+7)^{3}-3\left(x^{2}+1\right)^{4}\left((2 x+7)^{2}\right)\right)}{4(2 x+7)^{6}}$
Cancel constant factor from numerator and denominator $=\frac{\notin\left(8 x\left(x^{2}+1\right)^{3}(2 x+7)^{3}-\left(x^{2}+1\right)^{4}\left(3(2 x+7)^{2}\right)\right)}{4(2 x+7)^{6}}$
Pull out least power $\left(x^{2}+1\right)^{3}$ of $x^{2}+1$ from both terms.

1. Preparation for Quotient rule: Let $f=\left(x^{2}+1\right)^{4} ; \quad g=2(2 x+7)^{3}, \quad f^{\prime}=8 x\left(x^{2}+1\right)^{3}$, and $g^{\prime}=6(2 x+7)^{2}$. Find $\frac{f^{\prime} g-f g^{\prime}}{g^{2}}$ and rewrite your answer as a completely reduced fraction.

Solution: Substitute the given polynomials into $\frac{f^{\prime} g-f g^{\prime}}{g^{2}} \quad \frac{\left(8 x\left(x^{2}+1\right)^{3}\right)\left(2(2 x+7)^{3}\right)-\left(x^{2}+1\right)^{4}\left(6(2 x+7)^{2}\right)}{\left(2(2 x+7)^{3}\right)^{2}}$
Recognize as sum of two terms $=\frac{8 x\left(x^{2}+1\right)^{3}\left(2(2 x+7)^{3}\right)-\left(x^{2}+1\right)^{4}\left(6(2 x+7)^{2}\right)}{\left(2(2 x+7)^{3}\right)^{2}}$
Rewrite each term with constant at left $=\frac{16 x\left(x^{2}+1\right)^{3}(2 x+7)^{3}-6\left(x^{2}+1\right)^{4}(2 x+7)^{2}}{2^{2}\left((2 x+7)^{3}\right)^{2}}$
Pull out common factor 2 from numerator $=\frac{2\left(8 x\left(x^{2}+1\right)^{3}(2 x+7)^{3}-3\left(x^{2}+1\right)^{4}\left((2 x+7)^{2}\right)\right)}{4(2 x+7)^{6}}$
Cancel constant factor from numerator and denominator $=\frac{\notin\left(8 x\left(x^{2}+1\right)^{3}(2 x+7)^{3}-\left(x^{2}+1\right)^{4}\left(3(2 x+7)^{2}\right)\right)}{4(2 x+7)^{6}}$
Pull out least power $\left(x^{2}+1\right)^{3}$ of $x^{2}+1$ from both terms. $\quad=\frac{\left(x^{2}+1\right)^{3}\left(8 x(2 x+7)^{3}-\left(x^{2}+1\right)\left(3(2 x+7)^{2}\right)\right)}{2(2 x+7)^{6}}$

1. Preparation for Quotient rule: Let $f=\left(x^{2}+1\right)^{4} ; \quad g=2(2 x+7)^{3}, \quad f^{\prime}=8 x\left(x^{2}+1\right)^{3}$, and $g^{\prime}=6(2 x+7)^{2}$. Find $\frac{f^{\prime} g-f g^{\prime}}{g^{2}}$ and rewrite your answer as a completely reduced fraction.

Solution: Substitute the given polynomials into $\frac{f^{\prime} g-f g^{\prime}}{g^{2}} \quad \frac{\left(8 x\left(x^{2}+1\right)^{3}\right)\left(2(2 x+7)^{3}\right)-\left(x^{2}+1\right)^{4}\left(6(2 x+7)^{2}\right)}{\left(2(2 x+7)^{3}\right)^{2}}$
Recognize as sum of two terms $=\frac{8 x\left(x^{2}+1\right)^{3}\left(2(2 x+7)^{3}\right)-\left(x^{2}+1\right)^{4}\left(6(2 x+7)^{2}\right)}{\left(2(2 x+7)^{3}\right)^{2}}$
Rewrite each term with constant at left $=\frac{16 x\left(x^{2}+1\right)^{3}(2 x+7)^{3}-6\left(x^{2}+1\right)^{4}(2 x+7)^{2}}{2^{2}\left((2 x+7)^{3}\right)^{2}}$
Pull out common factor 2 from numerator $=\frac{2\left(8 x\left(x^{2}+1\right)^{3}(2 x+7)^{3}-3\left(x^{2}+1\right)^{4}\left((2 x+7)^{2}\right)\right)}{4(2 x+7)^{6}}$
Cancel constant factor from numerator and denominator $=\frac{\notin\left(8 x\left(x^{2}+1\right)^{3}(2 x+7)^{3}-\left(x^{2}+1\right)^{4}\left(3(2 x+7)^{2}\right)\right)}{4(2 x+7)^{6}}$
Pull out least power $\left(x^{2}+1\right)^{3}$ of $x^{2}+1$ from both terms. $\quad=\frac{\left(x^{2}+1\right)^{3}\left(8 x(2 x+7)^{3}-\left(x^{2}+1\right)\left(3(2 x+7)^{2}\right)\right)}{2(2 x+7)^{6}}$
Pull out least power $(2 x+7)^{2}$ of $2 x+7$ from both terms. $\quad=\frac{\left(x^{2}+1\right)^{3}(2 x+7)^{2}\left(8 x(2 x+7)-\left(x^{2}+1\right)(3)\right)}{2(2 x+7)^{6}}$

1. Preparation for Quotient rule: Let $f=\left(x^{2}+1\right)^{4} ; \quad g=2(2 x+7)^{3}, \quad f^{\prime}=8 x\left(x^{2}+1\right)^{3}$, and $g^{\prime}=6(2 x+7)^{2}$. Find $\frac{f^{\prime} g-f g^{\prime}}{g^{2}}$ and rewrite your answer as a completely reduced fraction.

Solution: Substitute the given polynomials into $\frac{f^{\prime} g-f g^{\prime}}{g^{2}} \quad \frac{\left(8 x\left(x^{2}+1\right)^{3}\right)\left(2(2 x+7)^{3}\right)-\left(x^{2}+1\right)^{4}\left(6(2 x+7)^{2}\right)}{\left(2(2 x+7)^{3}\right)^{2}}$

$$
\text { Recognize as sum of two terms }=\frac{8 x\left(x^{2}+1\right)^{3}\left(2(2 x+7)^{3}\right)-\left(x^{2}+1\right)^{4}\left(6(2 x+7)^{2}\right)}{\left(2(2 x+7)^{3}\right)^{2}}
$$

$$
\text { Rewrite each term with constant at left }=\frac{16 x\left(x^{2}+1\right)^{3}(2 x+7)^{3}-6\left(x^{2}+1\right)^{4}(2 x+7)^{2}}{2^{2}\left((2 x+7)^{3}\right)^{2}}
$$

$$
\text { Pull out common factor } 2 \text { from numerator }=\frac{2\left(8 x\left(x^{2}+1\right)^{3}(2 x+7)^{3}-3\left(x^{2}+1\right)^{4}\left((2 x+7)^{2}\right)\right)}{4(2 x+7)^{6}}
$$

Cancel constant factor from numerator and denominator $=\frac{\notin\left(8 x\left(x^{2}+1\right)^{3}(2 x+7)^{3}-\left(x^{2}+1\right)^{4}\left(3(2 x+7)^{2}\right)\right)}{4(2 x+7)^{6}}$
Pull out least power $\left(x^{2}+1\right)^{3}$ of $x^{2}+1$ from both terms. $\quad=\frac{\left(x^{2}+1\right)^{3}\left(8 x(2 x+7)^{3}-\left(x^{2}+1\right)\left(3(2 x+7)^{2}\right)\right)}{2(2 x+7)^{6}}$
Pull out least power $(2 x+7)^{2}$ of $2 x+7$ from both terms. $\quad=\frac{\left(x^{2}+1\right)^{3}(2 x+7)^{2}\left(8 x(2 x+7)-\left(x^{2}+1\right)(3)\right)}{2(2 x+7)^{6}}$
Cancel powers of $2 x+7$ and rewrite the remaining factor $\quad=\frac{\left(x^{2}+1\right)^{3}(2 x+7)^{2}\left(16 x^{2}+56 x-\left(3 x^{2}+3\right)\right)}{2(2 x+7)^{6}}$

1. Preparation for Quotient rule: Let $f=\left(x^{2}+1\right)^{4} ; \quad g=2(2 x+7)^{3}, \quad f^{\prime}=8 x\left(x^{2}+1\right)^{3}$, and $g^{\prime}=6(2 x+7)^{2}$. Find $\frac{f^{\prime} g-f g^{\prime}}{g^{2}}$ and rewrite your answer as a completely reduced fraction.

Solution: Substitute the given polynomials into $\frac{f^{\prime} g-f g^{\prime}}{g^{2}} \quad \frac{\left(8 x\left(x^{2}+1\right)^{3}\right)\left(2(2 x+7)^{3}\right)-\left(x^{2}+1\right)^{4}\left(6(2 x+7)^{2}\right)}{\left(2(2 x+7)^{3}\right)^{2}}$

$$
\text { Recognize as sum of two terms }=\frac{8 x\left(x^{2}+1\right)^{3}\left(2(2 x+7)^{3}\right)-\left(x^{2}+1\right)^{4}\left(6(2 x+7)^{2}\right)}{\left(2(2 x+7)^{3}\right)^{2}}
$$

$$
\text { Rewrite each term with constant at left }=\frac{16 x\left(x^{2}+1\right)^{3}(2 x+7)^{3}-6\left(x^{2}+1\right)^{4}(2 x+7)^{2}}{2^{2}\left((2 x+7)^{3}\right)^{2}}
$$

$$
\text { Pull out common factor } 2 \text { from numerator }=\frac{2\left(8 x\left(x^{2}+1\right)^{3}(2 x+7)^{3}-3\left(x^{2}+1\right)^{4}\left((2 x+7)^{2}\right)\right)}{4(2 x+7)^{6}}
$$

Cancel constant factor from numerator and denominator $=\frac{\notin\left(8 x\left(x^{2}+1\right)^{3}(2 x+7)^{3}-\left(x^{2}+1\right)^{4}\left(3(2 x+7)^{2}\right)\right)}{4(2 x+7)^{6}}$
Pull out least power $\left(x^{2}+1\right)^{3}$ of $x^{2}+1$ from both terms. $\quad=\frac{\left(x^{2}+1\right)^{3}\left(8 x(2 x+7)^{3}-\left(x^{2}+1\right)\left(3(2 x+7)^{2}\right)\right)}{2(2 x+7)^{6}}$
Pull out least power $(2 x+7)^{2}$ of $2 x+7$ from both terms. $\quad=\frac{\left(x^{2}+1\right)^{3}(2 x+7)^{2}\left(8 x(2 x+7)-\left(x^{2}+1\right)(3)\right)}{2(2 x+7)^{6}}$
Cancel powers of $2 x+7$ and rewrite the remaining factor $\quad=\frac{\left(x^{2}+1\right)^{3}(2 x+7)^{2}\left(16 x^{2}+56 x-\left(3 x^{2}+3\right)\right)}{2(2 x+7)^{6}}$
Distribute the minus sign $=\frac{\left(x^{2}+1\right)^{3}\left(16 x^{2}+56 x-3 x^{2}-3\right)}{2(2 x+7)^{6-2}}$

1. Preparation for Quotient rule: Let $f=\left(x^{2}+1\right)^{4} ; \quad g=2(2 x+7)^{3}, \quad f^{\prime}=8 x\left(x^{2}+1\right)^{3}$, and $g^{\prime}=6(2 x+7)^{2}$. Find $\frac{f^{\prime} g-f g^{\prime}}{g^{2}}$ and rewrite your answer as a completely reduced fraction.

Solution: Substitute the given polynomials into $\frac{f^{\prime} g-f g^{\prime}}{g^{2}} \quad \frac{\left(8 x\left(x^{2}+1\right)^{3}\right)\left(2(2 x+7)^{3}\right)-\left(x^{2}+1\right)^{4}\left(6(2 x+7)^{2}\right)}{\left(2(2 x+7)^{3}\right)^{2}}$

$$
\text { Recognize as sum of two terms }=\frac{8 x\left(x^{2}+1\right)^{3}\left(2(2 x+7)^{3}\right)-\left(x^{2}+1\right)^{4}\left(6(2 x+7)^{2}\right)}{\left(2(2 x+7)^{3}\right)^{2}}
$$

$$
\text { Rewrite each term with constant at left }=\frac{16 x\left(x^{2}+1\right)^{3}(2 x+7)^{3}-6\left(x^{2}+1\right)^{4}(2 x+7)^{2}}{2^{2}\left((2 x+7)^{3}\right)^{2}}
$$

$$
\text { Pull out common factor } 2 \text { from numerator }=\frac{2\left(8 x\left(x^{2}+1\right)^{3}(2 x+7)^{3}-3\left(x^{2}+1\right)^{4}\left((2 x+7)^{2}\right)\right)}{4(2 x+7)^{6}}
$$

Cancel constant factor from numerator and denominator $=\frac{\notin\left(8 x\left(x^{2}+1\right)^{3}(2 x+7)^{3}-\left(x^{2}+1\right)^{4}\left(3(2 x+7)^{2}\right)\right)}{4(2 x+7)^{6}}$
Pull out least power $\left(x^{2}+1\right)^{3}$ of $x^{2}+1$ from both terms.

$$
=\frac{\left(x^{2}+1\right)^{3}\left(8 x(2 x+7)^{3}-\left(x^{2}+1\right)\left(3(2 x+7)^{2}\right)\right)}{2(2 x+7)^{6}}
$$

Pull out least power $(2 x+7)^{2}$ of $2 x+7$ from both terms.
Cancel powers of $2 x+7$ and rewrite the remaining factor

$$
=\frac{\left(x^{2}+1\right)^{3}(2 x+7)^{2}\left(8 x(2 x+7)-\left(x^{2}+1\right)(3)\right)}{2(2 x+7)^{6}}
$$

$$
=\frac{\left(x^{2}+1\right)^{3}(2 x+7)^{2}\left(16 x^{2}+56 x-\left(3 x^{2}+3\right)\right)}{2(2 x+7)^{6}}
$$

Distribute the minus sign $=\frac{\left(x^{2}+1\right)^{3}\left(16 x^{2}+56 x-3 x^{2}-3\right)}{2(2 x+7)^{6-2}}$
Collect the remaining factor $=\frac{\left(x^{2}+1\right)^{3}\left(13 x^{2}+56 x-3\right)}{2(2 x+7)^{4}}$
Note: the Quadratic polynomial factoring criterion assures us that $13 x^{2}+56 x-3$ does not factor because $b^{2}-4 a c=56^{2}-4(13)(-3)=3292$ is not a perfect square.

Working with abbreviations: Let $f=\left(x^{2}+1\right)^{4} ; \quad g=2(2 x+7)^{3}, \quad f^{\prime}=8 x\left(x^{2}+1\right)^{3}$, and $g^{\prime}=6(2 x+7)^{2}$. Find $\frac{f^{\prime} g-f g^{\prime}}{g^{2}}$ and rewrite your answer as a completely reduced fraction.

