In all the following f = F' and g = G'. 1. **Product Rule**. Given F, f, G, g find Fg + fG **Example:** If $F = (x^2 + 1)^3, G = (2x + 7)^3, f = 3(x^2 + 1)^2, g = 6(2x + 7)^2$ Find Fg + fG and factor your answer completely.

2. Quotient Rule Given *F*, *f*, *G*, *g* find $(F/G)' = \frac{fG-Fg}{G^2}$ Example: $F = (x^2 + 1)^m$ $G = (x^2 + x)^n$ $f = 2mx(x^2 + 1)^{m-1}$ $g = 2n(x + 1)(x^2 + x)^{n-1}$. 3. Given *F*(*x*) and *f*(*x*) = *F'*(*x*). Find *F*(*a*), *F*(*b*), *f*(*a*), *f*(*b*), and $\frac{F(b)-F(a)}{b-a}$. 4. Rewrite $\frac{x^n + 1 + x^m \sqrt{x}}{x^k}$ without radical signs. Rewrite $\frac{x^n + 1 + x^m \sqrt{x}}{x^k}$ without negative exponents . 5. Implicit differentiation : Solve $3y^2D + y^3x = (x^2 - 1)D + x$ for *D*. 6. Given *F*(*x*) and *f*(*x*), • Eind equation of line through (*a*, *F*(*a*)) with slop

• Find equation of line through (a, F(a)) with slope f(a).

• Solve
$$y - F(a) = f(a)(x - a)$$
 for y

• Solve
$$\frac{y-F(a)}{x-a} = f(a)$$
 for y .

7. a) Let x = a and x = b (with a < b) be the solutions of u(x) = v(x). Find F(b) - F(a). b) Let x = a and x = b and x = c (with a < b < c) be the solutions of u(x) = v(x). Find F(b) - F(a) + F(b) - F(c).8. Given F. simplify the difference quotient $\frac{F(a+h)-F(a)}{b}$ 9. Given f (a first or second derivative) a) Solve f(x) = 0. b) In what intervals is f(x) positive? negative? 10. Given F, find and simplify $\frac{F(b)-F(a)}{b-a}$ 11. Suppose $F(x) = x^3 + bx^2 + cx + d$ and $f(x) = 3x^2 + 2bx + c$ If F(1) = 0 and F(2) = 4 and f(2) = 3. find F(x), f(x), f(a), etc. 12. Order of operations problems such as • $3x(x+1)^2 - x^2(3-2x)$. • Given f(x) = x + 1 and q(x) = 2 - x find f(x) - 2q(x) - f(x)q(x).

・ロン ・回 と ・ ヨン ・ ヨン

1. Warmup for Product rule Let $F = A^3$; $G = B^3$; $f = 3A^2$; and $g = 6B^2$. Find Fg + fG and factor your answer completely.

Stanley Ocken Sabbatical Notes : Calculus Preparation

イロン イロン イヨン イヨン 三日

1. Warmup for Product rule Let $F = A^3$; $G = B^3$; $f = 3A^2$; and $g = 6B^2$. Find Fg + fG and factor your answer completely.

Solution: Scroll slowly. Try each step before you look at the answer.

Substitute the given polynomials into Fg + fG

<ロ> (四) (四) (三) (三) (三) (三)

1. Warmup for Product rule Let $F = A^3$; $G = B^3$; $f = 3A^2$; and $g = 6B^2$. Find Fg + fG and factor your answer completely.

Solution: Scroll slowly. Try each step before you look at the answer.

Substitute the given polynomials into Fg + fG $A^{3}(6B^{2}) + (3A^{2})(B^{3})$

Recognize as sum of two terms

イロン イヨン イヨン イヨン

1. Warmup for Product rule Let $F = A^3$; $G = B^3$; $f = 3A^2$; and $g = 6B^2$. Find Fg + fG and factor your answer completely.

Solution: Scroll slowly. Try each step before you look at the answer.

Substitute the given polynomials into Fg + fG $A^{3}(6B^{2}) + (3A^{2})(B^{3})$ Recognize as sum of two terms $= A^{3}(6B^{2}) + (3A^{2})(B^{3})$ Rewrite each term with constant at left

イロン イヨン イヨン イヨン

1. Warmup for Product rule Let $F = A^3$; $G = B^3$; $f = 3A^2$; and $g = 6B^2$. Find Fg + fG and factor your answer completely.

Solution: Scroll slowly. Try each step before you look at the answer.

Substitute the given polynomials into Fg + fGRecognize as sum of two terms Rewrite each term with constant at left Pull out common factor 3 $A^3(6B^2) + (3A^2)(B^3)$ $= A^3(6B^2) + (3A^2)(B^3)$

イロト イヨト イヨト イヨト

1. Warmup for Product rule Let $F = A^3$; $G = B^3$; $f = 3A^2$; and $g = 6B^2$. Find Fg + fG and factor your answer completely.

Solution: Scroll slowly. Try each step before you look at the answer.

Substitute the given polynomials into Fg + fG $A^3(6B^2) + (3A^2)(B^3)$ Recognize as sum of two terms $= A^3(6B^2) + (3A^2)(B^3)$ Rewrite each term with constant at left $= 6A^3B^2 + 3A^2B^3$ Pull out common factor 3 $= 3(2A^3B^2 + A^2B^3)$ Pull out the lowest common power A^2 of A

1. Warmup for Product rule Let $F = A^3$; $G = B^3$; $f = 3A^2$; and $g = 6B^2$. Find Fq + fG and factor your answer completely.

Solution: Scroll slowly. Try each step before you look at the answer.

Substitute the given polynomials into Fg + fGRecognize as sum of two terms $= A^3(6B^2) + (3A^2)(B^3)$ Rewrite each term with constant at left $= 6A^3B^2 + 3A^2B^3$ Pull out common factor 3 = $3(2A^3B^2 + A^2B^3)$ Pull out the lowest common power A^2 of APull out lowest common power B^2 of B

 $A^{3}(6B^{2}) + (3A^{2})(B^{3})$ $= 3A^2 (2A^{3-2}B^2 + B^3)$

1. Warmup for Product rule Let $F = A^3$; $G = B^3$; $f = 3A^2$; and $g = 6B^2$. Find Fg + fG and factor your answer completely.

Solution: Scroll slowly. Try each step before you look at the answer.

Substitute the given polynomials into Fg + fG $A^3(6B^2) + (3A^2)(B^3)$ Recognize as sum of two terms $= A^3(6B^2) + (3A^2)(B^3)$ Rewrite each term with constant at left $= 6A^3B^2 + 3A^2B^3$ Pull out common factor 3 $= 3(2A^3B^2 + A^2B^3)$ Pull out the lowest common power A^2 of $A = 3A^2(2A^{3-2}B^2 + B^3)$ Pull out lowest common power B^2 of $B = 3A^2B^2(2A^{3-2} + B^{3-2})$

1. Warmup for Product rule Let $F = A^3$; $G = B^3$; $f = 3A^2$; and $g = 6B^2$. Find Fg + fG and factor your answer completely.

Solution: Scroll slowly. Try each step before you look at the answer.

Substitute the given polynomials into Fg + fG $A^3(6B^2)$ Recognize as sum of two terms $= A^3(6B^2)$ Rewrite each term with constant at left $= 6A^3B^2$ Pull out common factor 3 $= 3(2A^3E)$ Pull out the lowest common power A^2 of $A = 3A^2$ (2A) Pull out lowest common power B^2 of $B = 3A^2B^2$ Subtract exponents

$$A^{3}(6B^{2}) + (3A^{2})(B^{3})$$

= $A^{3}(6B^{2}) + (3A^{2})(B^{3})$
= $6A^{3}B^{2} + 3A^{2}B^{3}$
= $3(2A^{3}B^{2} + A^{2}B^{3})$
= $3A^{2}(2A^{3-2}B^{2} + B^{3})$
= $3A^{2}B^{2}(2A^{3-2} + B^{3-2})$

・ロト ・回ト ・ヨト ・ヨト

1. Warmup for Product rule Let $F = A^3$; $G = B^3$; $f = 3A^2$; and $g = 6B^2$. Find Fg + fG and factor your answer completely.

Solution: Scroll slowly. Try each step before you look at the answer.

Substitute the given polynomials into Fg + fG $A^3(6B^2) + (3A^2)(B^3)$ Recognize as sum of two terms $= A^3(6B^2) + (3A^2)(B^3)$ Rewrite each term with constant at left $= 6A^3B^2 + 3A^2B^3$ Pull out common factor 3 $= 3(2A^3B^2 + A^2B^3)$ Pull out the lowest common power A^2 of $A = 3A^2(2A^{3-2}B^2 + B^3)$ Pull out lowest common power B^2 of $B = 3A^2B^2(2A^{3-2} + B^{3-2})$ Subtract exponents $= 3A^2B^2(2A^1 + B^1)$

1. Warmup for Product rule Let $F = A^3$; $G = B^3$; $f = 3A^2$; and $g = 6B^2$. Find Fq + fG and factor your answer completely.

Solution: Scroll slowly. Try each step before you look at the answer.

Substitute the given polynomials into Fq + fGRecognize as sum of two terms Rewrite each term with constant at left Pull out common factor 3 = $3(2A^3B^2 + A^2B^3)$ Pull out the lowest common power A^2 of APull out lowest common power B^2 of BSubtract exponents This is the final answer

 $A^{3}(6B^{2}) + (3A^{2})(B^{3})$ $= A^{3}(6B^{2}) + (3A^{2})(B^{3})$ $= 6A^{3}B^{2} + 3A^{2}B^{3}$ $= 3A^2 (2A^{3-2}B^2 + B^3)$ $= 3A^2B^2 (2A^{3-2} + B^{3-2})$ $= 3A^2B^2 (2A^1 + B^1)$

1. Warmup for Product rule Let $F = A^3$; $G = B^3$; $f = 3A^2$; and $g = 6B^2$. Find Fq + fG and factor your answer completely.

Solution: Scroll slowly. Try each step before you look at the answer.

Substitute the given polynomials into Fq + fG $A^{3}(6B^{2}) + (3A^{2})(B^{3})$ Recognize as sum of two terms Rewrite each term with constant at left Pull out common factor 3 = $3(2A^3B^2 + A^2B^3)$ Pull out the lowest common power A^2 of APull out lowest common power B^2 of BSubtract exponents This is the final answer

 $= A^{3}(6B^{2}) + (3A^{2})(B^{3})$ $= 6A^{3}B^{2} + 3A^{2}B^{3}$ $= 3A^2 (2A^{3-2}B^2 + B^3)$ $= 3A^2B^2 (2A^{3-2} + B^{3-2})$ $= 3A^2B^2 (2A^1 + B^1)$ $= 3A^2B^2(2A+B)$

Stanley Ocken Sabbatical Notes : Calculus Preparation

Solution: This problem was obtained by substituting $x^2 + 1$ for A and 2x + 7 for B in the warmup problem. This problem seems harder, simply because there are more symbols.

Substitute the given polynomials into Fg + fG

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Solution: This problem was obtained by substituting $x^2 + 1$ for A and 2x + 7 for B in the warmup problem. This problem seems harder, simply because there are more symbols.

Substitute the given polynomials into Fg + fG $(x^2 + 1)^3(6(2x + 7)^2) + (3(x^2 + 1)^2)((2x + 7)^3)$

Recognize as sum of two terms =

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Solution: This problem was obtained by substituting $x^2 + 1$ for A and 2x + 7 for B in the warmup problem. This problem seems harder, simply because there are more symbols.

Substitute the given polynomials into Fg + fG $(x^2 + 1)^3(6(2x + 7)^2) + (3(x^2 + 1)^2)((2x + 7)^3)$ Recognize as sum of two terms $= (x^2 + 1)^3(6(2x + 7)^2) + (3(x^2 + 1)^2)((2x + 7)^3)$

Rewrite each term with constant at left =

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Solution: This problem was obtained by substituting $x^2 + 1$ for A and 2x + 7 for B in the warmup problem. This problem seems harder, simply because there are more symbols.

Substitute the given polynomials into Fg + fG $(x^2 + 1)^3(6(2x + 7)^2) + (3(x^2 + 1)^2)((2x + 7)^3)$ Recognize as sum of two terms $= (x^2 + 1)^3(6(2x + 7)^2) + (3(x^2 + 1)^2)((2x + 7)^3)$ Rewrite each term with constant at left $= 6(x^2 + 1)^3(2x + 7)^2 + 3(x^2 + 1)^2(2x + 7)^3$ Factor out common factor 3 =

Solution: This problem was obtained by substituting $x^2 + 1$ for A and 2x + 7 for B in the warmup problem. This problem seems harder, simply because there are more symbols.

Substitute the given polynomials into Fg + fG $(x^2 + 1)^3(6(2x + 7)^2) + (3(x^2 + 1)^2)((2x + 7)^3)$ Recognize as sum of two terms $= (x^2 + 1)^3(6(2x + 7)^2) + (3(x^2 + 1)^2)((2x + 7)^3)$ Rewrite each term with constant at left $= 6(x^2 + 1)^3(2x + 7)^2 + 3(x^2 + 1)^2(2x + 7)^3$ Factor out common factor $3 = 3(2(x^2 + 1)^3(2x + 7)^2 + (x^2 + 1)^2(2x + 7)^3)$ Factor $(x^2 + 1)^2$ from both terms. =

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

Solution: This problem was obtained by substituting $x^2 + 1$ for A and 2x + 7 for B in the warmup problem. This problem seems harder, simply because there are more symbols.

Substitute the given polynomials into Fg + fG $(x^2 + 1)^3(6(2x + 7)^2) + (3(x^2 + 1)^2)((2x + 7)^3)$ Recognize as sum of two terms $= (x^2 + 1)^3(6(2x + 7)^2) + (3(x^2 + 1)^2)((2x + 7)^3)$ Rewrite each term with constant at left $= 6(x^2 + 1)^3(2x + 7)^2 + 3(x^2 + 1)^2(2x + 7)^3$ Factor out common factor 3 $= 3(2(x^2 + 1)^3(2x + 7)^2 + (x^2 + 1)^2(2x + 7)^3)$ Factor $(x^2 + 1)^2$ from both terms. $= 3(x^2 + 1)^2(2(x^2 + 1)^{3-2}(2x + 7)^2 + (2x + 7)^3)$ Factor $(2x + 7)^2$ from both terms. =

(日) (同) (注) (注) (三)

Solution: This problem was obtained by substituting $x^2 + 1$ for A and 2x + 7 for B in the warmup problem. This problem seems harder, simply because there are more symbols.

Substitute the given polynomials into Fg + fG $(x^2 + 1)^3(6(2x + 7)^2) + (3(x^2 + 1)^2)((2x + 7)^3)$ Recognize as sum of two terms $= (x^2 + 1)^3(6(2x + 7)^2) + (3(x^2 + 1)^2)((2x + 7)^3)$ Rewrite each term with constant at left $= 6(x^2 + 1)^3(2x + 7)^2 + 3(x^2 + 1)^2(2x + 7)^3$ Factor out common factor $3 = 3(2(x^2 + 1)^3(2x + 7)^2 + (x^2 + 1)^2(2x + 7)^3)$ Factor $(x^2 + 1)^2$ from both terms. $= 3(x^2 + 1)^2(2(x^2 + 1)^{3-2}(2x + 7)^2 + (2x + 7)^3)$ Factor $(2x + 7)^2$ from both terms. $= 3(x^2 + 1)^2(2x + 7)^2$ $(2(x^2 + 1)^{3-2} + (2x + 7)^{3-2})$

Solution: This problem was obtained by substituting $x^2 + 1$ for A and 2x + 7 for B in the warmup problem. This problem seems harder, simply because there are more symbols.

Substitute the given polynomials into Fg + fG $(x^2 + 1)^3(6(2x + 7)^2) + (3(x^2 + 1)^2)((2x + 7)^3)$ Recognize as sum of two terms $= (x^2 + 1)^3(6(2x + 7)^2) + (3(x^2 + 1)^2)((2x + 7)^3)$ Rewrite each term with constant at left $= 6(x^2 + 1)^3(2x + 7)^2 + 3(x^2 + 1)^2(2x + 7)^3$ Factor out common factor $3 = 3(2(x^2 + 1)^3(2x + 7)^2 + (x^2 + 1)^2(2x + 7)^3)$ Factor $(x^2 + 1)^2$ from both terms. $= 3(x^2 + 1)^2(2(x^2 + 1)^{3-2}(2x + 7)^2 + (2x + 7)^3)$ Factor $(2x + 7)^2$ from both terms. $= 3(x^2 + 1)^2(2x + 7)^2 (2(x^2 + 1)^{3-2} + (2x + 7)^{3-2})$ Subtract exponents =

(日) (四) (王) (王) (王)

Solution: This problem was obtained by substituting $x^2 + 1$ for A and 2x + 7 for B in the warmup problem. This problem seems harder, simply because there are more symbols.

Substitute the given polynomials into Fg + fG $(x^2 + 1)^3(6(2x + 7)^2) + (3(x^2 + 1)^2)((2x + 7)^3)$ Recognize as sum of two terms $= (x^2 + 1)^3(6(2x + 7)^2) + (3(x^2 + 1)^2)((2x + 7)^3)$ Rewrite each term with constant at left $= 6(x^2 + 1)^3(2x + 7)^2 + 3(x^2 + 1)^2(2x + 7)^3$ Factor out common factor 3 $= 3(2(x^2 + 1)^3(2x + 7)^2 + (x^2 + 1)^2(2x + 7)^3)$ Factor $(x^2 + 1)^2$ from both terms. $= 3(x^2 + 1)^2(2(x^2 + 1)^{3-2}(2x + 7)^2 + (2x + 7)^3)$ Factor $(2x + 7)^2$ from both terms. $= 3(x^2 + 1)^2(2x + 7)^2$ $(2(x^2 + 1)^{3-2} + (2x + 7)^{3-2})$ Subtract exponents $= 3(x^2 + 1)^2(2x + 7)^2$ $(2(x^2 + 1)^1 + (2x + 7)^1)$

Solution: This problem was obtained by substituting $x^2 + 1$ for A and 2x + 7 for B in the warmup problem. This problem seems harder, simply because there are more symbols.

 $(x^{2}+1)^{3}(6(2x+7)^{2}) + (3(x^{2}+1)^{2})((2x+7)^{3})$ Substitute the given polynomials into Fa + fG $= (x^{2}+1)^{3}(6(2x+7)^{2}) + (3(x^{2}+1)^{2})((2x+7)^{3})$ Recognize as sum of two terms $= 6(x^{2}+1)^{3}(2x+7)^{2} + 3(x^{2}+1)^{2}(2x+7)^{3}$ Rewrite each term with constant at left $= 3 \left(2(x^{2}+1)^{3}(2x+7)^{2} + (x^{2}+1)^{2}(2x+7)^{3} \right)$ Factor out common factor 3 Factor $(x^2 + 1)^2$ from both terms. $= 3(x^{2}+1)^{2} (2(x^{2}+1)^{3-2}(2x+7)^{2}+(2x+7)^{3})$ $= 3(x^{2}+1)^{2}(2x+7)^{2} \left(2(x^{2}+1)^{3-2}+(2x+7)^{3-2}\right)$ Factor $(2x+7)^2$ from both terms. $= 3(x^{2}+1)^{2}(2x+7)^{2} (2(x^{2}+1)^{1}+(2x+7)^{1})$ Subtract exponents Expand the remaining factor =

Solution: This problem was obtained by substituting $x^2 + 1$ for A and 2x + 7 for B in the warmup problem. This problem seems harder, simply because there are more symbols.

 $(x^{2}+1)^{3}(6(2x+7)^{2}) + (3(x^{2}+1)^{2})((2x+7)^{3})$ Substitute the given polynomials into Fa + fG $= (x^{2}+1)^{3}(6(2x+7)^{2}) + (3(x^{2}+1)^{2})((2x+7)^{3})$ Recognize as sum of two terms $= 6(x^{2}+1)^{3}(2x+7)^{2} + 3(x^{2}+1)^{2}(2x+7)^{3}$ Rewrite each term with constant at left $= 3 \left(2(x^{2}+1)^{3}(2x+7)^{2} + (x^{2}+1)^{2}(2x+7)^{3} \right)$ Factor out common factor 3 Factor $(x^2 + 1)^2$ from both terms. $= 3(x^{2}+1)^{2} (2(x^{2}+1)^{3-2}(2x+7)^{2}+(2x+7)^{3})$ $= 3(x^{2}+1)^{2}(2x+7)^{2} (2(x^{2}+1)^{3-2}+(2x+7)^{3-2})$ Factor $(2x+7)^2$ from both terms. $= 3(x^{2}+1)^{2}(2x+7)^{2}(2(x^{2}+1)^{1}+(2x+7)^{1})$ Subtract exponents $= 3(x^{2}+1)^{2}(2x+7)^{2}((2x^{2}+2)+(2x+7))$ Expand the remaining factor

Solution: This problem was obtained by substituting $x^2 + 1$ for A and 2x + 7 for B in the warmup problem. This problem seems harder, simply because there are more symbols.