Working with abbreviations: Let $f=\left(x^{2}+1\right)^{4} ; \quad g=2(2 x+7)^{3}, \quad f^{\prime}=8 x\left(x^{2}+1\right)^{3}$, and $g^{\prime}=6(2 x+7)^{2}$. Find $\frac{f^{\prime} g-f g^{\prime}}{g^{2}}$ and rewrite your answer as a completely reduced fraction.
Solution: Scroll slowly. Try each step in the left column before you click to see the answer.
Substitute A for $x^{2}+1$ and B for $2 x+7$ to get $f=A^{4} ; \quad g=B^{3}, \quad f^{\prime}=8 x A^{3}$, and $g^{\prime}=6 B^{2}$.
Substitute into $\frac{f^{\prime} g-f g^{\prime}}{g^{2}}$

Working with abbreviations: Let $f=\left(x^{2}+1\right)^{4} ; \quad g=2(2 x+7)^{3}, \quad f^{\prime}=8 x\left(x^{2}+1\right)^{3}$, and $g^{\prime}=6(2 x+7)^{2}$. Find $\frac{f^{\prime} g-f g^{\prime}}{g^{2}}$ and rewrite your answer as a completely reduced fraction.
Solution: Scroll slowly. Try each step in the left column before you click to see the answer.
Substitute A for $x^{2}+1$ and B for $2 x+7$ to get $f=A^{4} ; \quad g=B^{3}, \quad f^{\prime}=8 x A^{3}$, and $g^{\prime}=6 B^{2}$.

$$
\text { Substitute into } \frac{f^{\prime} g-f g^{\prime}}{g^{2}} \quad \frac{\left(8 x A^{3} \cdot 2 B^{3}\right)-A^{4}\left(6 B^{2}\right)}{\left(2 B^{3}\right)^{2}}
$$

Recognize as sum of two terms

Working with abbreviations: Let $f=\left(x^{2}+1\right)^{4} ; \quad g=2(2 x+7)^{3}, \quad f^{\prime}=8 x\left(x^{2}+1\right)^{3}$, and $g^{\prime}=6(2 x+7)^{2}$. Find $\frac{f^{\prime} g-f g^{\prime}}{g^{2}}$ and rewrite your answer as a completely reduced fraction.
Solution: Scroll slowly. Try each step in the left column before you click to see the answer.
Substitute A for $x^{2}+1$ and B for $2 x+7$ to get $f=A^{4} ; \quad g=B^{3}, \quad f^{\prime}=8 x A^{3}$, and $g^{\prime}=6 B^{2}$.

$$
\begin{array}{r}
\text { Substitute into } \frac{f^{\prime} g-f g^{\prime}}{g^{2}} \\
\text { Recognize as sum of two terms }
\end{array}=\frac{\frac{\left(8 x A^{3} \cdot 2 B^{3}\right)-A^{4}\left(6 B^{2}\right)}{\left(2 B^{3}\right)^{2}}}{\left(2 A^{3}\right)^{2}} 2 B^{3}-A^{4}\left(6 B^{2}\right),
$$

Rewrite each term with constant at left

Working with abbreviations: Let $f=\left(x^{2}+1\right)^{4} ; \quad g=2(2 x+7)^{3}, \quad f^{\prime}=8 x\left(x^{2}+1\right)^{3}$, and $g^{\prime}=6(2 x+7)^{2}$. Find $\frac{f^{\prime} g-f g^{\prime}}{g^{2}}$ and rewrite your answer as a completely reduced fraction.
Solution: Scroll slowly. Try each step in the left column before you click to see the answer.
Substitute A for $x^{2}+1$ and B for $2 x+7$ to get $f=A^{4} ; \quad g=B^{3}, \quad f^{\prime}=8 x A^{3}$, and $g^{\prime}=6 B^{2}$.

$$
\begin{aligned}
\text { Substitute into } \frac{f^{\prime} g-f g^{\prime}}{g^{2}} & \frac{\left(8 x A^{3} \cdot 2 B^{3}\right)-A^{4}\left(6 B^{2}\right)}{\left(2 B^{3}\right)^{2}} \\
\text { Recognize as sum of two terms } & =\frac{8 x A^{3} \cdot 2 B^{3}-A^{4}\left(6 B^{2}\right)}{\left(2 B^{3}\right)^{2}} \\
\text { Rewrite each term with constant at left } & =\frac{16 x A^{3} B^{3}-6 A^{4} B^{2}}{2^{2}\left(B^{3}\right)^{2}}
\end{aligned}
$$

Pull out common factor 2 from numerator

Working with abbreviations: Let $f=\left(x^{2}+1\right)^{4} ; \quad g=2(2 x+7)^{3}, \quad f^{\prime}=8 x\left(x^{2}+1\right)^{3}$, and $g^{\prime}=6(2 x+7)^{2}$. Find $\frac{f^{\prime} g-f g^{\prime}}{g^{2}}$ and rewrite your answer as a completely reduced fraction.
Solution: Scroll slowly. Try each step in the left column before you click to see the answer.
Substitute A for $x^{2}+1$ and B for $2 x+7$ to get $f=A^{4} ; \quad g=B^{3}, \quad f^{\prime}=8 x A^{3}$, and $g^{\prime}=6 B^{2}$.
Substitute into $\frac{f^{\prime} g-f g^{\prime}}{g^{2}} \quad \frac{\left(8 x A^{3} \cdot 2 B^{3}\right)-A^{4}\left(6 B^{2}\right)}{\left(2 B^{3}\right)^{2}}$
Recognize as sum of two terms $=\frac{8 x A^{3} \cdot 2 B^{3}-A^{4}\left(6 B^{2}\right)}{\left(2 B^{3}\right)^{2}}$
Rewrite each term with constant at left $=\frac{16 x A^{3} B^{3}-6 A^{4} B^{2}}{2^{2}\left(B^{3}\right)^{2}}$
Pull out common factor 2 from numerator $=\frac{2\left(8 x A^{3} B^{3}-3 A^{4} B^{2}\right)}{4 B^{6}}$

Working with abbreviations: Let $f=\left(x^{2}+1\right)^{4} ; \quad g=2(2 x+7)^{3}, \quad f^{\prime}=8 x\left(x^{2}+1\right)^{3}$, and $g^{\prime}=6(2 x+7)^{2}$. Find $\frac{f^{\prime} g-f g^{\prime}}{g^{2}}$ and rewrite your answer as a completely reduced fraction.
Solution: Scroll slowly. Try each step in the left column before you click to see the answer.
Substitute A for $x^{2}+1$ and B for $2 x+7$ to get $f=A^{4} ; \quad g=B^{3}, \quad f^{\prime}=8 x A^{3}$, and $g^{\prime}=6 B^{2}$.
Substitute into $\frac{f^{\prime} g-f g^{\prime}}{g^{2}} \quad \frac{\left(8 x A^{3} \cdot 2 B^{3}\right)-A^{4}\left(6 B^{2}\right)}{\left(2 B^{3}\right)^{2}}$
Recognize as sum of two terms $=\frac{8 x A^{3} \cdot 2 B^{3}-A^{4}\left(6 B^{2}\right)}{\left(2 B^{3}\right)^{2}}$
Rewrite each term with constant at left $=\frac{16 x A^{3} B^{3}-6 A^{4} B^{2}}{2^{2}\left(B^{3}\right)^{2}}$
Pull out common factor 2 from numerator $=\frac{2\left(8 x A^{3} B^{3}-3 A^{4} B^{2}\right)}{4 B^{6}}$
Cancel before continuing

Working with abbreviations: Let $f=\left(x^{2}+1\right)^{4} ; \quad g=2(2 x+7)^{3}, \quad f^{\prime}=8 x\left(x^{2}+1\right)^{3}$, and $g^{\prime}=6(2 x+7)^{2}$. Find $\frac{f^{\prime} g-f g^{\prime}}{g^{2}}$ and rewrite your answer as a completely reduced fraction.
Solution: Scroll slowly. Try each step in the left column before you click to see the answer.
Substitute A for $x^{2}+1$ and B for $2 x+7$ to get $f=A^{4} ; \quad g=B^{3}, \quad f^{\prime}=8 x A^{3}$, and $g^{\prime}=6 B^{2}$.

$$
\begin{aligned}
\text { Substitute into } \frac{f^{\prime} g-f g^{\prime}}{g^{2}} & \frac{\left(8 x A^{3} \cdot 2 B^{3}\right)-A^{4}\left(6 B^{2}\right)}{\left(2 B^{3}\right)^{2}} \\
\text { Recognize as sum of two terms } & =\frac{8 x A^{3} \cdot 2 B^{3}-A^{4}\left(6 B^{2}\right)}{\left(2 B^{3}\right)^{2}} \\
\text { Rewrite each term with constant at left } & =\frac{16 x A^{3} B^{3}-6 A^{4} B^{2}}{2^{2}\left(B^{3}\right)^{2}} \\
\text { Pull out common factor } 2 \text { from numerator } & =\frac{2\left(8 x A^{3} B^{3}-3 A^{4} B^{2}\right)}{4 B^{6}} \\
\text { Cancel before continuing } & =\frac{\not 2\left(8 x A^{3} B^{3}-3 A^{4} B^{2}\right)}{\not A^{6}}=\frac{\left(8 x A^{3} B^{3}-3 A^{4} B^{2}\right)}{2 B^{6}}
\end{aligned}
$$

Working with abbreviations: Let $f=\left(x^{2}+1\right)^{4} ; \quad g=2(2 x+7)^{3}, \quad f^{\prime}=8 x\left(x^{2}+1\right)^{3}$, and $g^{\prime}=6(2 x+7)^{2}$. Find $\frac{f^{\prime} g-f g^{\prime}}{g^{2}}$ and rewrite your answer as a completely reduced fraction.
Solution: Scroll slowly. Try each step in the left column before you click to see the answer.
Substitute A for $x^{2}+1$ and B for $2 x+7$ to get $f=A^{4} ; \quad g=B^{3}, \quad f^{\prime}=8 x A^{3}$, and $g^{\prime}=6 B^{2}$.

$$
\text { Substitute into } \frac{f^{\prime} g-f g^{\prime}}{g^{2}} \quad \frac{\left(8 x A^{3} \cdot 2 B^{3}\right)-A^{4}\left(6 B^{2}\right)}{\left(2 B^{3}\right)^{2}}
$$

Recognize as sum of two terms $=\frac{8 x A^{3} \cdot 2 B^{3}-A^{4}\left(6 B^{2}\right)}{\left(2 B^{3}\right)^{2}}$
Rewrite each term with constant at left $=\frac{16 x A^{3} B^{3}-6 A^{4} B^{2}}{2^{2}\left(B^{3}\right)^{2}}$
Pull out common factor 2 from numerator $=\frac{2\left(8 x A^{3} B^{3}-3 A^{4} B^{2}\right)}{4 B^{6}}$

$$
\text { Cancel before continuing }=\frac{\not 2\left(\left(8 x A^{3} B^{3}-3 A^{4} B^{2}\right)\right.}{\not A^{6}}=\frac{\left(8 x A^{3} B^{3}-3 A^{4} B^{2}\right)}{2 B^{6}}
$$

Pull out lowest common power A^{3} of A

Working with abbreviations: Let $f=\left(x^{2}+1\right)^{4} ; \quad g=2(2 x+7)^{3}, \quad f^{\prime}=8 x\left(x^{2}+1\right)^{3}$, and $g^{\prime}=6(2 x+7)^{2}$. Find $\frac{f^{\prime} g-f g^{\prime}}{g^{2}}$ and rewrite your answer as a completely reduced fraction.
Solution: Scroll slowly. Try each step in the left column before you click to see the answer.
Substitute A for $x^{2}+1$ and B for $2 x+7$ to get $f=A^{4} ; \quad g=B^{3}, \quad f^{\prime}=8 x A^{3}$, and $g^{\prime}=6 B^{2}$.
Substitute into $\frac{f^{\prime} g-f g^{\prime}}{g^{2}} \quad \frac{\left(8 x A^{3} \cdot 2 B^{3}\right)-A^{4}\left(6 B^{2}\right)}{\left(2 B^{3}\right)^{2}}$
Recognize as sum of two terms $=\frac{8 x A^{3} \cdot 2 B^{3}-A^{4}\left(6 B^{2}\right)}{\left(2 B^{3}\right)^{2}}$
Rewrite each term with constant at left $=\frac{16 x A^{3} B^{3}-6 A^{4} B^{2}}{2^{2}\left(B^{3}\right)^{2}}$
Pull out common factor 2 from numerator $=\frac{2\left(8 x A^{3} B^{3}-3 A^{4} B^{2}\right)}{4 B^{6}}$
Cancel before continuing $=\frac{\not 2\left(8 x A^{3} B^{3}-3 A^{4} B^{2}\right)}{\not A^{6} B^{6}}=\frac{\left(8 x A^{3} B^{3}-3 A^{4} B^{2}\right)}{2 B^{6}}$
Pull out lowest common power A^{3} of $A=\frac{A^{3}\left(8 x B^{3}-3 A^{4-3} B^{2}\right)}{2 B^{6}}=\frac{A^{3}\left(8 x B^{3}-3 A B^{2}\right)}{2 B^{6}}$

Working with abbreviations: Let $f=\left(x^{2}+1\right)^{4} ; \quad g=2(2 x+7)^{3}, \quad f^{\prime}=8 x\left(x^{2}+1\right)^{3}$, and $g^{\prime}=6(2 x+7)^{2}$. Find $\frac{f^{\prime} g-f g^{\prime}}{g^{2}}$ and rewrite your answer as a completely reduced fraction.
Solution: Scroll slowly. Try each step in the left column before you click to see the answer.
Substitute A for $x^{2}+1$ and B for $2 x+7$ to get $f=A^{4} ; \quad g=B^{3}, \quad f^{\prime}=8 x A^{3}$, and $g^{\prime}=6 B^{2}$.
Substitute into $\frac{f^{\prime} g-f g^{\prime}}{g^{2}} \quad \frac{\left(8 x A^{3} \cdot 2 B^{3}\right)-A^{4}\left(6 B^{2}\right)}{\left(2 B^{3}\right)^{2}}$
Recognize as sum of two terms $=\frac{8 x A^{3} \cdot 2 B^{3}-A^{4}\left(6 B^{2}\right)}{\left(2 B^{3}\right)^{2}}$
Rewrite each term with constant at left $=\frac{16 x A^{3} B^{3}-6 A^{4} B^{2}}{2^{2}\left(B^{3}\right)^{2}}$
Pull out common factor 2 from numerator $=\frac{2\left(8 x A^{3} B^{3}-3 A^{4} B^{2}\right)}{4 B^{6}}$
Cancel before continuing $=\frac{\not 2\left(8 x A^{3} B^{3}-3 A^{4} B^{2}\right)}{\not A^{6} B^{6}}=\frac{\left(8 x A^{3} B^{3}-3 A^{4} B^{2}\right)}{2 B^{6}}$
Pull out lowest common power A^{3} of $A=\frac{A^{3}\left(8 x B^{3}-3 A^{4-3} B^{2}\right)}{2 B^{6}}=\frac{A^{3}\left(8 x B^{3}-3 A B^{2}\right)}{2 B^{6}}$
Pull out lowest common power B^{2} of $B \quad=\frac{A^{3} B^{2}\left(8 x B^{3-2}-3 A\right)}{2 B^{6}}=\frac{A^{3} B^{2}(8 x B-3 A)}{2 B^{6}}$

Working with abbreviations: Let $f=\left(x^{2}+1\right)^{4} ; \quad g=2(2 x+7)^{3}, \quad f^{\prime}=8 x\left(x^{2}+1\right)^{3}$, and $g^{\prime}=6(2 x+7)^{2}$. Find $\frac{f^{\prime} g-f g^{\prime}}{g^{2}}$ and rewrite your answer as a completely reduced fraction.
Solution: Scroll slowly. Try each step in the left column before you click to see the answer.
Substitute A for $x^{2}+1$ and B for $2 x+7$ to get $f=A^{4} ; \quad g=B^{3}, \quad f^{\prime}=8 x A^{3}$, and $g^{\prime}=6 B^{2}$.

$$
\text { Substitute into } \frac{f^{\prime} g-f g^{\prime}}{g^{2}} \quad \frac{\left(8 x A^{3} \cdot 2 B^{3}\right)-A^{4}\left(6 B^{2}\right)}{\left(2 B^{3}\right)^{2}}
$$

Recognize as sum of two terms $=\frac{8 x A^{3} \cdot 2 B^{3}-A^{4}\left(6 B^{2}\right)}{\left(2 B^{3}\right)^{2}}$
Rewrite each term with constant at left $=\frac{16 x A^{3} B^{3}-6 A^{4} B^{2}}{2^{2}\left(B^{3}\right)^{2}}$
Pull out common factor 2 from numerator $=\frac{2\left(8 x A^{3} B^{3}-3 A^{4} B^{2}\right)}{4 B^{6}}$
Cancel before continuing $=\frac{\not 2\left(8 x A^{3} B^{3}-3 A^{4} B^{2}\right)}{\not A^{6} B^{6}}=\frac{\left(8 x A^{3} B^{3}-3 A^{4} B^{2}\right)}{2 B^{6}}$
Pull out lowest common power A^{3} of $A=\frac{A^{3}\left(8 x B^{3}-3 A^{4-3} B^{2}\right)}{2 B^{6}}=\frac{A^{3}\left(8 x B^{3}-3 A B^{2}\right)}{2 B^{6}}$
Pull out lowest common power B^{2} of $B=\frac{A^{3} B^{2}\left(8 x B^{3-2}-3 A\right)}{2 B^{6}}=\frac{A^{3} B^{2}(8 x B-3 A)}{2 B^{6}}$
Cancel common power of $B=\frac{A^{3} B^{2}(8 x B-3 A)}{2 B^{6}}=\frac{A^{3}(8 x B-3 A)}{2 B^{4}}$