 $(x^{2}+1)^{3}(6(2x+7)^{2}) + (3(x^{2}+1)^{2})((2x+7)^{3})$ Substitute the given polynomials into Fa + fG $= (x^{2}+1)^{3}(6(2x+7)^{2}) + (3(x^{2}+1)^{2})((2x+7)^{3})$ Recognize as sum of two terms $= 6(x^{2}+1)^{3}(2x+7)^{2} + 3(x^{2}+1)^{2}(2x+7)^{3}$ Rewrite each term with constant at left $= 3 \left(2(x^{2}+1)^{3}(2x+7)^{2} + (x^{2}+1)^{2}(2x+7)^{3} \right)$ Factor out common factor 3 Factor $(x^2 + 1)^2$ from both terms. $= 3(x^{2}+1)^{2} (2(x^{2}+1)^{3-2}(2x+7)^{2}+(2x+7)^{3})$ $= 3(x^{2}+1)^{2}(2x+7)^{2} (2(x^{2}+1)^{3-2}+(2x+7)^{3-2})$ Factor $(2x+7)^2$ from both terms. $= 3(x^{2}+1)^{2}(2x+7)^{2}(2(x^{2}+1)^{1}+(2x+7)^{1})$ Subtract exponents $= 3(x^{2}+1)^{2}(2x+7)^{2}((2x^{2}+2)+(2x+7))$ Expand the remaining factor Collect the remaining factor =

イロト イボト イヨト イヨト 二日

Solution: This problem was obtained by substituting $x^2 + 1$ for A and 2x + 7 for B in the warmup problem. This problem seems harder, simply because there are more symbols.

 $(x^{2}+1)^{3}(6(2x+7)^{2}) + (3(x^{2}+1)^{2})((2x+7)^{3})$ Substitute the given polynomials into Fa + fG $= (x^{2}+1)^{3}(6(2x+7)^{2}) + (3(x^{2}+1)^{2})((2x+7)^{3})$ Recognize as sum of two terms $= 6(x^{2}+1)^{3}(2x+7)^{2} + 3(x^{2}+1)^{2}(2x+7)^{3}$ Rewrite each term with constant at left $= 3 \left(2(x^{2}+1)^{3}(2x+7)^{2} + (x^{2}+1)^{2}(2x+7)^{3} \right)$ Factor out common factor 3 Factor $(x^2 + 1)^2$ from both terms. $= 3(x^{2}+1)^{2} (2(x^{2}+1)^{3-2}(2x+7)^{2}+(2x+7)^{3})$ $= 3(x^{2}+1)^{2}(2x+7)^{2} (2(x^{2}+1)^{3-2}+(2x+7)^{3-2})$ Factor $(2x+7)^2$ from both terms. $= 3(x^{2}+1)^{2}(2x+7)^{2}(2(x^{2}+1)^{1}+(2x+7)^{1})$ Subtract exponents $= 3(x^{2}+1)^{2}(2x+7)^{2}((2x^{2}+2)+(2x+7))$ Expand the remaining factor $= 3(x^{2}+1)^{2}(2x+7)^{2}(2x^{2}+2x+9)$ Collect the remaining factor

Stanley Ocken Sabbatical Notes : Calculus Preparation

イロト イポト イヨト イヨト 二日

Solution: This problem was obtained by substituting $x^2 + 1$ for A and 2x + 7 for B in the warmup problem. This problem seems harder, simply because there are more symbols.

 $(x^{2}+1)^{3}(6(2x+7)^{2}) + (3(x^{2}+1)^{2})((2x+7)^{3})$ Substitute the given polynomials into Fq + fG $= (x^{2}+1)^{3}(6(2x+7)^{2}) + (3(x^{2}+1)^{2})((2x+7)^{3})$ Recognize as sum of two terms $= 6(x^{2}+1)^{3}(2x+7)^{2} + 3(x^{2}+1)^{2}(2x+7)^{3}$ Rewrite each term with constant at left $= 3 \left(2(x^{2}+1)^{3}(2x+7)^{2} + (x^{2}+1)^{2}(2x+7)^{3} \right)$ Factor out common factor 3 Factor $(x^2 + 1)^2$ from both terms. $= 3(x^{2}+1)^{2} (2(x^{2}+1)^{3-2}(2x+7)^{2}+(2x+7)^{3})$ $= 3(x^{2}+1)^{2}(2x+7)^{2} (2(x^{2}+1)^{3-2}+(2x+7)^{3-2})$ Factor $(2x+7)^2$ from both terms. $= 3(x^{2}+1)^{2}(2x+7)^{2}(2(x^{2}+1)^{1}+(2x+7)^{1})$ Subtract exponents $= 3(x^{2}+1)^{2}(2x+7)^{2}((2x^{2}+2)+(2x+7))$ Expand the remaining factor Collect the remaining factor $= 3(x^2+1)^2(2x+7)^2(2x^2+2x+9)$ To be sure the boxed answer is completely factored, use the Quadratic polynomial factoring criterion to see if $2x^2 + 2x + 9$ factors.

<ロ> (四) (四) (注) (三) (三)

Solution: This problem was obtained by substituting $x^2 + 1$ for A and 2x + 7 for B in the warmup problem. This problem seems harder, simply because there are more symbols.

 $(x^{2}+1)^{3}(6(2x+7)^{2}) + (3(x^{2}+1)^{2})((2x+7)^{3})$ Substitute the given polynomials into Fq + fG $= (x^{2}+1)^{3}(6(2x+7)^{2}) + (3(x^{2}+1)^{2})((2x+7)^{3})$ Recognize as sum of two terms $= 6(x^{2}+1)^{3}(2x+7)^{2} + 3(x^{2}+1)^{2}(2x+7)^{3}$ Rewrite each term with constant at left $= 3 \left(2(x^{2}+1)^{3}(2x+7)^{2} + (x^{2}+1)^{2}(2x+7)^{3} \right)$ Factor out common factor 3 Factor $(x^2 + 1)^2$ from both terms. $= 3(x^{2}+1)^{2} (2(x^{2}+1)^{3-2}(2x+7)^{2}+(2x+7)^{3})$ $= 3(x^{2}+1)^{2}(2x+7)^{2} \left(2(x^{2}+1)^{3-2}+(2x+7)^{3-2}\right)$ Factor $(2x+7)^2$ from both terms. $= 3(x^{2}+1)^{2}(2x+7)^{2} (2(x^{2}+1)^{1}+(2x+7)^{1})$ Subtract exponents $= 3(x^{2}+1)^{2}(2x+7)^{2} ((2x^{2}+2)+(2x+7))$ Expand the remaining factor Collect the remaining factor $= |3(x^2+1)^2(2x+7)^2(2x^2+2x+9)|$ To be sure the boxed answer is completely factored, use the Quadratic polynomial factoring criterion to see if $2x^2 + 2x + 9$ factors. It does not because $b^2 - 4ac = 2^2 - 4 \cdot 2 \cdot 9 = 4 - 72 = -68$ is not a perfect square.

This problem was a bit much. On the next slide, we show how to use abbreviations to make it easier to handle.

(日) (同) (注) (注) (三)

Using abbreviations Let $F = (x^2 + 1)^3$; $G = (2x + 7)^3$; $f = 3(x^2 + 1)^2$; and $g = 6(2x + 7)^2$. Find Fg + fG and factor your answer completely.

Stanley Ocken Sabbatical Notes : Calculus Preparation

Using abbreviations Let $F = (x^2 + 1)^3$; $G = (2x + 7)^3$; $f = 3(x^2 + 1)^2$; and $g = 6(2x + 7)^2$. Find Fg + fG and factor your answer completely. Solution: Substitute $A = x^2 + 1$ and B = 2x + 7 in F, g, f, G to get $F = A^3, G = B^3, f = 3A^2, g = 6B^2$. Substitute the abbreviations into Fg + fG

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 の < @

Using abbreviations Let $F = (x^2 + 1)^3$; $G = (2x + 7)^3$; $f = 3(x^2 + 1)^2$; and $g = 6(2x + 7)^2$. Find Fg + fG and factor your answer completely. Solution: Substitute $A = x^2 + 1$ and B = 2x + 7 in F, g, f, G to get $F = A^3, G = B^3, f = 3A^2, g = 6B^2$. Substitute the abbreviations into Fg + fG $A^3(6B^2) + (3A^2)(B^3)$ Recognize as sum of two terms =

Using abbreviations Let $F = (x^2 + 1)^3$; $G = (2x + 7)^3$; $f = 3(x^2 + 1)^2$; and $g = 6(2x + 7)^2$. Find Fg + fG and factor your answer completely. Solution: Substitute $A = x^2 + 1$ and B = 2x + 7 in F, g, f, G to get $F = A^3, G = B^3, f = 3A^2, g = 6B^2$. Substitute the abbreviations into Fg + fG $A^3(6B^2) + (3A^2)(B^3)$ Recognize as sum of two terms $= A^3(6B^2) + (3A^2)(B^3)$ Rewrite each term with constant at left =

Using abbreviations Let $F = (x^2 + 1)^3$; $G = (2x + 7)^3$; $f = 3(x^2 + 1)^2$; and $g = 6(2x + 7)^2$. Find Fg + fG and factor your answer completely. Solution: Substitute $A = x^2 + 1$ and B = 2x + 7 in F, g, f, G to get $F = A^3, G = B^3, f = 3A^2, g = 6B^2$. Substitute the abbreviations into Fg + fG $A^3(6B^2) + (3A^2)(B^3)$ Recognize as sum of two terms $= A^3(6B^2) + (3A^2)(B^3)$ Rewrite each term with constant at left $= 6A^3B^2 + 3A^2B^3$ Pull out common factor $3 = a^3$

Using abbreviations Let $F = (x^2 + 1)^3$; $G = (2x + 7)^3$; $f = 3(x^2 + 1)^2$; and $g = 6(2x + 7)^2$. Find Fg + fG and factor your answer completely. Solution: Substitute $A = x^2 + 1$ and B = 2x + 7 in F, g, f, G to get $F = A^3, G = B^3, f = 3A^2, g = 6B^2$. Substitute the abbreviations into Fg + fG $A^3(6B^2) + (3A^2)(B^3)$ Recognize as sum of two terms $= A^3(6B^2) + (3A^2)(B^3)$ Rewrite each term with constant at left $= 6A^3B^2 + 3A^2B^3$ Pull out common factor $3 = 3(2A^3B^2 + A^2B^3)$ Pull out the lowest common power A^2 of A =

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

Using abbreviations Let $F = (x^2 + 1)^3$; $G = (2x + 7)^3$; $f = 3(x^2 + 1)^2$; and $g = 6(2x + 7)^2$. Find Fg + fG and factor your answer completely. Solution: Substitute $A = x^2 + 1$ and B = 2x + 7 in F, g, f, G to get $F = A^3, G = B^3, f = 3A^2, g = 6B^2$. Substitute the abbreviations into Fg + fG $A^3(6B^2) + (3A^2)(B^3)$ Recognize as sum of two terms $= A^3(6B^2) + (3A^2)(B^3)$ Rewrite each term with constant at left $= 6A^3B^2 + 3A^2B^3$ Pull out common factor $3 = 3(2A^3B^2 + A^2B^3)$ Pull out the lowest common power A^2 of $A = 3A^2(2A^{3-2}B^2 + B^3)$ Pull out lowest common power B^2 of B =

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

Using abbreviations Let $F = (x^2 + 1)^3$; $G = (2x + 7)^3$; $f = 3(x^2 + 1)^2$; and $g = 6(2x + 7)^2$. Find Fg + fG and factor your answer completely. Solution: Substitute $A = x^2 + 1$ and B = 2x + 7 in F, g, f, G to get $F = A^3, G = B^3, f = 3A^2, g = 6B^2$. Substitute the abbreviations into Fg + fG $A^3(6B^2) + (3A^2)(B^3)$ Recognize as sum of two terms $= A^3(6B^2) + (3A^2)(B^3)$ Rewrite each term with constant at left $= 6A^3B^2 + 3A^2B^3$ Pull out common factor $3 = 3(2A^3B^2 + A^2B^3)$ Pull out the lowest common power A^2 of $A = 3A^2(2A^{3-2}B^2 + B^3)$ Pull out lowest common power B^2 of $B = 3A^2B^2(2A^{3-2} + B^{3-2})$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

<ロ> (四) (四) (注) (三) (三)

Using abbreviations Let $F = (x^2 + 1)^3$; $G = (2x + 7)^3$; $f = 3(x^2 + 1)^2$; and $g = 6(2x + 7)^2$. Find Fg + fG and factor your answer completely. Solution: Substitute $A = x^2 + 1$ and B = 2x + 7 in F, g, f, G to get $F = A^3, G = B^3, f = 3A^2, g = 6B^2$. Substitute the abbreviations into Fg + fG $A^3(6B^2) + (3A^2)(B^3)$ Recognize as sum of two terms $= A^3(6B^2) + (3A^2)(B^3)$ Rewrite each term with constant at left $= 6A^3B^2 + 3A^2B^3$ Pull out common factor $3 = 3(2A^3B^2 + A^2B^3)$ Pull out the lowest common power A^2 of $A = 3A^2(2A^{3-2}B^2 + B^3)$ Pull out lowest common power B^2 of $B = 3A^2B^2(2A^{3-2} + B^{3-2})$ Subtract exponents $= 3A^2B^2(2A^1 + B^1)$

<ロ> (四) (四) (注) (三) (三)

Using abbreviations Let $F = (x^2 + 1)^3$; $G = (2x + 7)^3$; $f = 3(x^2 + 1)^2$; and $g = 6(2x + 7)^2$. Find Fg + fG and factor your answer completely. Solution: Substitute $A = x^2 + 1$ and B = 2x + 7 in F, g, f, G to get $F = A^3, G = B^3, f = 3A^2, g = 6B^2$. Substitute the abbreviations into Fg + fG $A^3(6B^2) + (3A^2)(B^3)$ Recognize as sum of two terms $= A^3(6B^2) + (3A^2)(B^3)$ Rewrite each term with constant at left $= 6A^3B^2 + 3A^2B^3$ Pull out common factor $3 = 3(2A^3B^2 + A^2B^3)$ Pull out the lowest common power A^2 of $A = 3A^2(2A^{3-2}B^2 + B^3)$ Pull out lowest common power B^2 of $B = 3A^2B^2(2A^{3-2} + B^{3-2})$ Subtract exponents $= 3A^2B^2(2A^1 + B^1)$ Then Fg + fG, in terms of A and B is =

(日) (同) (E) (E) (E)

Using abbreviations Let $F = (x^2 + 1)^3$; $G = (2x + 7)^3$; $f = 3(x^2 + 1)^2$; and $g = 6(2x + 7)^2$. Find Fg + fG and factor your answer completely. Solution: Substitute $A = x^2 + 1$ and B = 2x + 7 in F, g, f, G to get $F = A^3, G = B^3, f = 3A^2, g = 6B^2$. Substitute the abbreviations into Fg + fG $A^3(6B^2) + (3A^2)(B^3)$ Recognize as sum of two terms $= A^3(6B^2) + (3A^2)(B^3)$ Rewrite each term with constant at left $= 6A^3B^2 + 3A^2B^3$ Pull out common factor $3 = 3(2A^3B^2 + A^2B^3)$ Pull out the lowest common power A^2 of $A = 3A^2(2A^{3-2}B^2 + B^3)$ Pull out lowest common power B^2 of $B = 3A^2B^2(2A^{3-2} + B^{3-2})$ Subtract exponents $= 3A^2B^2(2A^1 + B^1)$ Then Fg + fG, in terms of A and B is $= 3A^2B^2(2A + B)$

(日) (四) (王) (王) (王)

Using abbreviations Let $F = (x^2 + 1)^3$; $G = (2x + 7)^3$; $f = 3(x^2 + 1)^2$; and $q = 6(2x + 7)^2$. Find Fg + fG and factor your answer completely. Solution: Substitute $A = x^2 + 1$ and B = 2x + 7 in F, q, f, G to get $F = A^3, G = B^3, f = 3A^2, q = 6B^2$. $A^{3}(6B^{2}) + (3A^{2})(B^{3})$ Substitute the abbreviations into Fq + fGRecognize as sum of two terms $= A^3(6B^2) + (3A^2)(B^3)$ Rewrite each term with constant at left $= 6A^3B^2 + 3A^2B^3$ Pull out common factor 3 = $3(2A^3B^2 + A^2B^3)$ Pull out the lowest common power A^2 of $A = 3A^2 (2A^{3-2}B^2 + B^3)$ $= 3A^2B^2 (2A^{3-2} + B^{3-2})$ Pull out lowest common power B^2 of BSubtract exponents $= 3A^2B^2 (2A^1 + B^1)$ Then Fq + fG, in terms of A and B is $= 3A^2B^2(2A+B)$ Substitute $A = x^2 + 1$ and B = 2x + 7 in this answer =

(日) (四) (王) (王) (王)

Using abbreviations Let $F = (x^2 + 1)^3$; $G = (2x + 7)^3$; $f = 3(x^2 + 1)^2$; and $q = 6(2x + 7)^2$. Find Fg + fG and factor your answer completely. Solution: Substitute $A = x^2 + 1$ and B = 2x + 7 in F, q, f, G to get $F = A^3, G = B^3, f = 3A^2, q = 6B^2$. $A^{3}(6B^{2}) + (3A^{2})(B^{3})$ Substitute the abbreviations into Fq + fGRecognize as sum of two terms $= A^3(6B^2) + (3A^2)(B^3)$ Rewrite each term with constant at left $= 6A^3B^2 + 3A^2B^3$ Pull out common factor 3 = $3(2A^3B^2 + A^2B^3)$ Pull out the lowest common power A^2 of A $= 3A^2 (2A^{3-2}B^2 + B^3)$ $= 3A^2B^2 (2A^{3-2} + B^{3-2})$ Pull out lowest common power B^2 of BSubtract exponents $= 3A^2B^2 (2A^1 + B^1)$ Then Fg + fG, in terms of A and B is $= 3A^2B^2(2A + B)$ Substitute $A = x^2 + 1$ and B = 2x + 7 in this answer $= 3(x^2 + 1)^2(2x + 7)^2(2(x^2 + 1) + (2x + 7))$

(日) (同) (E) (E) (E)

Using abbreviations Let $F = (x^2 + 1)^3$; $G = (2x + 7)^3$; $f = 3(x^2 + 1)^2$; and $q = 6(2x + 7)^2$. Find Fg + fG and factor your answer completely. Solution: Substitute $A = x^2 + 1$ and B = 2x + 7 in F, q, f, G to get $F = A^3, G = B^3, f = 3A^2, q = 6B^2$. $A^{3}(6B^{2}) + (3A^{2})(B^{3})$ Substitute the abbreviations into Fq + fGRecognize as sum of two terms $= A^3(6B^2) + (3A^2)(B^3)$ Rewrite each term with constant at left $= 6A^3B^2 + 3A^2B^3$ Pull out common factor 3 = $3(2A^3B^2 + A^2B^3)$ Pull out the lowest common power A^2 of A $= 3A^2 (2A^{3-2}B^2 + B^3)$ $= 3A^2B^2 (2A^{3-2} + B^{3-2})$ Pull out lowest common power B^2 of B $= 3A^2B^2 (2A^1 + B^1)$ Subtract exponents Then Fq + fG, in terms of A and B is $= 3A^2B^2(2A+B)$ Substitute $A = x^2 + 1$ and B = 2x + 7 in this answer $= 3(x^{2}+1)^{2}(2x+7)^{2} (2(x^{2}+1)+(2x+7))$ Collect the remaining factor =

(日) (同) (E) (E) (E)

Using abbreviations Let $F = (x^2 + 1)^3$; $G = (2x + 7)^3$; $f = 3(x^2 + 1)^2$; and $q = 6(2x + 7)^2$. Find Fg + fG and factor your answer completely. Solution: Substitute $A = x^2 + 1$ and B = 2x + 7 in F, q, f, G to get $F = A^3, G = B^3, f = 3A^2, q = 6B^2$. $A^{3}(6B^{2}) + (3A^{2})(B^{3})$ Substitute the abbreviations into Fq + fGRecognize as sum of two terms $= A^3(6B^2) + (3A^2)(B^3)$ Rewrite each term with constant at left $= 6A^3B^2 + 3A^2B^3$ Pull out common factor 3 = $3(2A^3B^2 + A^2B^3)$ Pull out the lowest common power A^2 of A $= 3A^2 (2A^{3-2}B^2 + B^3)$ $= 3A^2B^2 (2A^{3-2} + B^{3-2})$ Pull out lowest common power B^2 of B $= 3A^2B^2 (2A^1 + B^1)$ Subtract exponents Then Fq + fG, in terms of A and B is $= 3A^2B^2(2A+B)$ $= 3(x^{2}+1)^{2}(2x+7)^{2} (2(x^{2}+1)+(2x+7))$ Substitute $A = x^2 + 1$ and B = 2x + 7 in this answer $= 3(x^2+1)^2(2x+7)^2(2x^2+2x+9)$ Collect the remaining factor

In calculus, some expression names are written with a prime. For example, f and f' could be the names of different polynomials, as in the next example.