Working with abbreviations: Let $f=\left(x^{2}+1\right)^{4} ; \quad g=2(2 x+7)^{3}, \quad f^{\prime}=8 x\left(x^{2}+1\right)^{3}$, and $g^{\prime}=6(2 x+7)^{2}$. Find $\frac{f^{\prime} g-f g^{\prime}}{g^{2}}$ and rewrite your answer as a completely reduced fraction.
Solution: Scroll slowly. Try each step in the left column before you click to see the answer.
Substitute A for $x^{2}+1$ and B for $2 x+7$ to get $f=A^{4} ; \quad g=B^{3}, \quad f^{\prime}=8 x A^{3}$, and $g^{\prime}=6 B^{2}$.

$$
\text { Substitute into } \frac{f^{\prime} g-f g^{\prime}}{g^{2}} \quad \frac{\left(8 x A^{3} \cdot 2 B^{3}\right)-A^{4}\left(6 B^{2}\right)}{\left(2 B^{3}\right)^{2}}
$$

Recognize as sum of two terms $=\frac{8 x A^{3} \cdot 2 B^{3}-A^{4}\left(6 B^{2}\right)}{\left(2 B^{3}\right)^{2}}$
Rewrite each term with constant at left $=\frac{16 x A^{3} B^{3}-6 A^{4} B^{2}}{2^{2}\left(B^{3}\right)^{2}}$
Pull out common factor 2 from numerator $=\frac{2\left(8 x A^{3} B^{3}-3 A^{4} B^{2}\right)}{4 B^{6}}$
Cancel before continuing $=\frac{\not 2\left(8 x A^{3} B^{3}-3 A^{4} B^{2}\right)}{\not A^{6} B^{6}}=\frac{\left(8 x A^{3} B^{3}-3 A^{4} B^{2}\right)}{2 B^{6}}$
Pull out lowest common power A^{3} of $A=\frac{A^{3}\left(8 x B^{3}-3 A^{4-3} B^{2}\right)}{2 B^{6}}=\frac{A^{3}\left(8 x B^{3}-3 A B^{2}\right)}{2 B^{6}}$
Pull out lowest common power B^{2} of $B=\frac{A^{3} B^{2}\left(8 x B^{3-2}-3 A\right)}{2 B^{6}}=\frac{A^{3} B^{2}(8 x B-3 A)}{2 B^{6}}$
Cancel common power of $B=\frac{A^{3} B^{2}(8 x B-3 A)}{2 B^{6}}=\frac{A^{3}(8 x B-3 A)}{2 B^{4}}$
Go back to $x=\frac{\left(x^{2}+1\right)^{3}\left(8 x(2 x+7)-3\left(x^{2}+1\right)\right)}{2(2 x+7)^{4}}$

Working with abbreviations: Let $f=\left(x^{2}+1\right)^{4} ; \quad g=2(2 x+7)^{3}, \quad f^{\prime}=8 x\left(x^{2}+1\right)^{3}$, and $g^{\prime}=6(2 x+7)^{2}$. Find $\frac{f^{\prime} g-f g^{\prime}}{g^{2}}$ and rewrite your answer as a completely reduced fraction.
Solution: Scroll slowly. Try each step in the left column before you click to see the answer.
Substitute A for $x^{2}+1$ and B for $2 x+7$ to get $f=A^{4} ; \quad g=B^{3}, \quad f^{\prime}=8 x A^{3}$, and $g^{\prime}=6 B^{2}$.

$$
\text { Substitute into } \frac{f^{\prime} g-f g^{\prime}}{g^{2}} \quad \frac{\left(8 x A^{3} \cdot 2 B^{3}\right)-A^{4}\left(6 B^{2}\right)}{\left(2 B^{3}\right)^{2}}
$$

Recognize as sum of two terms $=\frac{8 x A^{3} \cdot 2 B^{3}-A^{4}\left(6 B^{2}\right)}{\left(2 B^{3}\right)^{2}}$
Rewrite each term with constant at left $=\frac{16 x A^{3} B^{3}-6 A^{4} B^{2}}{2^{2}\left(B^{3}\right)^{2}}$
Pull out common factor 2 from numerator $=\frac{2\left(8 x A^{3} B^{3}-3 A^{4} B^{2}\right)}{4 B^{6}}$

$$
\text { Cancel before continuing }=\frac{\not 2\left(\left(8 x A^{3} B^{3}-3 A^{4} B^{2}\right)\right.}{\not A^{6}}=\frac{\left(8 x A^{3} B^{3}-3 A^{4} B^{2}\right)}{2 B^{6}}
$$

Pull out lowest common power A^{3} of $A=\frac{A^{3}\left(8 x B^{3}-3 A^{4-3} B^{2}\right)}{2 B^{6}}=\frac{A^{3}\left(8 x B^{3}-3 A B^{2}\right)}{2 B^{6}}$
Pull out lowest common power B^{2} of $B=\frac{A^{3} B^{2}\left(8 x B^{3-2}-3 A\right)}{2 B^{6}}=\frac{A^{3} B^{2}(8 x B-3 A)}{2 B^{6}}$
Cancel common power of $B=\frac{A^{3} B^{2}(8 x B-3 A)}{2 B^{6}}=\frac{A^{3}(8 x B-3 A)}{2 B^{4}}$
Go back to $x=\frac{\left(x^{2}+1\right)^{3}\left(8 x(2 x+7)-3\left(x^{2}+1\right)\right)}{2(2 x+7)^{4}}$
Expand remaining factor $=\frac{\left(x^{2}+1\right)^{3}\left(16 x^{2}+56 x-3 x^{2}-3\right)}{2(2 x+7)^{4}}=\frac{\left(x^{2}+1\right)^{3}\left(13 x^{2}+56 x-3\right)}{2(2 x+7)^{4}}$

Working with abbreviations: Let $f=\left(x^{2}+1\right)^{4} ; \quad g=2(2 x+7)^{3}, \quad f^{\prime}=8 x\left(x^{2}+1\right)^{3}$, and $g^{\prime}=6(2 x+7)^{2}$. Find $\frac{f^{\prime} g-f g^{\prime}}{g^{2}}$ and rewrite your answer as a completely reduced fraction.
Solution: Scroll slowly. Try each step in the left column before you click to see the answer.
Substitute A for $x^{2}+1$ and B for $2 x+7$ to get $f=A^{4} ; \quad g=B^{3}, \quad f^{\prime}=8 x A^{3}$, and $g^{\prime}=6 B^{2}$.

$$
\text { Substitute into } \frac{f^{\prime} g-f g^{\prime}}{g^{2}} \quad \frac{\left(8 x A^{3} \cdot 2 B^{3}\right)-A^{4}\left(6 B^{2}\right)}{\left(2 B^{3}\right)^{2}}
$$

Recognize as sum of two terms $=\frac{8 x A^{3} \cdot 2 B^{3}-A^{4}\left(6 B^{2}\right)}{\left(2 B^{3}\right)^{2}}$
Rewrite each term with constant at left $=\frac{16 x A^{3} B^{3}-6 A^{4} B^{2}}{2^{2}\left(B^{3}\right)^{2}}$
Pull out common factor 2 from numerator $=\frac{2\left(8 x A^{3} B^{3}-3 A^{4} B^{2}\right)}{4 B^{6}}$

$$
\text { Cancel before continuing }=\frac{\not 2\left(\left(8 x A^{3} B^{3}-3 A^{4} B^{2}\right)\right.}{\not A^{6}}=\frac{\left(8 x A^{3} B^{3}-3 A^{4} B^{2}\right)}{2 B^{6}}
$$

Pull out lowest common power A^{3} of $A=\frac{A^{3}\left(8 x B^{3}-3 A^{4-3} B^{2}\right)}{2 B^{6}}=\frac{A^{3}\left(8 x B^{3}-3 A B^{2}\right)}{2 B^{6}}$
Pull out lowest common power B^{2} of $B=\frac{A^{3} B^{2}\left(8 x B^{3-2}-3 A\right)}{2 B^{6}}=\frac{A^{3} B^{2}(8 x B-3 A)}{2 B^{6}}$
Cancel common power of $B=\frac{A^{3} B^{2}(8 x B-3 A)}{2 B^{6}}=\frac{A^{3}(8 x B-3 A)}{2 B^{4}}$
Go back to $x=\frac{\left(x^{2}+1\right)^{3}\left(8 x(2 x+7)-3\left(x^{2}+1\right)\right)}{2(2 x+7)^{4}}$
Expand remaining factor $=\frac{\left(x^{2}+1\right)^{3}\left(16 x^{2}+56 x-3 x^{2}-3\right)}{2(2 x+7)^{4}}=\frac{\left(x^{2}+1\right)^{3}\left(13 x^{2}+56 x-3\right)}{2(2 x+7)^{4}}$
3. In each of the following, find $\frac{f(b)-f(a)}{b-a}$ and rewrite your answer as a polynomial or as a reduced fraction. Go slowly through the slide and write down the answer to each part before you move ahead.
3.1 Let $f(x)=x-x^{2} ; a=x, b=x-h$. Then $\frac{f(b)-f(a)}{b-a}$
3. In each of the following, find $\frac{f(b)-f(a)}{b-a}$ and rewrite your answer as a polynomial or as a reduced fraction. Go slowly through the slide and write down the answer to each part before you move ahead.
3.1 Let $f(x)=x-x^{2} ; a=x, b=x-h$. Then $\frac{f(b)-f(a)}{b-a}=\frac{f(x-h)-f(x)}{(x-h)-x}$
3. In each of the following, find $\frac{f(b)-f(a)}{b-a}$ and rewrite your answer as a polynomial or as a reduced fraction. Go slowly through the slide and write down the answer to each part before you move ahead.
3.1 Let $f(x)=x-x^{2} ; a=x, b=x-h$. Then $\frac{f(b)-f(a)}{b-a}=\frac{f(x-h)-f(x)}{(x-h)-x}=\frac{f(x-h)-f(x)}{-h}$
3. In each of the following, find $\frac{f(b)-f(a)}{b-a}$ and rewrite your answer as a polynomial or as a reduced fraction. Go slowly through the slide and write down the answer to each part before you move ahead.

$$
\begin{aligned}
& \text { 3.1 Let } f(x)=x-x^{2} ; a=x, b=x-h \text {. Then } \\
& \frac{f(b)-f(a)}{b-a}=\frac{f(x-h)-f(x)}{(x-h)-x}=\frac{f(x-h)-f(x)}{-h} \\
& =\frac{-1}{h}\left((x-h)-(x-h)^{2}-\left(x-x^{2}\right)\right)
\end{aligned}
$$

3. In each of the following, find $\frac{f(b)-f(a)}{b-a}$ and rewrite your answer as a polynomial or as a reduced fraction. Go slowly through the slide and write down the answer to each part before you move ahead.

$$
\begin{aligned}
& \text { 3.1 Let } f(x)=x-x^{2} ; a=x, b=x-h \text {. Then } \\
& \frac{f(b)-f(a)}{b-a}=\frac{f(x-h)-f(x)}{(x-h)-x}=\frac{f(x-h)-f(x)}{-h} \\
& =\frac{-1}{h}\left((x-h)-(x-h)^{2}-\left(x-x^{2}\right)\right) \\
& =-\frac{1}{h}\left(x-h-\left(x^{2}-2 h x+h^{2}\right)-x+x^{2}\right)
\end{aligned}
$$

3. In each of the following, find $\frac{f(b)-f(a)}{b-a}$ and rewrite your answer as a polynomial or as a reduced fraction. Go slowly through the slide and write down the answer to each part before you move ahead.

$$
\begin{aligned}
& \text { 3.1 Let } f(x)=x-x^{2} ; a=x, b=x-h . \text { Then } \\
& \frac{f(b)-f(a)}{b-a}=\frac{f(x-h)-f(x)}{(x-h)-x}=\frac{f(x-h)-f(x)}{-h} \\
& =\frac{-1}{h}\left((x-h)-(x-h)^{2}-\left(x-x^{2}\right)\right) \\
& =-\frac{1}{h}\left(x-h-\left(x^{2}-2 h x+h^{2}\right)-x+x^{2}\right) \\
& =-\frac{1}{h}\left(x-h-x^{2}+2 h x-h^{2}-x+x^{2}\right)
\end{aligned}
$$

3. In each of the following, find $\frac{f(b)-f(a)}{b-a}$ and rewrite your answer as a polynomial or as a reduced fraction. Go slowly through the slide and write down the answer to each part before you move ahead.

$$
\begin{aligned}
& \text { 3.1 Let } f(x)=x-x^{2} ; a=x, b=x-h . \text { Then } \\
& \frac{f(b)-f(a)}{b-a}=\frac{f(x-h)-f(x)}{(x-h)-x}=\frac{f(x-h)-f(x)}{-h} \\
& =\frac{-1}{h}\left((x-h)-(x-h)^{2}-\left(x-x^{2}\right)\right) \\
& =-\frac{1}{h}\left(x-h-\left(x^{2}-2 h x+h^{2}\right)-x+x^{2}\right) \\
& =-\frac{1}{h}\left(x-h-x^{2}+2 h x-h^{2}-x+x^{2}\right) \\
& =-\frac{1}{h}\left(\not x-h-x^{2}+2 h x-h^{2}-x \not x x^{2}\right)
\end{aligned}
$$

3. In each of the following, find $\frac{f(b)-f(a)}{b-a}$ and rewrite your answer as a polynomial or as a reduced fraction. Go slowly through the slide and write down the answer to each part before you move ahead.

$$
\begin{aligned}
& \text { 3.1 Let } f(x)=x-x^{2} ; a=x, b=x-h . \text { Then } \\
& \frac{f(b)-f(a)}{b-a}=\frac{f(x-h)-f(x)}{(x-h)-x}=\frac{f(x-h)-f(x)}{-h} \\
& =\frac{-1}{h}\left((x-h)-(x-h)^{2}-\left(x-x^{2}\right)\right) \\
& =-\frac{1}{h}\left(x-h-\left(x^{2}-2 h x+h^{2}\right)-x+x^{2}\right) \\
& =-\frac{1}{h}\left(x-h-x^{2}+2 h x-h^{2}-x+x^{2}\right) \\
& =-\frac{1}{h}\left(\not x-h-x^{2}+2 h x-h^{2}-x \nmid x^{2}\right) \\
& =-\frac{1}{h}\left(-h+2 h x-h^{2}\right)
\end{aligned}
$$

3. In each of the following, find $\frac{f(b)-f(a)}{b-a}$ and rewrite your answer as a polynomial or as a reduced fraction. Go slowly through the slide and write down the answer to each part before you move ahead.

$$
\begin{aligned}
& \text { 3.1 Let } f(x)=x-x^{2} ; a=x, b=x-h . \text { Then } \\
& \quad \frac{f(b)-f(a)}{b-a}=\frac{f(x-h)-f(x)}{(x-h)-x}=\frac{f(x-h)-f(x)}{-h} \\
& =\frac{-1}{h}\left((x-h)-(x-h)^{2}-\left(x-x^{2}\right)\right) \\
& =-\frac{1}{h}\left(x-h-\left(x^{2}-2 h x+h^{2}\right)-x+x^{2}\right) \\
& =-\frac{1}{h}\left(x-h-x^{2}+2 h x-h^{2}-x+x^{2}\right) \\
& =-\frac{1}{h}\left(\not x-h-x^{2}+2 h x-h^{2}-x \nmid x^{2}\right) \\
& =-\frac{1}{h}\left(-h+2 h x-h^{2}\right) \\
& =-\frac{1}{h}(h(-1+2 x-h))=-2 x+1+h
\end{aligned}
$$

3. In each of the following, find $\frac{f(b)-f(a)}{b-a}$ and rewrite your answer as a polynomial or as a reduced fraction. Go slowly through the slide and write down the answer to each part before you move ahead.

$$
\begin{aligned}
& \text { 3.1 Let } f(x)=x-x^{2} ; a=x, b=x-h . \text { Then } \\
& \frac{f(b)-f(a)}{b-a}=\frac{f(x-h)-f(x)}{(x-h)-x}=\frac{f(x-h)-f(x)}{-h} \\
& =\frac{-1}{h}\left((x-h)-(x-h)^{2}-\left(x-x^{2}\right)\right) \\
& =-\frac{1}{h}\left(x-h-\left(x^{2}-2 h x+h^{2}\right)-x+x^{2}\right) \\
& =-\frac{1}{h}\left(x-h-x^{2}+2 h x-h^{2}-x+x^{2}\right) \\
& =-\frac{1}{h}\left(\not x-h-x^{2}+2 h x-h^{2}-x \neq x^{2}\right) \\
& =-\frac{1}{h}\left(-h+2 h x-h^{2}\right) \\
& =-\frac{1}{h}(h(-1+2 x-h))=-2 x+1+h
\end{aligned}
$$