イロン イロン イヨン イヨン 三日

Using abbreviations Let $F = (x^2 + 1)^3$; $G = (2x + 7)^3$; $f = 3(x^2 + 1)^2$; and $q = 6(2x + 7)^2$. Find Fg + fG and factor your answer completely. Solution: Substitute $A = x^2 + 1$ and B = 2x + 7 in F, q, f, G to get $F = A^3, G = B^3, f = 3A^2, q = 6B^2$. $A^{3}(6B^{2}) + (3A^{2})(B^{3})$ Substitute the abbreviations into Fq + fGRecognize as sum of two terms $= A^3(6B^2) + (3A^2)(B^3)$ Rewrite each term with constant at left $= 6A^3B^2 + 3A^2B^3$ Pull out common factor 3 = $3(2A^3B^2 + A^2B^3)$ Pull out the lowest common power A^2 of A $= 3A^2 (2A^{3-2}B^2 + B^3)$ $= 3A^2B^2 (2A^{3-2} + B^{3-2})$ Pull out lowest common power B^2 of B $= 3A^2B^2 (2A^1 + B^1)$ Subtract exponents Then Fq + fG, in terms of A and B is $= 3A^2B^2(2A+B)$ $= 3(x^{2}+1)^{2}(2x+7)^{2} (2(x^{2}+1)+(2x+7))$ Substitute $A = x^2 + 1$ and B = 2x + 7 in this answer $= 3(x^2+1)^2(2x+7)^2(2x^2+2x+9)$ Collect the remaining factor

In calculus, some expression names are written with a prime. For example, f and f' could be the names of different polynomials, as in the next example.

イロン イロン イヨン イヨン 三日

Stanley Ocken Sabbatical Notes : Calculus Preparation

Solution: Substitute the given polynomials into $\frac{f'g-fg'}{q^2}$

1. Preparation for Quotient rule: Let $f = (x^2 + 1)^4$; $g = 2(2x + 7)^3$, $f' = 8x(x^2 + 1)^3$, and $g' = 6(2x + 7)^2$. Find $\frac{f'g - fg'}{g^2}$ and rewrite your answer as a completely reduced fraction.

Solution: Substitute the given polynomials into $\frac{f'g-fg'}{g^2}$ $\frac{(8x(x^2+1)^3)(2(2x+7)^3)-(x^2+1)^4(6(2x+7)^2)}{(2(2x+7)^3)^2}$

Recognize as sum of two terms

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

1. Preparation for Quotient rule: Let $f = (x^2 + 1)^4$; $g = 2(2x + 7)^3$, $f' = 8x(x^2 + 1)^3$, and $g' = 6(2x + 7)^2$. Find $\frac{f'g - fg'}{g^2}$ and rewrite your answer as a completely reduced fraction.

Solution: Substitute the given polynomials into $\frac{f'g-fg'}{g^2}$ Recognize as sum of two terms $= \frac{8x(x^2+1)^3(2(2x+7)^3)-(x^2+1)^4(6(2x+7)^2)}{(2(2x+7)^3)^2}$

Rewrite each term with constant at left

Solution: Substitute the given polynomials into $\frac{f'g-fg'}{g^2}$ $\frac{(8x(x^2+1)^3)(2(2x+7)^3)-(x^2+1)^4(6(2x+7)^2)}{(2(2x+7)^3)^2}$ Recognize as sum of two terms $= \frac{8x(x^2+1)^3(2(2x+7)^3)-(x^2+1)^4(6(2x+7)^2)}{(2(2x+7)^3)^2}$ Rewrite each term with constant at left $= \frac{16x(x^2+1)^3(2x+7)^3-6(x^2+1)^4(2x+7)^2}{2^2((2x+7)^3)^2}$

Pull out common factor 2 from numerator

Solution: Substitute the given polynomials into $\frac{f'g-fg'}{g^2}$ $\frac{(8x(x^2+1)^3)(2(2x+7)^3)-(x^2+1)^4(6(2x+7)^2)}{(2(2x+7)^3)^2}$ Recognize as sum of two terms $= \frac{8x(x^2+1)^3(2(2x+7)^3)-(x^2+1)^4(6(2x+7)^2)}{(2(2x+7)^3)^2}$ Rewrite each term with constant at left $= \frac{16x(x^2+1)^3(2x+7)^3-6(x^2+1)^4(6(2x+7)^2)}{2^2((2x+7)^3)^2}$ Pull out common factor 2 from numerator $= \frac{2(8x(x^2+1)^3(2x+7)^3-3(x^2+1)^4((2x+7)^2))}{4(2x+7)^6}$

(ロ) (同) (E) (E) (E)

Solution: Substitute the given polynomials into $\frac{f'g-fg'}{g^2}$ $\frac{(8x(x^2+1)^3)(2(2x+7)^3)-(x^2+1)^4(6(2x+7)^2)}{(2(2x+7)^3)^2}$ Recognize as sum of two terms $= \frac{8x(x^2+1)^3(2(2x+7)^3)-(x^2+1)^4(6(2x+7)^2)}{(2(2x+7)^3)^2}$ Rewrite each term with constant at left $= \frac{16x(x^2+1)^3(2x+7)^3-6(x^2+1)^4(2x+7)^2}{2^2((2x+7)^3)^2}$ Pull out common factor 2 from numerator $= \frac{2(8x(x^2+1)^3(2x+7)^3-3(x^2+1)^4((2x+7)^2))}{4(2x+7)^6}$

Cancel constant factor from numerator and denominator

1. Preparation for Quotient rule: Let $f = (x^2 + 1)^4$; $g = 2(2x + 7)^3$, $f' = 8x(x^2 + 1)^3$, and $g' = 6(2x + 7)^2$. Find $\frac{f'g - fg'}{a^2}$ and rewrite your answer as a completely reduced fraction.

Solution: Substitute the given polynomials into $\frac{f'g-fg'}{g^2}$ $\frac{(8x(x^2+1)^3)(2(2x+7)^3)-(x^2+1)^4(6(2x+7)^2)}{(2(2x+7)^3)^2}$ Recognize as sum of two terms $= \frac{8x(x^2+1)^3(2(2x+7)^3)-(x^2+1)^4(6(2x+7)^2)}{(2(2x+7)^3)^2}$ Rewrite each term with constant at left $= \frac{16x(x^2+1)^3(2x+7)^3-6(x^2+1)^4(2x+7)^2}{2^2((2x+7)^3)^2}$ Pull out common factor 2 from numerator $= \frac{2(8x(x^2+1)^3(2x+7)^3-3(x^2+1)^4((2x+7)^2))}{4(2x+7)^6}$ Cancel constant factor from numerator and denominator $= \frac{2(8x(x^2+1)^3(2x+7)^3-3(x^2+1)^4((2x+7)^2))}{4(2x+7)^6}$

(ロ) (同) (E) (E) (E)

Solution: Substitute the given polynomials into $\frac{f'g-fg'}{g^2}$ $\frac{(8x(x^2+1)^3)(2(2x+7)^3)-(x^2+1)^4(6(2x+7)^2)}{(2(2x+7)^3)^2}$ Recognize as sum of two terms $= \frac{8x(x^2+1)^3(2(2x+7)^3)-(x^2+1)^4(6(2x+7)^2)}{(2(2x+7)^3)^2}$ Rewrite each term with constant at left $= \frac{16x(x^2+1)^3(2x+7)^3-6(x^2+1)^4(2x+7)^2}{2^2((2x+7)^3)^2}$ Pull out common factor 2 from numerator $= \frac{2(8x(x^2+1)^3(2x+7)^3-3(x^2+1)^4((2x+7)^2))}{4(2x+7)^6}$ Cancel constant factor from numerator and denominator $= \frac{\frac{1}{2}(8x(x^2+1)^3(2x+7)^3-(x^2+1)^4(3(2x+7)^2))}{4(2x+7)^6}$

Pull out least power $(x^2+1)^3$ of x^2+1 from both terms.

 $\frac{(8x(x^2+1)^3)(2(2x+7)^3)-(x^2+1)^4(6(2x+7)^2)}{(2(2x+7)^3)^2}$ **Solution:** Substitute the given polynomials into $\frac{f'g-fg'}{a^2}$ $=\frac{8x(x^2+1)^3(2(2x+7)^3)-(x^2+1)^4(6(2x+7)^2)}{(2(2x+7)^3)^2}$ Recognize as sum of two terms $=\frac{16x(x^2+1)^3(2x+7)^3-6(x^2+1)^4(2x+7)^2}{2^2((2x+7)^3)^2}$ Rewrite each term with constant at left $=\frac{2(8x(x^2+1)^3(2x+7)^3-3(x^2+1)^4((2x+7)^2))}{4(2x+7)^6}$ Pull out common factor 2 from numerator $=\frac{2\left(8x(x^2+1)^3(2x+7)^3-(x^2+1)^4(3(2x+7)^2)\right)}{4(2x+7)^6}$ Cancel constant factor from numerator and denominator $=\frac{(x^2+1)^3 \left(8x(2x+7)^3-(x^2+1)(3(2x+7)^2)\right)}{2(2x+7)^6}$

Pull out least power $(x^2 + 1)^3$ of $x^2 + 1$ from both terms.

1. Preparation for Quotient rule: Let $f = (x^2 + 1)^4$; $g = 2(2x + 7)^3$, $f' = 8x(x^2 + 1)^3$, and $g' = 6(2x+7)^2$. Find $\frac{f'g-fg'}{a^2}$ and rewrite your answer as a completely reduced fraction. $\frac{(8x(x^2+1)^3)(2(2x+7)^3)-(x^2+1)^4(6(2x+7)^2)}{(2(2x+7)^3)^2}$ **Solution:** Substitute the given polynomials into $\frac{f'g-fg'}{a^2}$ $=\frac{8x(x^2+1)^3(2(2x+7)^3)-(x^2+1)^4(6(2x+7)^2)}{(2(2x+7)^3)^2}$ Recognize as sum of two terms $=\frac{16x(x^2+1)^3(2x+7)^3-6(x^2+1)^4(2x+7)^2}{2^2((2x+7)^3)^2}$ Rewrite each term with constant at left $=\frac{2(8x(x^2+1)^3(2x+7)^3-3(x^2+1)^4((2x+7)^2))}{4(2x+7)^6}$ Pull out common factor 2 from numerator $=\frac{\frac{4(8x(x^2+1)^3(2x+7)^3-(x^2+1)^4(3(2x+7)^2))}{4(2x+7)^6}}{4(2x+7)^6}$ Cancel constant factor from numerator and denominator $=\frac{(x^2+1)^3(8x(2x+7)^3-(x^2+1)(3(2x+7)^2))}{2(2x+7)^6}$ Pull out least power $(x^2 + 1)^3$ of $x^2 + 1$ from both terms. $=\frac{(x^2+1)^3(2x+7)^2(8x(2x+7)-(x^2+1)(3))}{2(2x+7)^6}$ Pull out least power $(2x + 7)^2$ of 2x + 7 from both terms.