3. In each of the following, find $\frac{f(b)-f(a)}{b-a}$ and rewrite your answer as a polynomial or as a reduced fraction. Go slowly through the slide and write down the answer to each part before you move ahead.

$$
\begin{aligned}
& \text { 3.1 Let } f(x)=x-x^{2} ; a=x, b=x-h . \text { Then } \\
& \quad \frac{f(b)-f(a)}{b-a}=\frac{f(x-h)-f(x)}{(x-h)-x}=\frac{f(x-h)-f(x)}{-h} \\
& =\frac{-1}{h}\left((x-h)-(x-h)^{2}-\left(x-x^{2}\right)\right) \\
& =-\frac{1}{h}\left(x-h-\left(x^{2}-2 h x+h^{2}\right)-x+x^{2}\right) \\
& =-\frac{1}{h}\left(x-h-x^{2}+2 h x-h^{2}-x+x^{2}\right) \\
& =-\frac{1}{h}\left(\not x-h-x^{2}+2 h x-h^{2}-x \nmid x^{2}\right) \\
& =-\frac{1}{h}\left(-h+2 h x-h^{2}\right) \\
& =-\frac{1}{h}(h(-1+2 x-h))=-2 x+1+h
\end{aligned}
$$

$$
\begin{aligned}
\text { 3.2 Let } f(x) & =x-x^{2} ; a=x ; b=x+h . \text { Then } \\
\frac{f(b)-f(a)}{b-a} & =\frac{f(x+h)-f(x)}{(x+h)-x}
\end{aligned}
$$

3. In each of the following, find $\frac{f(b)-f(a)}{b-a}$ and rewrite your answer as a polynomial or as a reduced fraction. Go slowly through the slide and write down the answer to each part before you move ahead.

$$
\begin{aligned}
& \text { 3.1 Let } f(x)=x-x^{2} ; a=x, b=x-h . \text { Then } \\
& \quad \frac{f(b)-f(a)}{b-a}=\frac{f(x-h)-f(x)}{(x-h)-x}=\frac{f(x-h)-f(x)}{-h} \\
& =\frac{-1}{h}\left((x-h)-(x-h)^{2}-\left(x-x^{2}\right)\right) \\
& =-\frac{1}{h}\left(x-h-\left(x^{2}-2 h x+h^{2}\right)-x+x^{2}\right) \\
& =-\frac{1}{h}\left(x-h-x^{2}+2 h x-h^{2}-x+x^{2}\right) \\
& =-\frac{1}{h}\left(\not x-h-x^{2}+2 h x-h^{2}-x \nmid x^{2}\right) \\
& =-\frac{1}{h}\left(-h+2 h x-h^{2}\right) \\
& =-\frac{1}{h}(h(-1+2 x-h))=-2 x+1+h
\end{aligned}
$$

$$
\begin{aligned}
& \text { 3.2 Let } f(x)=x-x^{2} ; a=x ; b=x+h \text {. Then } \\
& \frac{f(b)-f(a)}{b-a}=\frac{f(x+h)-f(x)}{(x+h)-x}=\frac{f(x+h)-f(x)}{h}
\end{aligned}
$$

3. In each of the following, find $\frac{f(b)-f(a)}{b-a}$ and rewrite your answer as a polynomial or as a reduced fraction. Go slowly through the slide and write down the answer to each part before you move ahead.

$$
\begin{aligned}
& \text { 3.1 Let } f(x)=x-x^{2} ; a=x, b=x-h . \text { Then } \\
& \frac{f(b)-f(a)}{b-a}=\frac{f(x-h)-f(x)}{(x-h)-x}=\frac{f(x-h)-f(x)}{-h} \\
& =\frac{-1}{h}\left((x-h)-(x-h)^{2}-\left(x-x^{2}\right)\right) \\
& =-\frac{1}{h}\left(x-h-\left(x^{2}-2 h x+h^{2}\right)-x+x^{2}\right) \\
& =-\frac{1}{h}\left(x-h-x^{2}+2 h x-h^{2}-x+x^{2}\right) \\
& =-\frac{1}{h}\left(\not x-h-x^{2}+2 h x-h^{2}-x \neq x^{2}\right) \\
& =-\frac{1}{h}\left(-h+2 h x-h^{2}\right) \\
& =-\frac{1}{h}(h(-1+2 x-h))=-2 x+1+h
\end{aligned}
$$

$$
\begin{aligned}
& \text { 3.2 Let } f(x)=x-x^{2} ; a=x ; b=x+h \text {. Then } \\
& \quad \frac{f(b)-f(a)}{b-a}=\frac{f(x+h)-f(x)}{(x+h)-x}=\frac{f(x+h)-f(x)}{h} \\
& =\frac{1}{h}\left((x+h)-(x+h)^{2}-\left(x-x^{2}\right)\right)
\end{aligned}
$$

3. In each of the following, find $\frac{f(b)-f(a)}{b-a}$ and rewrite your answer as a polynomial or as a reduced fraction. Go slowly through the slide and write down the answer to each part before you move ahead.

$$
\begin{aligned}
& \text { 3.1 Let } f(x)=x-x^{2} ; a=x, b=x-h . \text { Then } \\
& \quad \frac{f(b)-f(a)}{b-a}=\frac{f(x-h)-f(x)}{(x-h)-x}=\frac{f(x-h)-f(x)}{-h} \\
& =\frac{-1}{h}\left((x-h)-(x-h)^{2}-\left(x-x^{2}\right)\right) \\
& =-\frac{1}{h}\left(x-h-\left(x^{2}-2 h x+h^{2}\right)-x+x^{2}\right) \\
& =-\frac{1}{h}\left(x-h-x^{2}+2 h x-h^{2}-x+x^{2}\right) \\
& =-\frac{1}{h}\left(\not x-h-x^{2}+2 h x-h^{2}-x \neq x^{2}\right) \\
& =-\frac{1}{h}\left(-h+2 h x-h^{2}\right) \\
& =-\frac{1}{h}(h(-1+2 x-h))=-2 x+1+h
\end{aligned}
$$

$$
\begin{aligned}
& \text { 3.2 Let } f(x)=x-x^{2} ; a=x ; b=x+h \text {. Then } \\
& \quad \frac{f(b)-f(a)}{b-a}=\frac{f(x+h)-f(x)}{(x+h)-x}=\frac{f(x+h)-f(x)}{h} \\
& =\frac{1}{h}\left((x+h)-(x+h)^{2}-\left(x-x^{2}\right)\right) \\
& =\frac{1}{h}\left(x+h-\left(x^{2}+2 h x+h^{2}\right)-x+x^{2}\right)
\end{aligned}
$$

3. In each of the following, find $\frac{f(b)-f(a)}{b-a}$ and rewrite your answer as a polynomial or as a reduced fraction. Go slowly through the slide and write down the answer to each part before you move ahead.

$$
\begin{array}{lr}
\text { 3.1 Let } f(x)=x-x^{2} ; a=x, b=x-h . \text { Then } & \text { 3.2 Let } f(x)=x-x^{2} ; a=x ; b=x+h . \text { Then } \\
\frac{f(b)-f(a)}{b-a}=\frac{f(x-h)-f(x)}{(x-h)-x}=\frac{f(x-h)-f(x)}{-h} & \frac{f(b)-f(a)}{b-a}=\frac{f(x+h)-f(x)}{(x+h)-x}=\frac{f(x+h)-f(x)}{h} \\
=\frac{-1}{h}\left((x-h)-(x-h)^{2}-\left(x-x^{2}\right)\right) & =\frac{1}{h}\left((x+h)-(x+h)^{2}-\left(x-x^{2}\right)\right) \\
=-\frac{1}{h}\left(x-h-\left(x^{2}-2 h x+h^{2}\right)-x+x^{2}\right) & =\frac{1}{h}\left(x+h-\left(x^{2}+2 h x+h^{2}\right)-x+x^{2}\right) \\
=-\frac{1}{h}\left(x-h-x^{2}+2 h x-h^{2}-x+x^{2}\right) & =\frac{1}{h}\left(x+h-x^{2}-2 h x-h^{2}-x+x^{2}\right) \\
=-\frac{1}{h}\left(\not x-h-x^{2}+2 h x-h^{2}-x \nmid x^{2}\right) & \\
=-\frac{1}{h}\left(-h+2 h x-h^{2}\right) & \\
=-\frac{1}{h}(\not h(-1+2 x-h))=-2 x+1+h &
\end{array}
$$

3. In each of the following, find $\frac{f(b)-f(a)}{b-a}$ and rewrite your answer as a polynomial or as a reduced fraction. Go slowly through the slide and write down the answer to each part before you move ahead.

$$
\begin{aligned}
& \text { 3.1 Let } f(x)=x-x^{2} ; a=x, b=x-h . \text { Then } \\
& \frac{f(b)-f(a)}{b-a}=\frac{f(x-h)-f(x)}{(x-h)-x}=\frac{f(x-h)-f(x)}{-h} \\
& =\frac{-1}{h}\left((x-h)-(x-h)^{2}-\left(x-x^{2}\right)\right) \\
& =-\frac{1}{h}\left(x-h-\left(x^{2}-2 h x+h^{2}\right)-x+x^{2}\right) \\
& =-\frac{1}{h}\left(x-h-x^{2}+2 h x-h^{2}-x+x^{2}\right) \\
& =-\frac{1}{h}\left(\not x-h-x^{2}+2 h x-h^{2}-x \neq x^{2}\right) \\
& =-\frac{1}{h}\left(-h+2 h x-h^{2}\right) \\
& =-\frac{1}{h}(h(-1+2 x-h))=-2 x+1+h
\end{aligned}
$$

$$
\begin{aligned}
& \text { 3.2 Let } f(x)=x-x^{2} ; a=x ; b=x+h \text {. Then } \\
& \quad \frac{f(b)-f(a)}{b-a}=\frac{f(x+h)-f(x)}{(x+h)-x}=\frac{f(x+h)-f(x)}{h} \\
& =\frac{1}{h}\left((x+h)-(x+h)^{2}-\left(x-x^{2}\right)\right) \\
& =\frac{1}{h}\left(x+h-\left(x^{2}+2 h x+h^{2}\right)-x+x^{2}\right) \\
& =\frac{1}{h}\left(x+h-x^{2}-2 h x-h^{2}-x+x^{2}\right) \\
& =\frac{1}{h}\left(\not x+h-x^{2}-2 h x-h^{2}-x \neq x^{2}\right)
\end{aligned}
$$

3. In each of the following, find $\frac{f(b)-f(a)}{b-a}$ and rewrite your answer as a polynomial or as a reduced fraction. Go slowly through the slide and write down the answer to each part before you move ahead.

$$
\begin{aligned}
& \text { 3.1 Let } f(x)=x-x^{2} ; a=x, b=x-h . \text { Then } \\
& \frac{f(b)-f(a)}{b-a}=\frac{f(x-h)-f(x)}{(x-h)-x}=\frac{f(x-h)-f(x)}{-h} \\
& =\frac{-1}{h}\left((x-h)-(x-h)^{2}-\left(x-x^{2}\right)\right) \\
& =-\frac{1}{h}\left(x-h-\left(x^{2}-2 h x+h^{2}\right)-x+x^{2}\right) \\
& =-\frac{1}{h}\left(x-h-x^{2}+2 h x-h^{2}-x+x^{2}\right) \\
& =-\frac{1}{h}\left(\not x-h-x^{2}+2 h x-h^{2}-x \neq x^{2}\right) \\
& =-\frac{1}{h}\left(-h+2 h x-h^{2}\right) \\
& =-\frac{1}{h}(h(-1+2 x-h))=-2 x+1+h
\end{aligned}
$$

$$
\begin{aligned}
& \text { 3.2 Let } f(x)=x-x^{2} ; a=x ; b=x+h . \text { Then } \\
& \frac{f(b)-f(a)}{b-a}=\frac{f(x+h)-f(x)}{(x+h)-x}=\frac{f(x+h)-f(x)}{h} \\
& =\frac{1}{h}\left((x+h)-(x+h)^{2}-\left(x-x^{2}\right)\right) \\
& =\frac{1}{h}\left(x+h-\left(x^{2}+2 h x+h^{2}\right)-x+x^{2}\right) \\
& =\frac{1}{h}\left(x+h-x^{2}-2 h x-h^{2}-x+x^{2}\right) \\
& =\frac{1}{h}\left(\not x+h-x^{2}-2 h x-h^{2}-x+x^{2}\right) \\
& =\frac{1}{h}\left(h-2 h x-h^{2}\right)
\end{aligned}
$$

3. In each of the following, find $\frac{f(b)-f(a)}{b-a}$ and rewrite your answer as a polynomial or as a reduced fraction. Go slowly through the slide and write down the answer to each part before you move ahead.

$$
\begin{aligned}
& \text { 3.1 Let } f(x)=x-x^{2} ; a=x, b=x-h . \text { Then } \\
& \frac{f(b)-f(a)}{b-a}=\frac{f(x-h)-f(x)}{(x-h)-x}=\frac{f(x-h)-f(x)}{-h} \\
& =\frac{-1}{h}\left((x-h)-(x-h)^{2}-\left(x-x^{2}\right)\right) \\
& =-\frac{1}{h}\left(x-h-\left(x^{2}-2 h x+h^{2}\right)-x+x^{2}\right) \\
& =-\frac{1}{h}\left(x-h-x^{2}+2 h x-h^{2}-x+x^{2}\right) \\
& =-\frac{1}{h}\left(\not x-h-x^{2}+2 h x-h^{2}-x \neq x^{2}\right) \\
& =-\frac{1}{h}\left(-h+2 h x-h^{2}\right) \\
& =-\frac{1}{h}(h(-1+2 x-h))=-2 x+1+h
\end{aligned}
$$

$$
\begin{aligned}
& \text { 3.2 Let } f(x)=x-x^{2} ; a=x ; b=x+h . \text { Then } \\
& \quad \frac{f(b)-f(a)}{b-a}=\frac{f(x+h)-f(x)}{(x+h)-x}=\frac{f(x+h)-f(x)}{h} \\
& =\frac{1}{h}\left((x+h)-(x+h)^{2}-\left(x-x^{2}\right)\right) \\
& =\frac{1}{h}\left(x+h-\left(x^{2}+2 h x+h^{2}\right)-x+x^{2}\right) \\
& =\frac{1}{h}\left(x+h-x^{2}-2 h x-h^{2}-x+x^{2}\right) \\
& =\frac{1}{h}\left(\not x+h-x^{2}-2 h x-h^{2}-x \neq x^{2}\right) \\
& =\frac{1}{h}\left(h-2 h x-h^{2}\right) \\
& =\frac{1}{\not h}(h(1-2 x-h))=-2 x+1-h
\end{aligned}
$$

3 Find $\frac{f(b)-f(a)}{b-a}$ and rewrite your answer as a polynomial or as a reduced fraction. Go slowly through the slide and write down the answer to each part before you move ahead.

$$
\begin{aligned}
\text { 3.3 Let } f(x) & =\frac{1}{x} ; a=x, b=x+h . \text { Then } \\
\frac{f(b)-f(a)}{b-a} & =
\end{aligned}
$$

3 Find $\frac{f(b)-f(a)}{b-a}$ and rewrite your answer as a polynomial or as a reduced fraction. Go slowly through the slide and write down the answer to each part before you move ahead.

$$
\begin{aligned}
\text { 3.3 Let } f(x) & =\frac{1}{x} ; a=x, b=x+h \text {. Then } \\
\frac{f(b)-f(a)}{b-a} & =\frac{f(x+h)-f(x)}{(x+h)-x}
\end{aligned}
$$

3 Find $\frac{f(b)-f(a)}{b-a}$ and rewrite your answer as a polynomial or as a reduced fraction. Go slowly through the slide and write down the answer to each part before you move ahead.

$$
\begin{aligned}
& \text { 3.3 Let } f(x)=\frac{1}{x} ; a=x, b=x+h \text {. Then } \\
& \qquad \frac{f(b)-f(a)}{b-a}=\frac{f(x+h)-f(x)}{(x+h)-x}=\frac{f(x+h)-f(x)}{h}
\end{aligned}
$$

3 Find $\frac{f(b)-f(a)}{b-a}$ and rewrite your answer as a polynomial or as a reduced fraction. Go slowly through the slide and write down the answer to each part before you move ahead.

$$
\begin{aligned}
& \text { 3.3 Let } f(x)=\frac{1}{x} ; a=x, b=x+h \text {. Then } \\
& \qquad \frac{f(b)-f(a)}{b-a}=\frac{f(x+h)-f(x)}{(x+h)-x}=\frac{f(x+h)-f(x)}{h} \\
& =\frac{1}{h}(f(x+h)-f(x))
\end{aligned}
$$

3 Find $\frac{f(b)-f(a)}{b-a}$ and rewrite your answer as a polynomial or as a reduced fraction. Go slowly through the slide and write down the answer to each part before you move ahead.

$$
\begin{aligned}
& \text { 3.3 Let } f(x)=\frac{1}{x} ; a=x, b=x+h \text {. Then } \\
& \qquad \frac{f(b)-f(a)}{b-a}=\frac{f(x+h)-f(x)}{(x+h)-x}=\frac{f(x+h)-f(x)}{h} \\
& =\frac{1}{h}(f(x+h)-f(x)) \\
& =\frac{1}{h}\left(\frac{1}{x+h}-\frac{1}{x}\right)
\end{aligned}
$$

$$
=
$$

3 Find $\frac{f(b)-f(a)}{b-a}$ and rewrite your answer as a polynomial or as a reduced fraction. Go slowly through the slide and write down the answer to each part before you move ahead.

$$
\begin{aligned}
& \text { 3.3 Let } f(x)=\frac{1}{x} ; a=x, b=x+h . \text { Then } \\
& \qquad \frac{f(b)-f(a)}{b-a}=\frac{f(x+h)-f(x)}{(x+h)-x}=\frac{f(x+h)-f(x)}{h} \\
& =\frac{1}{h}(f(x+h)-f(x)) \\
& =\frac{1}{h}\left(\frac{1}{x+h}-\frac{1}{x}\right) \\
& =\frac{1}{h}\left(\frac{1}{x+h} \cdot \frac{x}{x}-\frac{1}{x} \cdot \frac{x+h}{x+h}\right)
\end{aligned}
$$

$$
=
$$

3 Find $\frac{f(b)-f(a)}{b-a}$ and rewrite your answer as a polynomial or as a reduced fraction. Go slowly through the slide and write down the answer to each part before you move ahead.

$$
\begin{aligned}
& \text { 3.3 Let } f(x)=\frac{1}{x} ; a=x, b=x+h . \text { Then } \\
& \quad \frac{f(b)-f(a)}{b-a}=\frac{f(x+h)-f(x)}{(x+h)-x}=\frac{f(x+h)-f(x)}{h} \\
& =\frac{1}{h}(f(x+h)-f(x)) \\
& =\frac{1}{h}\left(\frac{1}{x+h}-\frac{1}{x}\right) \\
& =\frac{1}{h}\left(\frac{1}{x+h} \cdot \frac{x}{x}-\frac{1}{x} \cdot \frac{x+h}{x+h}\right) \\
& =\frac{1}{h}\left(\frac{x}{(x+h) x}-\frac{x+h}{x(x+h)}\right)
\end{aligned}
$$

$=$

3 Find $\frac{f(b)-f(a)}{b-a}$ and rewrite your answer as a polynomial or as a reduced fraction. Go slowly through the slide and write down the answer to each part before you move ahead.

$$
\begin{aligned}
& \text { 3.3 Let } f(x)=\frac{1}{x} ; a=x, b=x+h \text {. Then } \\
& \quad \frac{f(b)-f(a)}{b-a}=\frac{f(x+h)-f(x)}{(x+h)-x}=\frac{f(x+h)-f(x)}{h} \\
& =\frac{1}{h}(f(x+h)-f(x)) \\
& =\frac{1}{h}\left(\frac{1}{x+h}-\frac{1}{x}\right) \\
& =\frac{1}{h}\left(\frac{1}{x+h} \cdot \frac{x}{x}-\frac{1}{x} \cdot \frac{x+h}{x+h}\right) \\
& =\frac{1}{h}\left(\frac{x}{(x+h) x}-\frac{x+h}{x(x+h)}\right) \\
& =\frac{1}{h}\left(\frac{x-(x+h)}{x(x+h)}\right)=\frac{1}{h} \cdot \frac{x-x-h}{x(x+h)}
\end{aligned}
$$

3 Find $\frac{f(b)-f(a)}{b-a}$ and rewrite your answer as a polynomial or as a reduced fraction. Go slowly through the slide and write down the answer to each part before you move ahead.

$$
\begin{aligned}
& \text { 3.3 Let } f(x)=\frac{1}{x} ; a=x, b=x+h . \text { Then } \\
& \quad \frac{f(b)-f(a)}{b-a}=\frac{f(x+h)-f(x)}{(x+h)-x}=\frac{f(x+h)-f(x)}{h} \\
& =\frac{1}{h}(f(x+h)-f(x)) \\
& =\frac{1}{h}\left(\frac{1}{x+h}-\frac{1}{x}\right) \\
& =\frac{1}{h}\left(\frac{1}{x+h} \cdot \frac{x}{x}-\frac{1}{x} \cdot \frac{x+h}{x+h}\right) \\
& =\frac{1}{h}\left(\frac{x}{(x+h) x}-\frac{x+h}{x(x+h)}\right) \\
& =\frac{1}{h}\left(\frac{x-(x+h)}{x(x+h)}\right)=\frac{1}{h} \cdot \frac{x-x-h}{x(x+h)} \\
& =\frac{1}{h} \cdot \frac{-h}{x(x+h)}=\frac{-1}{x(x+h)}
\end{aligned}
$$

$$
\text { 3.4 Let } f(x)=\frac{x}{2 x+3} ; a=x, b=x+h \text {. Then }
$$

$$
\frac{f(b)-f(a)}{b-a}=
$$

3 Find $\frac{f(b)-f(a)}{b-a}$ and rewrite your answer as a polynomial or as a reduced fraction. Go slowly through the slide and write down the answer to each part before you move ahead.

$$
\begin{aligned}
& \text { 3.3 Let } f(x)=\frac{1}{x} ; a=x, b=x+h . \text { Then } \\
& \quad \frac{f(b)-f(a)}{b-a}=\frac{f(x+h)-f(x)}{(x+h)-x}=\frac{f(x+h)-f(x)}{h} \\
& =\frac{1}{h}(f(x+h)-f(x)) \\
& =\frac{1}{h}\left(\frac{1}{x+h}-\frac{1}{x}\right) \\
& =\frac{1}{h}\left(\frac{1}{x+h} \cdot \frac{x}{x}-\frac{1}{x} \cdot \frac{x+h}{x+h}\right) \\
& =\frac{1}{h}\left(\frac{x}{(x+h) x}-\frac{x+h}{x(x+h)}\right) \\
& =\frac{1}{h}\left(\frac{x-(x+h)}{x(x+h)}\right)=\frac{1}{h} \cdot \frac{x-x-h}{x(x+h)} \\
& =\frac{1}{h} \cdot \frac{\not \hbar}{x(x+h)}=\frac{-1}{x(x+h)}
\end{aligned}
$$

$$
\begin{aligned}
\text { 3.4 Let } f(x) & =\frac{x}{2 x+3} ; a=x, b=x+h . \text { Then } \\
\frac{f(b)-f(a)}{b-a} & =\frac{f(x+h)-f(x)}{(x+h)-x}
\end{aligned}
$$

3 Find $\frac{f(b)-f(a)}{b-a}$ and rewrite your answer as a polynomial or as a reduced fraction. Go slowly through the slide and write down the answer to each part before you move ahead.

$$
\begin{aligned}
& \text { 3.3 Let } f(x)=\frac{1}{x} ; a=x, b=x+h . \text { Then } \\
& \quad \frac{f(b)-f(a)}{b-a}=\frac{f(x+h)-f(x)}{(x+h)-x}=\frac{f(x+h)-f(x)}{h} \\
& =\frac{1}{h}(f(x+h)-f(x)) \\
& =\frac{1}{h}\left(\frac{1}{x+h}-\frac{1}{x}\right) \\
& =\frac{1}{h}\left(\frac{1}{x+h} \cdot \frac{x}{x}-\frac{1}{x} \cdot \frac{x+h}{x+h}\right) \\
& =\frac{1}{h}\left(\frac{x}{(x+h) x}-\frac{x+h}{x(x+h)}\right) \\
& =\frac{1}{h}\left(\frac{x-(x+h)}{x(x+h)}\right)=\frac{1}{h} \cdot \frac{x-x-h}{x(x+h)} \\
& =\frac{1}{h} \cdot \frac{\not \hbar}{x(x+h)}=\frac{-1}{x(x+h)}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 3.4 Let } f(x)=\frac{x}{2 x+3} ; a=x, b=x+h \text {. Then } \\
& \qquad \frac{f(b)-f(a)}{b-a}=\frac{f(x+h)-f(x)}{(x+h)-x}=\frac{f(x+h)-f(x)}{h}
\end{aligned}
$$

$$
=
$$

3 Find $\frac{f(b)-f(a)}{b-a}$ and rewrite your answer as a polynomial or as a reduced fraction. Go slowly through the slide and write down the answer to each part before you move ahead.

$$
\begin{aligned}
& \text { 3.3 Let } f(x)=\frac{1}{x} ; a=x, b=x+h . \text { Then } \\
& \qquad \frac{f(b)-f(a)}{b-a}=\frac{f(x+h)-f(x)}{(x+h)-x}=\frac{f(x+h)-f(x)}{h} \\
& =\frac{1}{h}(f(x+h)-f(x)) \\
& =\frac{1}{h}\left(\frac{1}{x+h}-\frac{1}{x}\right) \\
& =\frac{1}{h}\left(\frac{1}{x+h} \cdot \frac{x}{x}-\frac{1}{x} \cdot \frac{x+h}{x+h}\right) \\
& =\frac{1}{h}\left(\frac{x}{(x+h) x}-\frac{x+h}{x(x+h)}\right) \\
& =\frac{1}{h}\left(\frac{x-(x+h)}{x(x+h)}\right)=\frac{1}{h} \cdot \frac{x-x-h}{x(x+h)} \\
& =\frac{1}{h} \cdot \frac{\not \hbar}{x(x+h)}=\frac{-1}{x(x+h)}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 3.4 Let } f(x)=\frac{x}{2 x+3} ; a=x, b=x+h \text {. Then } \\
& \frac{f(b)-f(a)}{b-a}=\frac{f(x+h)-f(x)}{(x+h)-x}=\frac{f(x+h)-f(x)}{h} \\
& =\frac{1}{h}(f(x+h)-f(x)) \\
& =
\end{aligned}
$$

3 Find $\frac{f(b)-f(a)}{b-a}$ and rewrite your answer as a polynomial or as a reduced fraction. Go slowly through the slide and write down the answer to each part before you move ahead.

$$
\begin{aligned}
& \text { 3.3 Let } f(x)=\frac{1}{x} ; a=x, b=x+h . \text { Then } \\
& \qquad \frac{f(b)-f(a)}{b-a}=\frac{f(x+h)-f(x)}{(x+h)-x}=\frac{f(x+h)-f(x)}{h} \\
& =\frac{1}{h}(f(x+h)-f(x)) \\
& =\frac{1}{h}\left(\frac{1}{x+h}-\frac{1}{x}\right) \\
& =\frac{1}{h}\left(\frac{1}{x+h} \cdot \frac{x}{x}-\frac{1}{x} \cdot \frac{x+h}{x+h}\right) \\
& =\frac{1}{h}\left(\frac{x}{(x+h) x}-\frac{x+h}{x(x+h)}\right) \\
& =\frac{1}{h}\left(\frac{x-(x+h)}{x(x+h)}\right)=\frac{1}{h} \cdot \frac{x-x-h}{x(x+h)} \\
& =\frac{1}{h} \cdot \frac{\not \hbar}{x(x+h)}=\frac{-1}{x(x+h)}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 3.4 Let } f(x)=\frac{x}{2 x+3} ; a=x, b=x+h \text {. Then } \\
& \frac{f(b)-f(a)}{b-a}=\frac{f(x+h)-f(x)}{(x+h)-x}=\frac{f(x+h)-f(x)}{h} \\
& =\frac{1}{h}(f(x+h)-f(x)) \\
& =\frac{1}{h}\left(\frac{x+h}{2 x+2 h+3}-\frac{x}{2 x+3}\right) \\
& =
\end{aligned}
$$

3 Find $\frac{f(b)-f(a)}{b-a}$ and rewrite your answer as a polynomial or as a reduced fraction. Go slowly through the slide and write down the answer to each part before you move ahead.

$$
\begin{aligned}
& \text { 3.3 Let } f(x)=\frac{1}{x} ; a=x, b=x+h . \text { Then } \\
& \qquad \frac{f(b)-f(a)}{b-a}=\frac{f(x+h)-f(x)}{(x+h)-x}=\frac{f(x+h)-f(x)}{h} \\
& =\frac{1}{h}(f(x+h)-f(x)) \\
& =\frac{1}{h}\left(\frac{1}{x+h}-\frac{1}{x}\right) \\
& =\frac{1}{h}\left(\frac{1}{x+h} \cdot \frac{x}{x}-\frac{1}{x} \cdot \frac{x+h}{x+h}\right) \\
& =\frac{1}{h}\left(\frac{x}{(x+h) x}-\frac{x+h}{x(x+h)}\right) \\
& =\frac{1}{h}\left(\frac{x-(x+h)}{x(x+h)}\right)=\frac{1}{h} \cdot \frac{x-x-h}{x(x+h)} \\
& =\frac{1}{h} \cdot \frac{\not \hbar}{x(x+h)}=\frac{-1}{x(x+h)}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 3.4 Let } f(x)=\frac{x}{2 x+3} ; a=x, b=x+h . \text { Then } \\
& \frac{f(b)-f(a)}{b-a}=\frac{f(x+h)-f(x)}{(x+h)-x}=\frac{f(x+h)-f(x)}{h} \\
& =\frac{1}{h}(f(x+h)-f(x)) \\
& =\frac{1}{h}\left(\frac{x+h}{2 x+2 h+3}-\frac{x}{2 x+3}\right) \\
& =\frac{1}{h}\left(\frac{x+h}{2 x+2 h+3} \cdot \frac{2 x+3}{2 x+3}-\frac{x}{2 x+3} \cdot \frac{2 x+2 h+3}{2 x+2 h+3}\right) \\
& =
\end{aligned}
$$

3 Find $\frac{f(b)-f(a)}{b-a}$ and rewrite your answer as a polynomial or as a reduced fraction. Go slowly through the slide and write down the answer to each part before you move ahead.

$$
\begin{aligned}
& \text { 3.3 Let } f(x)=\frac{1}{x} ; a=x, b=x+h . \text { Then } \\
& \qquad \frac{f(b)-f(a)}{b-a}=\frac{f(x+h)-f(x)}{(x+h)-x}=\frac{f(x+h)-f(x)}{h} \\
& =\frac{1}{h}(f(x+h)-f(x)) \\
& =\frac{1}{h}\left(\frac{1}{x+h}-\frac{1}{x}\right) \\
& =\frac{1}{h}\left(\frac{1}{x+h} \cdot \frac{x}{x}-\frac{1}{x} \cdot \frac{x+h}{x+h}\right) \\
& =\frac{1}{h}\left(\frac{x}{(x+h) x}-\frac{x+h}{x(x+h)}\right) \\
& =\frac{1}{h}\left(\frac{x-(x+h)}{x(x+h)}\right)=\frac{1}{h} \cdot \frac{x-x-h}{x(x+h)} \\
& =\frac{1}{h} \cdot \frac{\not \hbar}{x(x+h)}=\frac{-1}{x(x+h)}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 3.4 Let } f(x)=\frac{x}{2 x+3} ; a=x, b=x+h \text {. Then } \\
& \quad \frac{f(b)-f(a)}{b-a}=\frac{f(x+h)-f(x)}{(x+h)-x}=\frac{f(x+h)-f(x)}{h} \\
& =\frac{1}{h}(f(x+h)-f(x)) \\
& =\frac{1}{h}\left(\frac{x+h}{2 x+2 h+3}-\frac{x}{2 x+3}\right) \\
& =\frac{1}{h}\left(\frac{x+h}{2 x+2 h+3} \cdot \frac{2 x+3}{2 x+3}-\frac{x}{2 x+3} \cdot \frac{2 x+2 h+3}{2 x+2 h+3}\right) \\
& =\frac{1}{h}\left(\frac{x(2 x)+x(3)+h(2 x)+h(3)}{(2 x+3+2 h)(2 x+3)}-\frac{x(2 x)+x(2 h)+x(3)}{(2 x+3+2 h)(2 x+3)}\right) \\
& =
\end{aligned}
$$

3 Find $\frac{f(b)-f(a)}{b-a}$ and rewrite your answer as a polynomial or as a reduced fraction. Go slowly through the slide and write down the answer to each part before you move ahead.