1. Preparation for Quotient rule: Let $f = (x^2 + 1)^4$; $g = 2(2x + 7)^3$, $f' = 8x(x^2 + 1)^3$, and $g' = 6(2x+7)^2$. Find $\frac{f'g-fg'}{a^2}$ and rewrite your answer as a completely reduced fraction. $\frac{(8x(x^2+1)^3)(2(2x+7)^3)-(x^2+1)^4(6(2x+7)^2)}{(2(2x+7)^3)^2}$ **Solution:** Substitute the given polynomials into $\frac{f'g-fg'}{a^2}$ $=\frac{8x(x^2+1)^3(2(2x+7)^3)-(x^2+1)^4(6(2x+7)^2)}{(2(2x+7)^3)^2}$ Recognize as sum of two terms $=\frac{16x(x^2+1)^3(2x+7)^3-6(x^2+1)^4(2x+7)^2}{2^2((2x+7)^3)^2}$ Rewrite each term with constant at left $=\frac{2(8x(x^2+1)^3(2x+7)^3-3(x^2+1)^4((2x+7)^2))}{4(2x+7)^6}$ Pull out common factor 2 from numerator $=\frac{2\left(8x(x^2+1)^3(2x+7)^3-(x^2+1)^4(3(2x+7)^2)\right)}{4(2x+7)^6}$ Cancel constant factor from numerator and denominator $=\frac{(x^2+1)^3(8x(2x+7)^3-(x^2+1)(3(2x+7)^2))}{2(2x+7)^6}$ Pull out least power $(x^2 + 1)^3$ of $x^2 + 1$ from both terms. $=\frac{(x^2+1)^3(2x+7)^2(8x(2x+7)-(x^2+1)(3))}{2(2x+7)^6}$ Pull out least power $(2x+7)^2$ of 2x+7 from both terms. $=\frac{(x^2+1)^3(2x+7)^2(16x^2+56x-(3x^2+3))}{2(2x+7)^6}$ Cancel powers of 2x + 7 and rewrite the remaining factor

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

1. Preparation for Quotient rule: Let $f = (x^2 + 1)^4$; $g = 2(2x + 7)^3$, $f' = 8x(x^2 + 1)^3$, and $g' = 6(2x+7)^2$. Find $\frac{f'g-fg'}{a^2}$ and rewrite your answer as a completely reduced fraction. $\frac{(8x(x^2+1)^3)(2(2x+7)^3)-(x^2+1)^4(6(2x+7)^2)}{(2(2x+7)^3)^2}$ **Solution:** Substitute the given polynomials into $\frac{f'g-fg'}{a^2}$ $=\frac{8x(x^2+1)^3(2(2x+7)^3)-(x^2+1)^4(6(2x+7)^2)}{(2(2x+7)^3)^2}$ Recognize as sum of two terms $=\frac{16x(x^2+1)^3(2x+7)^3-6(x^2+1)^4(2x+7)^2}{2^2((2x+7)^3)^2}$ Rewrite each term with constant at left $=\frac{2(8x(x^2+1)^3(2x+7)^3-3(x^2+1)^4((2x+7)^2))}{4(2x+7)^6}$ Pull out common factor 2 from numerator $=\frac{\frac{4(8x(x^2+1)^3(2x+7)^3-(x^2+1)^4(3(2x+7)^2))}{4(2x+7)^6}}{4(2x+7)^6}$ Cancel constant factor from numerator and denominator $=\frac{(x^2+1)^3(8x(2x+7)^3-(x^2+1)(3(2x+7)^2))}{2(2x+7)^6}$ Pull out least power $(x^2 + 1)^3$ of $x^2 + 1$ from both terms. $=\frac{(x^2+1)^3(2x+7)^2(8x(2x+7)-(x^2+1)(3))}{2(2x+7)^6}$ Pull out least power $(2x+7)^2$ of 2x+7 from both terms. $=\frac{(x^2+1)^3(2x+7)^2(16x^2+56x-(3x^2+3))}{2(2x+7)^6}$ Cancel powers of 2x + 7 and rewrite the remaining factor $= \frac{(x^2+1)^3(16x^2+56x-3x^2-3)}{2(2x+7)^{6-2}}$ Distribute the minus sign

(日) (四) (王) (王) (王)

1. Preparation for Quotient rule: Let $f = (x^2 + 1)^4$; $g = 2(2x + 7)^3$, $f' = 8x(x^2 + 1)^3$, and $g' = 6(2x+7)^2$. Find $\frac{f'g-fg'}{a^2}$ and rewrite your answer as a completely reduced fraction. $\frac{(8x(x^2+1)^3)(2(2x+7)^3)-(x^2+1)^4(6(2x+7)^2)}{(2(2x+7)^3)^2}$ **Solution:** Substitute the given polynomials into $\frac{f'g-fg'}{a^2}$ $=\frac{8x(x^2+1)^3(2(2x+7)^3)-(x^2+1)^4(6(2x+7)^2)}{(2(2x+7)^3)^2}$ Recognize as sum of two terms $=\frac{16x(x^2+1)^3(2x+7)^3-6(x^2+1)^4(2x+7)^2}{2^2((2x+7)^3)^2}$ Rewrite each term with constant at left $=\frac{2(8x(x^2+1)^3(2x+7)^3-3(x^2+1)^4((2x+7)^2))}{4(2x+7)^6}$ Pull out common factor 2 from numerator $=\frac{2\left(8x(x^2+1)^3(2x+7)^3-(x^2+1)^4(3(2x+7)^2)\right)}{4(2x+7)^6}$ Cancel constant factor from numerator and denominator $=\frac{(x^2+1)^3(8x(2x+7)^3-(x^2+1)(3(2x+7)^2))}{2(2x+7)^6}$ Pull out least power $(x^2 + 1)^3$ of $x^2 + 1$ from both terms. $=\frac{(x^2+1)^3(2x+7)^2(8x(2x+7)-(x^2+1)(3))}{2(2x+7)^6}$ Pull out least power $(2x+7)^2$ of 2x+7 from both terms. $=\frac{(x^2+1)^3(2x+7)^2(16x^2+56x-(3x^2+3))}{2(2x+7)^6}$ Cancel powers of 2x + 7 and rewrite the remaining factor $=\frac{(x^2+1)^3(16x^2+56x-3x^2-3)}{2(2x+7)^{6-2}}$ Distribute the minus sign $= \frac{(x^2+1)^3(13x^2+56x-3)}{2(2x+7)^4}$ Collect the remaining factor

Note: the Quadratic polynomial factoring criterion assures us that $13x^2 + 56x - 3$ does not factor because $b^2 - 4ac = 56^2 - 4(13)(-3) = 3292$ is not a perfect square.

Working with abbreviations: Let $f = (x^2 + 1)^4$; $g = 2(2x + 7)^3$, $f' = 8x(x^2 + 1)^3$, and $g' = 6(2x + 7)^2$. Find $\frac{f'g - fg'}{g^2}$ and rewrite your answer as a completely reduced fraction.

Working with abbreviations: Let $f = (x^2 + 1)^4$; $g = 2(2x + 7)^3$, $f' = 8x(x^2 + 1)^3$, and $g' = 6(2x + 7)^2$. Find $\frac{f'g - fg'}{g^2}$ and rewrite your answer as a completely reduced fraction. Solution: Scroll slowly. Try each step in the left column before you click to see the answer. Substitute A for $x^2 + 1$ and B for 2x + 7 to get $f = A^4$; $g = B^3$, $f' = 8xA^3$, and $g' = 6B^2$.

Substitute into
$$\frac{f'g-fg'}{g^2}$$

Stanley Ocken Sabbatical Notes : Calculus Preparation

Working with abbreviations: Let $f = (x^2 + 1)^4$; $g = 2(2x + 7)^3$, $f' = 8x(x^2 + 1)^3$, and $g' = 6(2x + 7)^2$. Find $\frac{f'g - fg'}{g^2}$ and rewrite your answer as a completely reduced fraction. Solution: Scroll slowly. Try each step in the left column before you click to see the answer. Substitute A for $x^2 + 1$ and B for 2x + 7 to get $f = A^4$; $g = B^3$, $f' = 8xA^3$, and $g' = 6B^2$.

Substitute into
$$\frac{f'g - fg'}{g^2}$$
 $\frac{(8xA^3 \cdot 2B^3) - A^4(6B^2)}{(2B^3)^2}$

Recognize as sum of two terms

Working with abbreviations: Let $f = (x^2 + 1)^4$; $g = 2(2x + 7)^3$, $f' = 8x(x^2 + 1)^3$, and $g' = 6(2x + 7)^2$. Find $\frac{f'g - fg'}{g^2}$ and rewrite your answer as a completely reduced fraction. Solution: Scroll slowly. Try each step in the left column before you click to see the answer. Substitute A for $x^2 + 1$ and B for 2x + 7 to get $f = A^4$; $g = B^3$, $f' = 8xA^3$, and $g' = 6B^2$.

Rewrite each term with constant at left

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

Working with abbreviations: Let $f = (x^2 + 1)^4$; $g = 2(2x + 7)^3$, $f' = 8x(x^2 + 1)^3$, and $g' = 6(2x + 7)^2$. Find $\frac{f'g-fg'}{g^2}$ and rewrite your answer as a completely reduced fraction. Solution: Scroll slowly. Try each step in the left column before you click to see the answer. Substitute A for $x^2 + 1$ and B for 2x + 7 to get $f = A^4$; $g = B^3$, $f' = 8xA^3$, and $g' = 6B^2$. Substitute into $\frac{f'g-fg'}{g^2}$ $\frac{(8xA^3 \cdot 2B^3) - A^4(6B^2)}{(2B^3)^2}$ Recognize as sum of two terms $= \frac{8xA^3 \cdot 2B^3 - A^4(6B^2)}{(2B^3)^2}$

Recognize as sum of two terms

Rewrite each term with constant at left

$$= \frac{8xA^3 \cdot 2B^3 - A^4(6B)}{(2B^3)^2}$$
$$= \frac{16xA^3B^3 - 6A^4B^2}{2^2(B^3)^2}$$

Pull out common factor 2 from numerator

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

Working with abbreviations: Let $f = (x^2 + 1)^4$; $g = 2(2x + 7)^3$, $f' = 8x(x^2 + 1)^3$, and $q' = 6(2x + 7)^2$. Find $\frac{f'g-fg'}{c^2}$ and rewrite your answer as a completely reduced fraction. Solution: Scroll slowly. Try each step in the left column before you click to see the answer. Substitute A for $x^2 + 1$ and B for 2x + 7 to get $f = A^4$; $q = B^3$, $f' = 8xA^3$, and $q' = 6B^2$. Substitute into $\frac{f'g - fg'}{g^2}$ $\frac{(8xA^3 \cdot 2B^3) - A^4(6B^2)}{(2B^3)^2}$ Recognize as sum of two terms $=\frac{8xA^3 \cdot 2B^3 - A^4(6B^2)}{(2B^3)^2}$ $=\frac{16xA^3B^3-6A^4B^2}{2^2(B^3)^2}$ Rewrite each term with constant at left Pull out common factor 2 from numerator

 $=\frac{2(8xA^3B^3-3A^4B^2)}{4B^6}$

Working with abbreviations: Let $f = (x^2 + 1)^4$; $g = 2(2x + 7)^3$, $f' = 8x(x^2 + 1)^3$, and $q' = 6(2x + 7)^2$. Find $\frac{f'g-fg'}{c^2}$ and rewrite your answer as a completely reduced fraction. Solution: Scroll slowly. Try each step in the left column before you click to see the answer. Substitute A for $x^2 + 1$ and B for 2x + 7 to get $f = A^4$; $q = B^3$, $f' = 8xA^3$, and $q' = 6B^2$. Substitute into $\frac{f'g - fg'}{g^2}$ $\frac{(8xA^3 \cdot 2B^3) - A^4(6B^2)}{(2B^3)^2}$ Recognize as sum of two terms $=\frac{8xA^3 \cdot 2B^3 - A^4(6B^2)}{(2B^3)^2}$ $=\frac{16xA^3B^3-6A^4B^2}{2^2(B^3)^2}$ Rewrite each term with constant at left $=\frac{2(8xA^3B^3-3A^4B^2)}{4B^6}$

Pull out common factor 2 from numerator

Cancel before continuing

<ロ> (四) (四) (注) (三) (三)

Working with abbreviations: Let $f = (x^2 + 1)^4$; $g = 2(2x + 7)^3$, $f' = 8x(x^2 + 1)^3$, and $g' = 6(2x + 7)^2$. Find $\frac{f'g-fg'}{g^2}$ and rewrite your answer as a completely reduced fraction. Solution: Scroll slowly. Try each step in the left column before you click to see the answer. Substitute A for $x^2 + 1$ and B for 2x + 7 to get $f = A^4$; $g = B^3$, $f' = 8xA^3$, and $g' = 6B^2$. Substitute into $\frac{f'g-fg'}{g^2}$ $\frac{(8xA^3 \cdot 2B^3) - A^4(6B^2)}{(2B^3)^2}$ Recognize as sum of two terms $= \frac{8xA^3 \cdot 2B^3 - A^4(6B^2)}{(2B^3)^2}$ Rewrite each term with constant at left $= \frac{16xA^3B^3 - 6A^4B^2}{2^2(B^3)^2}$ Pull out common factor 2 from numerator $= \frac{2(8xA^3B^3 - 3A^4B^2)}{4B^6}$ Cancel before continuing $= \frac{2'(8xA^3B^3 - 3A^4B^2)}{xB^6} = \frac{(8xA^3B^3 - 3A^4B^2)}{2B^6}$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

Working with abbreviations: Let $f = (x^2 + 1)^4$; $g = 2(2x + 7)^3$, $f' = 8x(x^2 + 1)^3$, and $g' = 6(2x + 7)^2$. Find $\frac{f'g-fg'}{g^2}$ and rewrite your answer as a completely reduced fraction. Solution: Scroll slowly. Try each step in the left column before you click to see the answer. Substitute A for $x^2 + 1$ and B for 2x + 7 to get $f = A^4$; $g = B^3$, $f' = 8xA^3$, and $g' = 6B^2$. Substitute into $\frac{f'g-fg'}{g^2}$ $\frac{(8xA^3 \cdot 2B^3) - A^4(6B^2)}{(2B^3)^2}$ Recognize as sum of two terms $= \frac{8xA^3 \cdot 2B^3 - A^4(6B^2)}{2^2(B^3)^2}$ Rewrite each term with constant at left $= \frac{16xA^3B^3 - 6A^4B^2}{2^2(B^3)^2}$ Pull out common factor 2 from numerator $= \frac{2(8xA^3B^3 - 3A^4B^2)}{4B^6}$ Cancel before continuing $= \frac{2'(8xA^3B^3 - 3A^4B^2)}{XB^6} = \frac{(8xA^3B^3 - 3A^4B^2)}{2B^6}$

 $\label{eq:pullow} \mbox{Pull out lowest common power } A^3 \mbox{ of } A$

<ロ> (四) (四) (注) (三) (三)

Working with abbreviations: Let $f = (x^2 + 1)^4$; $g = 2(2x + 7)^3$, $f' = 8x(x^2 + 1)^3$, and $g' = 6(2x + 7)^2$. Find $\frac{f'g-fg'}{a^2}$ and rewrite your answer as a completely reduced fraction. Solution: Scroll slowly. Try each step in the left column before you click to see the answer. Substitute A for $x^2 + 1$ and B for 2x + 7 to get $f = A^4$; $q = B^3$, $f' = 8xA^3$, and $q' = 6B^2$. Substitute into $\frac{f'g - fg'}{g^2}$ $\frac{(8xA^3 \cdot 2B^3) - A^4(6B^2)}{(2B^3)^2}$ Recognize as sum of two terms $=\frac{8xA^3 \cdot 2B^3 - A^4(6B^2)}{(2B^3)^2}$ $=\frac{16xA^3B^3-6A^4B^2}{2^2(B^3)^2}$ Rewrite each term with constant at left $=\frac{2(8xA^3B^3-3A^4B^2)}{4B^6}$ Pull out common factor 2 from numerator $= \underbrace{\cancel{2}(8xA^3B^3 - 3A^4B^2)}_{\cancel{2}B^6} = \frac{(8xA^3B^3 - 3A^4B^2)}{2B^6}$ Cancel before continuing $=\frac{A^{3}(8xB^{3}-3A^{4}-3B^{2})}{2B^{6}}=\frac{A^{3}(8xB^{3}-3AB^{2})}{2B^{6}}$ Pull out lowest common power A^3 of A

<ロ> (四) (四) (注) (三) (三)

Working with abbreviations: Let $f = (x^2 + 1)^4$; $g = 2(2x + 7)^3$, $f' = 8x(x^2 + 1)^3$, and $q' = 6(2x + 7)^2$. Find $\frac{f'g-fg'}{a^2}$ and rewrite your answer as a completely reduced fraction. Solution: Scroll slowly. Try each step in the left column before you click to see the answer. Substitute A for $x^2 + 1$ and B for 2x + 7 to get $f = A^4$; $q = B^3$, $f' = 8xA^3$, and $q' = 6B^2$. Substitute into $\frac{f'g - fg'}{g^2}$ $\frac{(8xA^3 \cdot 2B^3) - A^4(6B^2)}{(2B^3)^2}$ Recognize as sum of two terms $=\frac{8xA^3 \cdot 2B^3 - A^4(6B^2)}{(2B^3)^2}$ $=\frac{16xA^3B^3-6A^4B^2}{2^2(B^3)^2}$ Rewrite each term with constant at left $=\frac{2(8xA^3B^3-3A^4B^2)}{4B^6}$ Pull out common factor 2 from numerator $= \underbrace{ \mathscr{Z}(8xA^3B^3 - 3A^4B^2)}_{\mathscr{X}B^6} = \frac{(8xA^3B^3 - 3A^4B^2)}{2B^6}$ Cancel before continuing $=\frac{A^{3}(8xB^{3}-3A^{4}-3B^{2})}{2B^{6}}=\frac{A^{3}(8xB^{3}-3AB^{2})}{2B^{6}}$ Pull out lowest common power A^3 of APull out lowest common power B^2 of $B = \frac{A^3 B^2 (8xB^{3-2} - 3A)}{aB^6} = \frac{A^3 B^2 (8xB - 3A)}{aB^6}$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

Working with abbreviations: Let $f = (x^2 + 1)^4$; $g = 2(2x + 7)^3$, $f' = 8x(x^2 + 1)^3$, and $q' = 6(2x + 7)^2$. Find $\frac{f'g-fg'}{c^2}$ and rewrite your answer as a completely reduced fraction. Solution: Scroll slowly. Try each step in the left column before you click to see the answer. Substitute A for $x^2 + 1$ and B for 2x + 7 to get $f = A^4$; $q = B^3$, $f' = 8xA^3$, and $q' = 6B^2$. Substitute into $\frac{f'g - fg'}{g^2}$ $\frac{(8xA^3 \cdot 2B^3) - A^4(6B^2)}{(2B^3)^2}$ Recognize as sum of two terms $=\frac{8xA^3 \cdot 2B^3 - A^4(6B^2)}{(2B^3)^2}$ $=\frac{16xA^3B^3-6A^4B^2}{2^2(B^3)^2}$ Rewrite each term with constant at left $=\frac{2(8xA^3B^3-3A^4B^2)}{4B^6}$ Pull out common factor 2 from numerator $= \underbrace{ \mathscr{Z}(8xA^3B^3 - 3A^4B^2)}_{\mathscr{X}B^6} = \frac{(8xA^3B^3 - 3A^4B^2)}{2B^6}$ Cancel before continuing $=\frac{A^{3}(8xB^{3}-3A^{4-3}B^{2})}{2B^{6}}=\frac{A^{3}(8xB^{3}-3AB^{2})}{2B^{6}}$ Pull out lowest common power A^3 of A $=\frac{A^{3}B^{2}(8xB^{3-2}-3A)}{2B^{6}}=\frac{A^{3}B^{2}(8xB-3A)}{2B^{6}}$ Pull out lowest common power B^2 of BCancel common power of $B = \frac{A^3 \mathcal{P}^2(8xB-3A)}{2P^6} = \frac{A^3(8xB-3A)}{2B^4}$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

Working with abbreviations: Let $f = (x^2 + 1)^4$; $g = 2(2x + 7)^3$, $f' = 8x(x^2 + 1)^3$, and $g' = 6(2x + 7)^2$. Find $\frac{f'g-fg'}{c^2}$ and rewrite your answer as a completely reduced fraction. Solution: Scroll slowly. Try each step in the left column before you click to see the answer. Substitute A for $x^2 + 1$ and B for 2x + 7 to get $f = A^4$; $q = B^3$, $f' = 8xA^3$, and $q' = 6B^2$. Substitute into $\frac{f'g - fg'}{g^2}$ $\frac{(8xA^3 \cdot 2B^3) - A^4(6B^2)}{(2B^3)^2}$ Recognize as sum of two terms $=\frac{8xA^3 \cdot 2B^3 - A^4(6B^2)}{(2B^3)^2}$ $=\frac{16xA^3B^3-6A^4B^2}{2^2(B^3)^2}$ Rewrite each term with constant at left $=\frac{2(8xA^3B^3-3A^4B^2)}{4B^6}$ Pull out common factor 2 from numerator $= \frac{2'(8xA^3B^3 - 3A^4B^2)}{2B^6} = \frac{(8xA^3B^3 - 3A^4B^2)}{2B^6}$ Cancel before continuing $=\frac{A^{3}(8xB^{3}-3A^{4}-3B^{2})}{2B^{6}}=\frac{A^{3}(8xB^{3}-3AB^{2})}{2B^{6}}$ Pull out lowest common power A^3 of A $=\frac{A^{3}B^{2}(8xB^{3-2}-3A)}{2B^{6}}=\frac{A^{3}B^{2}(8xB-3A)}{2B^{6}}$ Pull out lowest common power B^2 of B