$$
\begin{aligned}
& \text { 3.3 Let } f(x)=\frac{1}{x} ; a=x, b=x+h . \text { Then } \\
& \frac{f(b)-f(a)}{b-a}=\frac{f(x+h)-f(x)}{(x+h)-x}=\frac{f(x+h)-f(x)}{h} \\
&= \frac{1}{h}(f(x+h)-f(x)) \\
&= \frac{1}{h}\left(\frac{1}{x+h}-\frac{1}{x}\right) \\
&= \frac{1}{h}\left(\frac{1}{x+h} \cdot \frac{x}{x}-\frac{1}{x} \cdot \frac{x+h}{x+h}\right) \\
&= \frac{1}{h}\left(\frac{x}{(x+h) x}-\frac{x+h}{x(x+h)}\right) \\
&= \frac{1}{h}\left(\frac{x-(x+h)}{x(x+h)}\right)=\frac{1}{h} \cdot \frac{x-x-h}{x(x+h)} \\
&= \frac{1}{\not h} \cdot \frac{\nearrow h}{x(x+h)}=\frac{-1}{x(x+h)}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 3.4 Let } f(x)=\frac{x}{2 x+3} ; a=x, b=x+h \text {. Then } \\
& \quad \frac{f(b)-f(a)}{b-a}=\frac{f(x+h)-f(x)}{(x+h)-x}=\frac{f(x+h)-f(x)}{h} \\
& =\frac{1}{h}(f(x+h)-f(x)) \\
& =\frac{1}{h}\left(\frac{x+h}{2 x+2 h+3}-\frac{x}{2 x+3}\right) \\
& =\frac{1}{h}\left(\frac{x+h}{2 x+2 h+3} \cdot \frac{2 x+3}{2 x+3}-\frac{x}{2 x+3} \cdot \frac{2 x+2 h+3}{2 x+2 h+3}\right) \\
& =\frac{1}{h}\left(\frac{x(2 x)+x(3)+h(2 x)+h(3)}{(2 x+3+2 h)(2 x+3)}-\frac{x(2 x)+x(2 h)+x(3)}{(2 x+3+2 h)(2 x+3)}\right) \\
& = \\
& =\frac{2 x^{2}+3 x+2 h x+3 h-\left(2 x^{2}+2 x h+3 x\right)}{h(2 x+3+2 h)(2 x+3)} \\
& =
\end{aligned}
$$

3 Find $\frac{f(b)-f(a)}{b-a}$ and rewrite your answer as a polynomial or as a reduced fraction. Go slowly through the slide and write down the answer to each part before you move ahead.

$$
\begin{aligned}
& \text { 3.3 Let } f(x)=\frac{1}{x} ; a=x, b=x+h . \text { Then } \\
& \begin{aligned}
& \frac{f(b)-f(a)}{b-a}=\frac{f(x+h)-f(x)}{(x+h)-x}=\frac{f(x+h)-f(x)}{h} \\
= & \frac{1}{h}(f(x+h)-f(x)) \\
= & \frac{1}{h}\left(\frac{1}{x+h}-\frac{1}{x}\right) \\
= & \frac{1}{h}\left(\frac{1}{x+h} \cdot \frac{x}{x}-\frac{1}{x} \cdot \frac{x+h}{x+h}\right) \\
= & \frac{1}{h}\left(\frac{x}{(x+h) x}-\frac{x+h}{x(x+h)}\right) \\
= & \frac{1}{h}\left(\frac{x-(x+h)}{x(x+h)}\right)=\frac{1}{h} \cdot \frac{x-x-h}{x(x+h)} \\
= & \frac{1}{\not h} \cdot \frac{-\hbar}{x(x+h)}=\frac{-1}{x(x+h)}
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 3.4 Let } f(x)=\frac{x}{2 x+3} ; a=x, b=x+h \text {. Then } \\
& \quad \frac{f(b)-f(a)}{b-a}=\frac{f(x+h)-f(x)}{(x+h)-x}=\frac{f(x+h)-f(x)}{h} \\
& =\frac{1}{h}(f(x+h)-f(x)) \\
& =\frac{1}{h}\left(\frac{x+h}{2 x+2 h+3}-\frac{x}{2 x+3}\right) \\
& =\frac{1}{h}\left(\frac{x+h}{2 x+2 h+3} \cdot \frac{2 x+3}{2 x+3}-\frac{x}{2 x+3} \cdot \frac{2 x+2 h+3}{2 x+2 h+3}\right) \\
& =\frac{1}{h}\left(\frac{x(2 x)+x(3)+h(2 x)+h(3)}{(2 x+3+2 h)(2 x+3)}-\frac{x(2 x)+x(2 h)+x(3)}{(2 x+3+2 h)(2 x+3)}\right) \\
& =\frac{2 x^{2}+3 x+2 h x+3 h-\left(2 x^{2}+2 x h+3 x\right)}{h(2 x+3+2 h)(2 x+3)} \\
& =\frac{2 x^{2}+3 x+2 x \hbar+3 h-2 x^{2}-2 x \hbar-3 x}{h(2 x+3+2 h)(2 x+3)} \\
& =
\end{aligned}
$$

3 Find $\frac{f(b)-f(a)}{b-a}$ and rewrite your answer as a polynomial or as a reduced fraction. Go slowly through the slide and write down the answer to each part before you move ahead.

$$
\begin{aligned}
& \text { 3.3 Let } f(x)=\frac{1}{x} ; a=x, b=x+h . \text { Then } \\
& \qquad \begin{aligned}
& f(b)-f(a) \\
&= \frac{1}{h}(f(x+h)-f(x)) \\
&= \frac{1}{h}\left(\frac{1}{x+h}-\frac{1}{x}\right) \\
&= \frac{1}{h}\left(\frac{1}{x+h} \cdot \frac{x}{x}-\frac{1}{x} \cdot \frac{x+h}{x+h}\right) \\
&= \frac{1}{h}\left(\frac{x}{(x+h) x}-\frac{x+h}{x(x+h)}\right) \\
&= \frac{1}{h}\left(\frac{x-(x+h)}{x(x+h)}\right)=\frac{1}{h} \cdot \frac{x-x-h}{x(x+h)} \\
&= \frac{1}{\not h} \cdot \frac{\hbar}{x(x+h)}=\frac{-1}{x(x+h)}
\end{aligned}
\end{aligned}
$$

The following examples use the identity $(A+B)(A-B)=A^{2}-B^{2}$ by substituting $A=\sqrt{x+h}$ and $B=\sqrt{x}$. Then $(\sqrt{x+h}+\sqrt{x})(\sqrt{x+h}-\sqrt{x})=(\sqrt{x+h})^{2}-(\sqrt{x})^{2}=x+h-x=h$.
3.5 Let $f(x)=\sqrt{x} ; a=x, b=x+h$. Then $\frac{f(b)-f(a)}{b-a}=$

The following examples use the identity $(A+B)(A-B)=A^{2}-B^{2}$ by substituting $A=\sqrt{x+h}$ and $B=\sqrt{x}$. Then $(\sqrt{x+h}+\sqrt{x})(\sqrt{x+h}-\sqrt{x})=(\sqrt{x+h})^{2}-(\sqrt{x})^{2}=x+h-x=h$.
3.5 Let $f(x)=\sqrt{x} ; a=x, b=x+h$. Then
$\frac{f(b)-f(a)}{b-a}=\frac{f(x+h)-f(x)}{(x+h)-x}$

The following examples use the identity $(A+B)(A-B)=A^{2}-B^{2}$ by substituting $A=\sqrt{x+h}$ and $B=\sqrt{x}$. Then $(\sqrt{x+h}+\sqrt{x})(\sqrt{x+h}-\sqrt{x})=(\sqrt{x+h})^{2}-(\sqrt{x})^{2}=x+h-x=h$.
3.5 Let $f(x)=\sqrt{x} ; a=x, b=x+h$. Then
$\frac{f(b)-f(a)}{b-a}=\frac{f(x+h)-f(x)}{(x+h)-x}=\frac{f(x+h)-f(x)}{h}$

The following examples use the identity $(A+B)(A-B)=A^{2}-B^{2}$ by substituting $A=\sqrt{x+h}$ and $B=\sqrt{x}$. Then $(\sqrt{x+h}+\sqrt{x})(\sqrt{x+h}-\sqrt{x})=(\sqrt{x+h})^{2}-(\sqrt{x})^{2}=x+h-x=h$.
3.5 Let $f(x)=\sqrt{x} ; a=x, b=x+h$. Then
$\frac{f(b)-f(a)}{b-a}=\frac{f(x+h)-f(x)}{(x+h)-x}=\frac{f(x+h)-f(x)}{h}$
$=\frac{1}{h}(f(x+h)-f(x))$
$=$

The following examples use the identity $(A+B)(A-B)=A^{2}-B^{2}$ by substituting $A=\sqrt{x+h}$ and $B=\sqrt{x}$. Then $(\sqrt{x+h}+\sqrt{x})(\sqrt{x+h}-\sqrt{x})=(\sqrt{x+h})^{2}-(\sqrt{x})^{2}=x+h-x=h$.
3.5 Let $f(x)=\sqrt{x} ; a=x, b=x+h$. Then
$\frac{f(b)-f(a)}{b-a}=\frac{f(x+h)-f(x)}{(x+h)-x}=\frac{f(x+h)-f(x)}{h}$
$=\frac{1}{h}(f(x+h)-f(x))$
$=\frac{\sqrt{x+h}-\sqrt{x}}{h}$

The following examples use the identity $(A+B)(A-B)=A^{2}-B^{2}$ by substituting $A=\sqrt{x+h}$ and $B=\sqrt{x}$. Then $(\sqrt{x+h}+\sqrt{x})(\sqrt{x+h}-\sqrt{x})=(\sqrt{x+h})^{2}-(\sqrt{x})^{2}=x+h-x=h$.
3.5 Let $f(x)=\sqrt{x} ; a=x, b=x+h$. Then

$$
\frac{f(b)-f(a)}{b-a}=\frac{f(x+h)-f(x)}{(x+h)-x}=\frac{f(x+h)-f(x)}{h}
$$

$$
=\frac{1}{h}(f(x+h)-f(x))
$$

$$
=\frac{\sqrt{x+h}-\sqrt{x}}{h}
$$

$$
=\frac{\sqrt{x+h}-\sqrt{x}}{h} \cdot \frac{\sqrt{x+h}+\sqrt{x}}{\sqrt{x+h}+\sqrt{x}}
$$

$$
=
$$

The following examples use the identity $(A+B)(A-B)=A^{2}-B^{2}$ by substituting $A=\sqrt{x+h}$ and $B=\sqrt{x}$. Then $(\sqrt{x+h}+\sqrt{x})(\sqrt{x+h}-\sqrt{x})=(\sqrt{x+h})^{2}-(\sqrt{x})^{2}=x+h-x=h$.
3.5 Let $f(x)=\sqrt{x} ; a=x, b=x+h$. Then

$$
\frac{f(b)-f(a)}{b-a}=\frac{f(x+h)-f(x)}{(x+h)-x}=\frac{f(x+h)-f(x)}{h}
$$

$$
=\frac{1}{h}(f(x+h)-f(x))
$$

$$
=\frac{\sqrt{x+h}-\sqrt{x}}{h}
$$

$$
=\frac{\sqrt{x+h}-\sqrt{x}}{h} \cdot \frac{\sqrt{x+h}+\sqrt{x}}{\sqrt{x+h}+\sqrt{x}}
$$

$$
=\frac{(\sqrt{x+h}-\sqrt{x}) \cdot(\sqrt{x+h}+\sqrt{x})}{h(\sqrt{x+h}+\sqrt{x})}
$$

The following examples use the identity $(A+B)(A-B)=A^{2}-B^{2}$ by substituting $A=\sqrt{x+h}$ and $B=\sqrt{x}$. Then $(\sqrt{x+h}+\sqrt{x})(\sqrt{x+h}-\sqrt{x})=(\sqrt{x+h})^{2}-(\sqrt{x})^{2}=x+h-x=h$.
3.5 Let $f(x)=\sqrt{x} ; a=x, b=x+h$. Then

$$
\frac{f(b)-f(a)}{b-a}=\frac{f(x+h)-f(x)}{(x+h)-x}=\frac{f(x+h)-f(x)}{h}
$$

$$
=\frac{1}{h}(f(x+h)-f(x))
$$

$$
=\frac{\sqrt{x+h}-\sqrt{x}}{h}
$$

$$
=\frac{\sqrt{x+h}-\sqrt{x}}{h} \cdot \frac{\sqrt{x+h}+\sqrt{x}}{\sqrt{x+h}+\sqrt{x}}
$$

$$
=\frac{(\sqrt{x+h}-\sqrt{x}) \cdot(\sqrt{x+h}+\sqrt{x})}{h(\sqrt{x+h}+\sqrt{x})}
$$

$$
=\frac{(\sqrt{x+h})^{2}-(\sqrt{x})^{2}}{h(\sqrt{x+h}+\sqrt{x})}
$$

$$
=
$$

The following examples use the identity $(A+B)(A-B)=A^{2}-B^{2}$ by substituting $A=\sqrt{x+h}$ and $B=\sqrt{x}$. Then $(\sqrt{x+h}+\sqrt{x})(\sqrt{x+h}-\sqrt{x})=(\sqrt{x+h})^{2}-(\sqrt{x})^{2}=x+h-x=h$.
3.5 Let $f(x)=\sqrt{x} ; a=x, b=x+h$. Then

$$
\frac{f(b)-f(a)}{b-a}=\frac{f(x+h)-f(x)}{(x+h)-x}=\frac{f(x+h)-f(x)}{h}
$$

$$
=\frac{1}{h}(f(x+h)-f(x))
$$

$$
=\frac{\sqrt{x+h}-\sqrt{x}}{h}
$$

$$
=\frac{\sqrt{x+h}-\sqrt{x}}{h} \cdot \frac{\sqrt{x+h}+\sqrt{x}}{\sqrt{x+h}+\sqrt{x}}
$$

$$
=\frac{(\sqrt{x+h}-\sqrt{x}) \cdot(\sqrt{x+h}+\sqrt{x})}{h(\sqrt{x+h}+\sqrt{x})}
$$

$$
=\frac{(\sqrt{x+h})^{2}-(\sqrt{x})^{2}}{h(\sqrt{x+h}+\sqrt{x})}
$$

$$
=\frac{x+h-x}{h(\sqrt{x+h}+\sqrt{x})}
$$

$$
=
$$

The following examples use the identity $(A+B)(A-B)=A^{2}-B^{2}$ by substituting $A=\sqrt{x+h}$ and $B=\sqrt{x}$. Then $(\sqrt{x+h}+\sqrt{x})(\sqrt{x+h}-\sqrt{x})=(\sqrt{x+h})^{2}-(\sqrt{x})^{2}=x+h-x=h$.
3.5 Let $f(x)=\sqrt{x} ; a=x, b=x+h$. Then

$$
\frac{f(b)-f(a)}{b-a}=\frac{f(x+h)-f(x)}{(x+h)-x}=\frac{f(x+h)-f(x)}{h}
$$

$$
=\frac{1}{h}(f(x+h)-f(x))
$$

$$
=\frac{\sqrt{x+h}-\sqrt{x}}{h}
$$

$$
=\frac{\sqrt{x+h}-\sqrt{x}}{h} \cdot \frac{\sqrt{x+h}+\sqrt{x}}{\sqrt{x+h}+\sqrt{x}}
$$

$$
=\frac{(\sqrt{x+h}-\sqrt{x}) \cdot(\sqrt{x+h}+\sqrt{x})}{h(\sqrt{x+h}+\sqrt{x})}
$$

$$
=\frac{(\sqrt{x+h})^{2}-(\sqrt{x})^{2}}{h(\sqrt{x+h}+\sqrt{x})}
$$

$$
=\frac{x+h-x}{h(\sqrt{x+h}+\sqrt{x})}
$$

$$
=\frac{\not h}{\not h(\sqrt{x+h}+\sqrt{x})}=\frac{1}{\frac{1}{\sqrt{x+h}+\sqrt{x}}}
$$

$$
\begin{aligned}
\text { 3.6 Let } f(x) & =\frac{1}{\sqrt{x}} ; a=x, b=x+h . \text { Then } \\
\frac{f(b)-f(a)}{b-a} & =
\end{aligned}
$$

The following examples use the identity $(A+B)(A-B)=A^{2}-B^{2}$ by substituting $A=\sqrt{x+h}$ and $B=\sqrt{x}$. Then $(\sqrt{x+h}+\sqrt{x})(\sqrt{x+h}-\sqrt{x})=(\sqrt{x+h})^{2}-(\sqrt{x})^{2}=x+h-x=h$.
3.5 Let $f(x)=\sqrt{x} ; a=x, b=x+h$. Then

$$
\frac{f(b)-f(a)}{b-a}=\frac{f(x+h)-f(x)}{(x+h)-x}=\frac{f(x+h)-f(x)}{h}
$$

$$
=\frac{1}{h}(f(x+h)-f(x))
$$

$$
=\frac{\sqrt{x+h}-\sqrt{x}}{h}
$$

$$
=\frac{\sqrt{x+h}-\sqrt{x}}{h} \cdot \frac{\sqrt{x+h}+\sqrt{x}}{\sqrt{x+h}+\sqrt{x}}
$$

$$
=\frac{(\sqrt{x+h}-\sqrt{x}) \cdot(\sqrt{x+h}+\sqrt{x})}{h(\sqrt{x+h}+\sqrt{x})}
$$

$$
=\frac{(\sqrt{x+h})^{2}-(\sqrt{x})^{2}}{h(\sqrt{x+h}+\sqrt{x})}
$$

$$
=\frac{x+h-x}{h(\sqrt{x+h}+\sqrt{x})}
$$

$$
=\frac{\not h}{\not h(\sqrt{x+h}+\sqrt{x})}=\frac{1}{\frac{1}{\sqrt{x+h}+\sqrt{x}}}
$$

$$
\begin{aligned}
\text { 3.6 Let } f(x) & =\frac{1}{\sqrt{x}} ; a=x, b=x+h . \text { Then } \\
\frac{f(b)-f(a)}{b-a} & =\frac{f(x+h)-f(x)}{(x+h)-x}
\end{aligned}
$$

The following examples use the identity $(A+B)(A-B)=A^{2}-B^{2}$ by substituting $A=\sqrt{x+h}$ and $B=\sqrt{x}$. Then $(\sqrt{x+h}+\sqrt{x})(\sqrt{x+h}-\sqrt{x})=(\sqrt{x+h})^{2}-(\sqrt{x})^{2}=x+h-x=h$.

$$
\begin{aligned}
& \text { 3.5 Let } f(x)=\sqrt{x} ; a=x, b=x+h . \text { Then } \\
& \quad \frac{f(b)-f(a)}{b-a}=\frac{f(x+h)-f(x)}{(x+h)-x}=\frac{f(x+h)-f(x)}{h} \\
& =\frac{1}{h}(f(x+h)-f(x)) \\
& =\frac{\sqrt{x+h}-\sqrt{x}}{h} \\
& =\frac{\sqrt{x+h}-\sqrt{x}}{h} \cdot \frac{\sqrt{x+h}+\sqrt{x}}{\sqrt{x+h}+\sqrt{x}} \\
& =\frac{(\sqrt{x+h}-\sqrt{x}) \cdot(\sqrt{x+h}+\sqrt{x})}{h(\sqrt{x+h}+\sqrt{x})} \\
& =\frac{(\sqrt{x+h})^{2}-(\sqrt{x})^{2}}{h(\sqrt{x+h}+\sqrt{x})} \\
& =\frac{x+h-x}{h(\sqrt{x+h}+\sqrt{x})} \\
& =\frac{\not h}{h(\sqrt{x+h}+\sqrt{x})}=\frac{1}{\sqrt{x+h}+\sqrt{x}}
\end{aligned}
$$

$$
\begin{aligned}
\text { 3.6 Let } f(x) & =\frac{1}{\sqrt{x}} ; a=x, b=x+h \text {. Then } \\
\frac{f(b)-f(a)}{b-a} & =\frac{f(x+h)-f(x)}{(x+h)-x}=\frac{f(x+h)-f(x)}{h}
\end{aligned}
$$

$$
=
$$

The following examples use the identity $(A+B)(A-B)=A^{2}-B^{2}$ by substituting $A=\sqrt{x+h}$ and $B=\sqrt{x}$. Then $(\sqrt{x+h}+\sqrt{x})(\sqrt{x+h}-\sqrt{x})=(\sqrt{x+h})^{2}-(\sqrt{x})^{2}=x+h-x=h$.

$$
\begin{aligned}
& \text { 3.5 Let } f(x)=\sqrt{x} ; a=x, b=x+h . \text { Then } \\
& \quad \frac{f(b)-f(a)}{b-a}=\frac{f(x+h)-f(x)}{(x+h)-x}=\frac{f(x+h)-f(x)}{h} \\
& =\frac{1}{h}(f(x+h)-f(x)) \\
& =\frac{\sqrt{x+h}-\sqrt{x}}{h} \\
& =\frac{\sqrt{x+h}-\sqrt{x}}{h} \cdot \frac{\sqrt{x+h}+\sqrt{x}}{\sqrt{x+h}+\sqrt{x}} \\
& =\frac{(\sqrt{x+h}-\sqrt{x}) \cdot(\sqrt{x+h}+\sqrt{x})}{h(\sqrt{x+h}+\sqrt{x})} \\
& =\frac{(\sqrt{x+h})^{2}-(\sqrt{x})^{2}}{h(\sqrt{x+h}+\sqrt{x})} \\
& =\frac{x+h-x}{h(\sqrt{x+h}+\sqrt{x})} \\
& =\frac{\not h}{h(\sqrt{x+h}+\sqrt{x})}=\frac{1}{\sqrt{x+h}+\sqrt{x}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 3.6 Let } f(x)=\frac{1}{\sqrt{x}} ; a=x, b=x+h \text {. Then } \\
& \frac{f(b)-f(a)}{b-a}=\frac{f(x+h)-f(x)}{(x+h)-x}=\frac{f(x+h)-f(x)}{h} \\
& =\frac{1}{h}(f(x+h)-f(x)) \\
& =
\end{aligned}
$$

The following examples use the identity $(A+B)(A-B)=A^{2}-B^{2}$ by substituting $A=\sqrt{x+h}$ and $B=\sqrt{x}$. Then $(\sqrt{x+h}+\sqrt{x})(\sqrt{x+h}-\sqrt{x})=(\sqrt{x+h})^{2}-(\sqrt{x})^{2}=x+h-x=h$.

$$
\begin{aligned}
& \text { 3.5 Let } f(x)=\sqrt{x} ; a=x, b=x+h \text {. Then } \\
& \quad \frac{f(b)-f(a)}{b-a}=\frac{f(x+h)-f(x)}{(x+h)-x}=\frac{f(x+h)-f(x)}{h} \\
& =\frac{1}{h}(f(x+h)-f(x)) \\
& =\frac{\sqrt{x+h}-\sqrt{x}}{h} \\
& =\frac{\sqrt{x+h}-\sqrt{x}}{h} \cdot \frac{\sqrt{x+h}+\sqrt{x}}{\sqrt{x+h}+\sqrt{x}} \\
& =\frac{(\sqrt{x+h}-\sqrt{x}) \cdot(\sqrt{x+h}+\sqrt{x})}{h(\sqrt{x+h}+\sqrt{x})} \\
& =\frac{(\sqrt{x+h})^{2}-(\sqrt{x})^{2}}{h(\sqrt{x+h}+\sqrt{x})} \\
& =\frac{x+h-x}{h(\sqrt{x+h}+\sqrt{x})} \\
& =\frac{h}{\not h(\sqrt{x+h}+\sqrt{x})}=\frac{1}{\sqrt{x+h}+\sqrt{x}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 3.6 Let } f(x)=\frac{1}{\sqrt{x}} ; a=x, b=x+h \text {. Then } \\
& \quad \frac{f(b)-f(a)}{b-a}=\frac{f(x+h)-f(x)}{(x+h)-x}=\frac{f(x+h)-f(x)}{h} \\
& =\frac{1}{h}(f(x+h)-f(x)) \\
& =\frac{1}{h} \cdot\left(\frac{1}{\sqrt{x+h}}-\frac{1}{\sqrt{x}}\right) \\
& =
\end{aligned}
$$

The following examples use the identity $(A+B)(A-B)=A^{2}-B^{2}$ by substituting $A=\sqrt{x+h}$ and $B=\sqrt{x}$. Then $(\sqrt{x+h}+\sqrt{x})(\sqrt{x+h}-\sqrt{x})=(\sqrt{x+h})^{2}-(\sqrt{x})^{2}=x+h-x=h$.

$$
\begin{aligned}
& \text { 3.5 Let } f(x)=\sqrt{x} ; a=x, b=x+h \text {. Then } \\
& \quad \frac{f(b)-f(a)}{b-a}=\frac{f(x+h)-f(x)}{(x+h)-x}=\frac{f(x+h)-f(x)}{h} \\
& =\frac{1}{h}(f(x+h)-f(x)) \\
& =\frac{\sqrt{x+h}-\sqrt{x}}{h} \\
& =\frac{\sqrt{x+h}-\sqrt{x}}{h} \cdot \frac{\sqrt{x+h}+\sqrt{x}}{\sqrt{x+h}+\sqrt{x}} \\
& =\frac{(\sqrt{x+h}-\sqrt{x}) \cdot(\sqrt{x+h}+\sqrt{x})}{h(\sqrt{x+h}+\sqrt{x})} \\
& =\frac{(\sqrt{x+h})^{2}-(\sqrt{x})^{2}}{h(\sqrt{x+h}+\sqrt{x})} \\
& =\frac{x+h-x}{h(\sqrt{x+h}+\sqrt{x})} \\
& =\frac{h}{\not h(\sqrt{x+h}+\sqrt{x})}=\frac{1}{\sqrt{x+h}+\sqrt{x}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 3.6 Let } f(x)=\frac{1}{\sqrt{x}} ; a=x, b=x+h \text {. Then } \\
& \quad \frac{f(b)-f(a)}{b-a}=\frac{f(x+h)-f(x)}{(x+h)-x}=\frac{f(x+h)-f(x)}{h} \\
& =\frac{1}{h}(f(x+h)-f(x)) \\
& =\frac{1}{h} \cdot\left(\frac{1}{\sqrt{x+h}}-\frac{1}{\sqrt{x}}\right) \\
& =\frac{1}{h} \cdot\left(\frac{1}{\sqrt{x+h}} \frac{\sqrt{x}}{\sqrt{x}}-\frac{1}{\sqrt{x}} \frac{\sqrt{x+h}}{\sqrt{x+h}}\right) \\
& =
\end{aligned}
$$

The following examples use the identity $(A+B)(A-B)=A^{2}-B^{2}$ by substituting $A=\sqrt{x+h}$ and $B=\sqrt{x}$.
Then $(\sqrt{x+h}+\sqrt{x})(\sqrt{x+h}-\sqrt{x})=(\sqrt{x+h})^{2}-(\sqrt{x})^{2}=x+h-x=h$.

$$
\begin{aligned}
& \text { 3.5 Let } f(x)=\sqrt{x} ; a=x, b=x+h \text {. Then } \\
& \quad \frac{f(b)-f(a)}{b-a}=\frac{f(x+h)-f(x)}{(x+h)-x}=\frac{f(x+h)-f(x)}{h} \\
& =\frac{1}{h}(f(x+h)-f(x)) \\
& =\frac{\sqrt{x+h}-\sqrt{x}}{h} \\
& =\frac{\sqrt{x+h}-\sqrt{x}}{h} \cdot \frac{\sqrt{x+h}+\sqrt{x}}{\sqrt{x+h}+\sqrt{x}} \\
& =\frac{(\sqrt{x+h}-\sqrt{x}) \cdot(\sqrt{x+h}+\sqrt{x})}{h(\sqrt{x+h}+\sqrt{x})} \\
& =\frac{(\sqrt{x+h})^{2}-(\sqrt{x})^{2}}{h(\sqrt{x+h}+\sqrt{x})} \\
& =\frac{x+h-x}{h(\sqrt{x+h}+\sqrt{x})} \\
& =\frac{h}{h(\sqrt{x+h}+\sqrt{x})}=\frac{1}{\sqrt{x+h}+\sqrt{x}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 3.6 Let } f(x)=\frac{1}{\sqrt{x}} ; a=x, b=x+h \text {. Then } \\
& \quad \frac{f(b)-f(a)}{b-a}=\frac{f(x+h)-f(x)}{(x+h)-x}=\frac{f(x+h)-f(x)}{h} \\
& =\frac{1}{h}(f(x+h)-f(x)) \\
& =\frac{1}{h} \cdot\left(\frac{1}{\sqrt{x+h}}-\frac{1}{\sqrt{x}}\right) \\
& =\frac{1}{h} \cdot\left(\frac{1}{\sqrt{x+h}} \frac{\sqrt{x}}{\sqrt{x}}-\frac{1}{\sqrt{x}} \frac{\sqrt{x+h}}{\sqrt{x+h}}\right) \\
& =\frac{1}{h} \cdot\left(\frac{\sqrt{x}-\sqrt{x+h}}{\sqrt{x} \sqrt{x+h}}\right) \\
& =
\end{aligned}
$$

The following examples use the identity $(A+B)(A-B)=A^{2}-B^{2}$ by substituting $A=\sqrt{x+h}$ and $B=\sqrt{x}$.
Then $(\sqrt{x+h}+\sqrt{x})(\sqrt{x+h}-\sqrt{x})=(\sqrt{x+h})^{2}-(\sqrt{x})^{2}=x+h-x=h$.

$$
\begin{aligned}
& \text { 3.5 Let } f(x)=\sqrt{x} ; a=x, b=x+h \text {. Then } \\
& \quad \frac{f(b)-f(a)}{b-a}=\frac{f(x+h)-f(x)}{(x+h)-x}=\frac{f(x+h)-f(x)}{h} \\
& =\frac{1}{h}(f(x+h)-f(x)) \\
& =\frac{\sqrt{x+h}-\sqrt{x}}{h} \\
& =\frac{\sqrt{x+h}-\sqrt{x}}{h} \cdot \frac{\sqrt{x+h}+\sqrt{x}}{\sqrt{x+h}+\sqrt{x}} \\
& =\frac{(\sqrt{x+h}-\sqrt{x}) \cdot(\sqrt{x+h}+\sqrt{x})}{h(\sqrt{x+h}+\sqrt{x})} \\
& =\frac{(\sqrt{x+h})^{2}-(\sqrt{x})^{2}}{h(\sqrt{x+h}+\sqrt{x})} \\
& =\frac{x+h-x}{h(\sqrt{x+h}+\sqrt{x})} \\
& =\frac{h}{h(\sqrt{x+h}+\sqrt{x})}=\frac{1}{\sqrt{x+h}+\sqrt{x}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 3.6 Let } f(x)=\frac{1}{\sqrt{x}} ; a=x, b=x+h \text {. Then } \\
& \quad \frac{f(b)-f(a)}{b-a}=\frac{f(x+h)-f(x)}{(x+h)-x}=\frac{f(x+h)-f(x)}{h} \\
& =\frac{1}{h}(f(x+h)-f(x)) \\
& =\frac{1}{h} \cdot\left(\frac{1}{\sqrt{x+h}}-\frac{1}{\sqrt{x}}\right) \\
& =\frac{1}{h} \cdot\left(\frac{1}{\sqrt{x+h}} \frac{\sqrt{x}}{\sqrt{x}}-\frac{1}{\sqrt{x}} \frac{\sqrt{x+h}}{\sqrt{x+h}}\right) \\
& =\frac{1}{h} \cdot\left(\frac{\sqrt{x}-\sqrt{x+h}}{\sqrt{x} \sqrt{x+h}}\right) \\
& =\frac{1}{h} \cdot\left(\frac{\sqrt{x}-\sqrt{x+h}}{\sqrt{x} \sqrt{x+h}}\right) \cdot \frac{\sqrt{x}+\sqrt{x+h}}{\sqrt{x}+\sqrt{x+h}} \\
& =
\end{aligned}
$$

The following examples use the identity $(A+B)(A-B)=A^{2}-B^{2}$ by substituting $A=\sqrt{x+h}$ and $B=\sqrt{x}$.
Then $(\sqrt{x+h}+\sqrt{x})(\sqrt{x+h}-\sqrt{x})=(\sqrt{x+h})^{2}-(\sqrt{x})^{2}=x+h-x=h$.

$$
\begin{aligned}
& \text { 3.5 Let } f(x)=\sqrt{x} ; a=x, b=x+h \text {. Then } \\
& \quad \frac{f(b)-f(a)}{b-a}=\frac{f(x+h)-f(x)}{(x+h)-x}=\frac{f(x+h)-f(x)}{h} \\
& =\frac{1}{h}(f(x+h)-f(x)) \\
& =\frac{\sqrt{x+h}-\sqrt{x}}{h} \\
& =\frac{\sqrt{x+h}-\sqrt{x}}{h} \cdot \frac{\sqrt{x+h}+\sqrt{x}}{\sqrt{x+h}+\sqrt{x}} \\
& =\frac{(\sqrt{x+h}-\sqrt{x}) \cdot(\sqrt{x+h}+\sqrt{x})}{h(\sqrt{x+h}+\sqrt{x})} \\
& =\frac{(\sqrt{x+h})^{2}-(\sqrt{x})^{2}}{h(\sqrt{x+h}+\sqrt{x})} \\
& =\frac{x+h-x}{h(\sqrt{x+h}+\sqrt{x})} \\
& =\frac{h}{\not h(\sqrt{x+h}+\sqrt{x})}=\frac{1}{\sqrt{x+h}+\sqrt{x}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 3.6 Let } f(x)=\frac{1}{\sqrt{x}} ; a=x, b=x+h . \text { Then } \\
& \quad \frac{f(b)-f(a)}{b-a}=\frac{f(x+h)-f(x)}{(x+h)-x}=\frac{f(x+h)-f(x)}{h} \\
& =\frac{1}{h}(f(x+h)-f(x)) \\
& =\frac{1}{h} \cdot\left(\frac{1}{\sqrt{x+h}}-\frac{1}{\sqrt{x}}\right) \\
& =\frac{1}{h} \cdot\left(\frac{1}{\sqrt{x+h}} \frac{\sqrt{x}}{\sqrt{x}}-\frac{1}{\sqrt{x}} \frac{\sqrt{x+h}}{\sqrt{x+h}}\right) \\
& =\frac{1}{h} \cdot\left(\frac{\sqrt{x}-\sqrt{x+h}}{\sqrt{x} \sqrt{x+h}}\right) \\
& =\frac{1}{h} \cdot\left(\frac{\sqrt{x}-\sqrt{x+h}}{\sqrt{x} \sqrt{x+h}}\right) \cdot \frac{\sqrt{x}+\sqrt{x+h}}{\sqrt{x}+\sqrt{x+h}} \\
& =\frac{1}{h} \cdot \frac{(\sqrt{x}-\sqrt{x+h})(\sqrt{x}+\sqrt{x+h})}{(\sqrt{x} \sqrt{x+h})(\sqrt{x}+\sqrt{x+h})} \\
& =
\end{aligned}
$$

The following examples use the identity $(A+B)(A-B)=A^{2}-B^{2}$ by substituting $A=\sqrt{x+h}$ and $B=\sqrt{x}$.
Then $(\sqrt{x+h}+\sqrt{x})(\sqrt{x+h}-\sqrt{x})=(\sqrt{x+h})^{2}-(\sqrt{x})^{2}=x+h-x=h$.

$$
\begin{aligned}
& \text { 3.5 Let } f(x)=\sqrt{x} ; a=x, b=x+h \text {. Then } \\
& \quad \frac{f(b)-f(a)}{b-a}=\frac{f(x+h)-f(x)}{(x+h)-x}=\frac{f(x+h)-f(x)}{h} \\
& =\frac{1}{h}(f(x+h)-f(x)) \\
& =\frac{\sqrt{x+h}-\sqrt{x}}{h} \\
& =\frac{\sqrt{x+h}-\sqrt{x}}{h} \cdot \frac{\sqrt{x+h}+\sqrt{x}}{\sqrt{x+h}+\sqrt{x}} \\
& =\frac{(\sqrt{x+h}-\sqrt{x}) \cdot(\sqrt{x+h}+\sqrt{x})}{h(\sqrt{x+h}+\sqrt{x})} \\
& =\frac{(\sqrt{x+h})^{2}-(\sqrt{x})^{2}}{h(\sqrt{x+h}+\sqrt{x})} \\
& =\frac{x+h-x}{h(\sqrt{x+h}+\sqrt{x})} \\
& =\frac{h}{\not h(\sqrt{x+h}+\sqrt{x})}=\frac{1}{\sqrt{x+h}+\sqrt{x}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 3.6 Let } f(x)=\frac{1}{\sqrt{x}} ; a=x, b=x+h . \text { Then } \\
& \quad \frac{f(b)-f(a)}{b-a}=\frac{f(x+h)-f(x)}{(x+h)-x}=\frac{f(x+h)-f(x)}{h} \\
& =\frac{1}{h}(f(x+h)-f(x)) \\
& =\frac{1}{h} \cdot\left(\frac{1}{\sqrt{x+h}}-\frac{1}{\sqrt{x}}\right) \\
& =\frac{1}{h} \cdot\left(\frac{1}{\sqrt{x+h}} \frac{\sqrt{x}}{\sqrt{x}}-\frac{1}{\sqrt{x}} \frac{\sqrt{x+h}}{\sqrt{x+h}}\right) \\
& =\frac{1}{h} \cdot\left(\frac{\sqrt{x}-\sqrt{x+h}}{\sqrt{x} \sqrt{x+h}}\right) \\
& =\frac{1}{h} \cdot\left(\frac{\sqrt{x}-\sqrt{x+h}}{\sqrt{x} \sqrt{x+h}}\right) \cdot \frac{\sqrt{x}+\sqrt{x+h}}{\sqrt{x}+\sqrt{x+h}} \\
& =\frac{1}{h} \cdot \frac{(\sqrt{x}-\sqrt{x+h})(\sqrt{x}+\sqrt{x+h})}{(\sqrt{x} \sqrt{x+h}(\sqrt{x}+\sqrt{x+h})} \\
& =\frac{1}{h} \cdot \frac{(\sqrt{x})^{2}-(\sqrt{x+h})^{2}}{\sqrt{x} \sqrt{x+h}(\sqrt{x}+\sqrt{x+h})} \\
& =
\end{aligned}
$$

The following examples use the identity $(A+B)(A-B)=A^{2}-B^{2}$ by substituting $A=\sqrt{x+h}$ and $B=\sqrt{x}$.
Then $(\sqrt{x+h}+\sqrt{x})(\sqrt{x+h}-\sqrt{x})=(\sqrt{x+h})^{2}-(\sqrt{x})^{2}=x+h-x=h$.

$$
\begin{aligned}
& \text { 3.5 Let } f(x)=\sqrt{x} ; a=x, b=x+h \text {. Then } \\
& \frac{f(b)-f(a)}{b-a}=\frac{f(x+h)-f(x)}{(x+h)-x}=\frac{f(x+h)-f(x)}{h} \\
& =\frac{1}{h}(f(x+h)-f(x)) \\
& =\frac{\sqrt{x+h}-\sqrt{x}}{h} \\
& =\frac{\sqrt{x+h}-\sqrt{x}}{h} \cdot \frac{\sqrt{x+h}+\sqrt{x}}{\sqrt{x+h}+\sqrt{x}} \\
& =\frac{(\sqrt{x+h}-\sqrt{x}) \cdot(\sqrt{x+h}+\sqrt{x})}{h(\sqrt{x+h}+\sqrt{x})} \\
& =\frac{(\sqrt{x+h})^{2}-(\sqrt{x})^{2}}{h(\sqrt{x+h}+\sqrt{x})} \\
& =\frac{x+h-x}{h(\sqrt{x+h}+\sqrt{x})} \\
& =\frac{h}{\not h(\sqrt{x+h}+\sqrt{x})}=\frac{1}{\sqrt{x+h}+\sqrt{x}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 3.6 Let } f(x)=\frac{1}{\sqrt{x}} ; a=x, b=x+h . \text { Then } \\
& \quad \frac{f(b)-f(a)}{b-a}=\frac{f(x+h)-f(x)}{(x+h)-x}=\frac{f(x+h)-f(x)}{h} \\
& =\frac{1}{h}(f(x+h)-f(x)) \\
& =\frac{1}{h} \cdot\left(\frac{1}{\sqrt{x+h}}-\frac{1}{\sqrt{x}}\right) \\
& =\frac{1}{h} \cdot\left(\frac{1}{\sqrt{x+h}} \frac{\sqrt{x}}{\sqrt{x}}-\frac{1}{\sqrt{x}} \frac{\sqrt{x+h}}{\sqrt{x+h}}\right) \\
& =\frac{1}{h} \cdot\left(\frac{\sqrt{x}-\sqrt{x+h}}{\sqrt{x} \sqrt{x+h}}\right) \\
& =\frac{1}{h} \cdot\left(\frac{\sqrt{x}-\sqrt{x+h}}{\sqrt{x} \sqrt{x+h}}\right) \cdot \frac{\sqrt{x}+\sqrt{x+h}}{\sqrt{x}+\sqrt{x+h}} \\
& =\frac{1}{h} \cdot \frac{(\sqrt{x}-\sqrt{x+h})(\sqrt{x}+\sqrt{x+h})}{(\sqrt{x} \sqrt{x+h}(\sqrt{x}+\sqrt{x+h})} \\
& =\frac{1}{h} \cdot \frac{(\sqrt{x})^{2}-(\sqrt{x+h})^{2}}{\sqrt{x} \sqrt{x+h}(\sqrt{x}+\sqrt{x+h}} \\
& =\frac{1}{h} \cdot \frac{x-(x+h)}{\sqrt{x} \sqrt{x+h}(\sqrt{x}+\sqrt{x+h})} \\
& =
\end{aligned}
$$

The following examples use the identity $(A+B)(A-B)=A^{2}-B^{2}$ by substituting $A=\sqrt{x+h}$ and $B=\sqrt{x}$.
Then $(\sqrt{x+h}+\sqrt{x})(\sqrt{x+h}-\sqrt{x})=(\sqrt{x+h})^{2}-(\sqrt{x})^{2}=x+h-x=h$.

$$
\begin{aligned}
& \text { 3.5 Let } f(x)=\sqrt{x} ; a=x, b=x+h \text {. Then } \\
& \quad \frac{f(b)-f(a)}{b-a}=\frac{f(x+h)-f(x)}{(x+h)-x}=\frac{f(x+h)-f(x)}{h} \\
& =\frac{1}{h}(f(x+h)-f(x)) \\
& =\frac{\sqrt{x+h}-\sqrt{x}}{h} \\
& =\frac{\sqrt{x+h}-\sqrt{x}}{h} \cdot \frac{\sqrt{x+h}+\sqrt{x}}{\sqrt{x+h}+\sqrt{x}} \\
& =\frac{(\sqrt{x+h}-\sqrt{x}) \cdot(\sqrt{x+h}+\sqrt{x})}{h(\sqrt{x+h}+\sqrt{x})} \\
& =\frac{(\sqrt{x+h})^{2}-(\sqrt{x})^{2}}{h(\sqrt{x+h}+\sqrt{x})} \\
& =\frac{x+h-x}{h(\sqrt{x+h}+\sqrt{x})} \\
& =\frac{h}{h(\sqrt{x+h}+\sqrt{x})}=\frac{1}{\sqrt{x+h}+\sqrt{x}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 3.6 Let } f(x)=\frac{1}{\sqrt{x}} ; a=x, b=x+h . \text { Then } \\
& \quad \frac{f(b)-f(a)}{b-a}=\frac{f(x+h)-f(x)}{(x+h)-x}=\frac{f(x+h)-f(x)}{h} \\
& =\frac{1}{h}(f(x+h)-f(x)) \\
& =\frac{1}{h} \cdot\left(\frac{1}{\sqrt{x+h}}-\frac{1}{\sqrt{x}}\right) \\
& =\frac{1}{h} \cdot\left(\frac{1}{\sqrt{x+h}} \frac{\sqrt{x}}{\sqrt{x}}-\frac{1}{\sqrt{x}} \frac{\sqrt{x+h}}{\sqrt{x+h}}\right) \\
& =\frac{1}{h} \cdot\left(\frac{\sqrt{x}-\sqrt{x+h}}{\sqrt{x} \sqrt{x+h}}\right) \\
& =\frac{1}{h} \cdot\left(\frac{\sqrt{x}-\sqrt{x+h}}{\sqrt{x} \sqrt{x+h}}\right) \cdot \frac{\sqrt{x}+\sqrt{x+h}}{\sqrt{x}+\sqrt{x+h}} \\
& =\frac{1}{h} \cdot \frac{(\sqrt{x}-\sqrt{x+h})(\sqrt{x}+\sqrt{x+h})}{(\sqrt{x} \sqrt{x+h}(\sqrt{x}+\sqrt{x+h})} \\
& =\frac{1}{h} \cdot \frac{(\sqrt{x})^{2}-(\sqrt{x+h})^{2}}{\sqrt{x} \sqrt{x+h}(\sqrt{x}+\sqrt{x+h})} \\
& =\frac{1}{h} \cdot \frac{x-(x+h)}{\sqrt{x} \sqrt{x+h}(\sqrt{x}+\sqrt{x+h})} \\
& =\frac{1}{h} \cdot \frac{\sqrt{x} \sqrt{x+h}(\sqrt{x}+\sqrt{x+h})}{\sqrt{x}}
\end{aligned}
$$

The following examples use the identity $(A+B)(A-B)=A^{2}-B^{2}$ by substituting $A=\sqrt{x+h}$ and $B=\sqrt{x}$.
Then $(\sqrt{x+h}+\sqrt{x})(\sqrt{x+h}-\sqrt{x})=(\sqrt{x+h})^{2}-(\sqrt{x})^{2}=x+h-x=h$.

$$
\begin{aligned}
& \text { 3.5 Let } f(x)=\sqrt{x} ; a=x, b=x+h . \text { Then } \\
& \quad \frac{f(b)-f(a)}{b-a}=\frac{f(x+h)-f(x)}{(x+h)-x}=\frac{f(x+h)-f(x)}{h} \\
& =\frac{1}{h}(f(x+h)-f(x)) \\
& =\frac{\sqrt{x+h}-\sqrt{x}}{h} \\
& =\frac{\sqrt{x+h}-\sqrt{x}}{h} \cdot \frac{\sqrt{x+h}+\sqrt{x}}{\sqrt{x+h}+\sqrt{x}} \\
& =\frac{(\sqrt{x+h}-\sqrt{x}) \cdot(\sqrt{x+h}+\sqrt{x})}{h(\sqrt{x+h}+\sqrt{x})} \\
& =\frac{(\sqrt{x+h})^{2}-(\sqrt{x})^{2}}{h(\sqrt{x+h}+\sqrt{x})} \\
& =\frac{x+h-x}{h(\sqrt{x+h}+\sqrt{x})} \\
& =\frac{h}{h(\sqrt{x+h}+\sqrt{x})}=\frac{1}{\sqrt{x+h}+\sqrt{x}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 3.6 Let } f(x)=\frac{1}{\sqrt{x}} ; a=x, b=x+h \text {. Then } \\
& \quad \frac{f(b)-f(a)}{b-a}=\frac{f(x+h)-f(x)}{(x+h)-x}=\frac{f(x+h)-f(x)}{h} \\
& =\frac{1}{h}(f(x+h)-f(x)) \\
& =\frac{1}{h} \cdot\left(\frac{1}{\sqrt{x+h}}-\frac{1}{\sqrt{x}}\right) \\
& =\frac{1}{h} \cdot\left(\frac{1}{\sqrt{x+h}} \frac{\sqrt{x}}{\sqrt{x}}-\frac{1}{\sqrt{x}} \frac{\sqrt{x+h}}{\sqrt{x+h}}\right) \\
& =\frac{1}{h} \cdot\left(\frac{\sqrt{x}-\sqrt{x+h}}{\sqrt{x} \sqrt{x+h}}\right) \\
& =\frac{1}{h} \cdot\left(\frac{\sqrt{x}-\sqrt{x+h}}{\sqrt{x} \sqrt{x+h}}\right) \cdot \frac{\sqrt{x}+\sqrt{x+h}}{\sqrt{x}+\sqrt{x+h}} \\
& =\frac{1}{h} \cdot \frac{(\sqrt{x}-\sqrt{x+h})(\sqrt{x}+\sqrt{x+h})}{(\sqrt{x} \sqrt{x+h}(\sqrt{x}+\sqrt{x+h})} \\
& =\frac{1}{h} \cdot \frac{(\sqrt{x})^{2}-(\sqrt{x+h})^{2}}{\sqrt{x} \sqrt{x+h}(\sqrt{x}+\sqrt{x+h})} \\
& =\frac{1}{h} \cdot \frac{x-(x+h)}{\sqrt{x} \sqrt{x+h}(\sqrt{x}+\sqrt{x+h})} \\
& =\frac{1}{\not h} \cdot \frac{-\hbar}{\sqrt{x} \sqrt{x+h}(\sqrt{x}+\sqrt{x+h})}=\frac{-1}{\sqrt{x} \sqrt{x+h}(\sqrt{x}+\sqrt{x+h})}
\end{aligned}
$$