<ロ> (四) (四) (注) (三) (三)

Working with abbreviations: Let $f = (x^2 + 1)^4$; $g = 2(2x + 7)^3$, $f' = 8x(x^2 + 1)^3$, and $g' = 6(2x + 7)^2$. Find $\frac{f'g-fg'}{c^2}$ and rewrite your answer as a completely reduced fraction. Solution: Scroll slowly. Try each step in the left column before you click to see the answer. Substitute A for $x^2 + 1$ and B for 2x + 7 to get $f = A^4$; $q = B^3$, $f' = 8xA^3$, and $q' = 6B^2$. Substitute into $\frac{f'g - fg'}{g^2}$ $\frac{(8xA^3 \cdot 2B^3) - A^4(6B^2)}{(2B^3)^2}$ Recognize as sum of two terms $=\frac{8xA^3 \cdot 2B^3 - A^4(6B^2)}{(2B^3)^2}$ $=\frac{16xA^3B^3-6A^4B^2}{2^2(B^3)^2}$ Rewrite each term with constant at left $=\frac{2(8xA^3B^3-3A^4B^2)}{4B^6}$ Pull out common factor 2 from numerator $= \underbrace{2(8xA^{3}B^{3} - 3A^{4}B^{2})}_{R^{6}} = \frac{(8xA^{3}B^{3} - 3A^{4}B^{2})}{2B^{6}}$ Cancel before continuing $=\frac{A^{3}(8xB^{3}-3A^{4}-3B^{2})}{2B^{6}}=\frac{A^{3}(8xB^{3}-3AB^{2})}{2B^{6}}$ Pull out lowest common power A^3 of A $=\frac{A^{3}B^{2}(8xB^{3-2}-3A)}{2B^{6}}=\frac{A^{3}B^{2}(8xB-3A)}{2B^{6}}$ Pull out lowest common power B^2 of B $= \frac{A^3 \mathcal{B}^2(8xB - 3A)}{2\mathcal{B}^6} \qquad = \frac{A^3(8xB - 3A)}{2B^4}$ Cancel common power of BGo back to $x = \frac{(x^2+1)^3(8x(2x+7)-3(x^2+1))}{2(2x+7)^4}$ $=\frac{(x^2+1)^3(16x^2+56x-3x^2-3)}{2(2x+7)^4}=\left|\frac{(x^2+1)^3(13x^2+56x-3)}{2(2x+7)^4}\right|$ Expand remaining factor

(ロ) (同) (E) (E) (E)

Working with abbreviations: Let $f = (x^2 + 1)^4$; $g = 2(2x + 7)^3$, $f' = 8x(x^2 + 1)^3$, and $g' = 6(2x + 7)^2$. Find $\frac{f'g-fg'}{c^2}$ and rewrite your answer as a completely reduced fraction. Solution: Scroll slowly. Try each step in the left column before you click to see the answer. Substitute A for $x^2 + 1$ and B for 2x + 7 to get $f = A^4$; $q = B^3$, $f' = 8xA^3$, and $q' = 6B^2$. Substitute into $\frac{f'g - fg'}{g^2}$ $\frac{(8xA^3 \cdot 2B^3) - A^4(6B^2)}{(2B^3)^2}$ Recognize as sum of two terms $=\frac{8xA^3 \cdot 2B^3 - A^4(6B^2)}{(2B^3)^2}$ $=\frac{16xA^3B^3-6A^4B^2}{2^2(B^3)^2}$ Rewrite each term with constant at left $=\frac{2(8xA^3B^3-3A^4B^2)}{4B^6}$ Pull out common factor 2 from numerator $= \underbrace{2(8xA^{3}B^{3} - 3A^{4}B^{2})}_{R^{6}} = \frac{(8xA^{3}B^{3} - 3A^{4}B^{2})}{2B^{6}}$ Cancel before continuing $=\frac{A^{3}(8xB^{3}-3A^{4}-3B^{2})}{2B^{6}}=\frac{A^{3}(8xB^{3}-3AB^{2})}{2B^{6}}$ Pull out lowest common power A^3 of A $=\frac{A^{3}B^{2}(8xB^{3-2}-3A)}{2B^{6}}=\frac{A^{3}B^{2}(8xB-3A)}{2B^{6}}$ Pull out lowest common power B^2 of B $= \frac{A^3 \mathcal{B}^2(8xB - 3A)}{2\mathcal{B}^6} \qquad = \frac{A^3(8xB - 3A)}{2B^4}$ Cancel common power of BGo back to $x = \frac{(x^2+1)^3(8x(2x+7)-3(x^2+1))}{2(2x+7)^4}$ $=\frac{(x^2+1)^3(16x^2+56x-3x^2-3)}{2(2x+7)^4}=\left|\frac{(x^2+1)^3(13x^2+56x-3)}{2(2x+7)^4}\right|$ Expand remaining factor

(ロ) (同) (E) (E) (E)

3.1 Let
$$f(x) = x - x^2$$
; $a = x, b = x - h$. Then
 $\frac{f(b) - f(a)}{b - a}$

・ロト ・ 日 ・ モ ト ・ モ ・ うへで

ecurrent ●○○

3. In each of the following, find $\frac{f(b)-f(a)}{b-a}$ and rewrite your answer as a polynomial or as a reduced fraction. Go slowly through the slide and write down the answer to each part before you move ahead.

3.1 Let
$$f(x) = x - x^2$$
; $a = x, b = x - h$. Then

$$\frac{f(b) - f(a)}{b - a} = \frac{f(x - h) - f(x)}{(x - h) - x}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 めへで

3. In each of the following, find $\frac{f(b)-f(a)}{b-a}$ and rewrite your answer as a polynomial or as a reduced fraction. Go slowly through the slide and write down the answer to each part before you move ahead.

3.1 Let
$$f(x) = x - x^2$$
; $a = x, b = x - h$. Then

$$\frac{f(b) - f(a)}{b - a} = \frac{f(x - h) - f(x)}{(x - h) - x} = \frac{f(x - h) - f(x)}{-h}$$

3. In each of the following, find $\frac{f(b)-f(a)}{b-a}$ and rewrite your answer as a polynomial or as a reduced fraction. Go slowly through the slide and write down the answer to each part before you move ahead.

3.1 Let
$$f(x) = x - x^2$$
; $a = x, b = x - h$. Then

$$\frac{f(b) - f(a)}{b - a} = \frac{f(x - h) - f(x)}{(x - h) - x} = \frac{f(x - h) - f(x)}{-h}$$

$$= \frac{-1}{h} \left((x - h) - (x - h)^2 - (x - x^2) \right)$$

3.1 Let
$$f(x) = x - x^2$$
; $a = x, b = x - h$. Then

$$\frac{f(b) - f(a)}{b - a} = \frac{f(x - h) - f(x)}{(x - h) - x} = \frac{f(x - h) - f(x)}{-h}$$

$$= \frac{-1}{h} \left((x - h) - (x - h)^2 - (x - x^2) \right)$$

$$= -\frac{1}{h} \left(x - h - (x^2 - 2hx + h^2) - x + x^2 \right)$$

3.1 Let
$$f(x) = x - x^2$$
; $a = x, b = x - h$. Then

$$\frac{f(b) - f(a)}{b - a} = \frac{f(x - h) - f(x)}{(x - h) - x} = \frac{f(x - h) - f(x)}{-h}$$

$$= \frac{-1}{h} \left((x - h) - (x - h)^2 - (x - x^2) \right)$$

$$= -\frac{1}{h} \left(x - h - (x^2 - 2hx + h^2) - x + x^2 \right)$$

$$= -\frac{1}{h} \left(x - h - x^2 + 2hx - h^2 - x + x^2 \right)$$

3.1 Let
$$f(x) = x - x^2$$
; $a = x, b = x - h$. Then

$$\frac{f(b) - f(a)}{b - a} = \frac{f(x - h) - f(x)}{(x - h) - x} = \frac{f(x - h) - f(x)}{-h}$$

$$= \frac{-1}{h} \left((x - h) - (x - h)^2 - (x - x^2) \right)$$

$$= -\frac{1}{h} \left(x - h - (x^2 - 2hx + h^2) - x + x^2 \right)$$

$$= -\frac{1}{h} \left(x - h - x^2 + 2hx - h^2 - x + x^2 \right)$$

$$= -\frac{1}{h} \left(x - h - x^2 + 2hx - h^2 - x + x^2 \right)$$

3.1 Let
$$f(x) = x - x^2$$
; $a = x, b = x - h$. Then

$$\frac{f(b) - f(a)}{b - a} = \frac{f(x - h) - f(x)}{(x - h) - x} = \frac{f(x - h) - f(x)}{-h}$$

$$= -\frac{1}{h} \left((x - h) - (x - h)^2 - (x - x^2) \right)$$

$$= -\frac{1}{h} \left(x - h - (x^2 - 2hx + h^2) - x + x^2 \right)$$

$$= -\frac{1}{h} \left(x - h - x^2 + 2hx - h^2 - x + x^2 \right)$$

$$= -\frac{1}{h} \left(x - h - x^2 + 2hx - h^2 - x + x^2 \right)$$

$$= -\frac{1}{h} \left(x - h - x^2 + 2hx - h^2 - x + x^2 \right)$$

3.1 Let
$$f(x) = x - x^2$$
; $a = x, b = x - h$. Then

$$\frac{f(b) - f(a)}{b - a} = \frac{f(x - h) - f(x)}{(x - h) - x} = \frac{f(x - h) - f(x)}{-h}$$

$$= -\frac{1}{h} \left((x - h) - (x - h)^2 - (x - x^2) \right)$$

$$= -\frac{1}{h} \left(x - h - (x^2 - 2hx + h^2) - x + x^2 \right)$$

$$= -\frac{1}{h} \left(x - h - x^2 + 2hx - h^2 - x + x^2 \right)$$

$$= -\frac{1}{h} \left(x - h - x^2 + 2hx - h^2 - x + x^2 \right)$$

$$= -\frac{1}{h} \left(x - h - x^2 + 2hx - h^2 - x + x^2 \right)$$

$$= -\frac{1}{h} \left(-h + 2hx - h^2 \right)$$

$$= -\frac{1}{h} \left(-h + 2hx - h^2 \right)$$

3. In each of the following, find $\frac{f(b)-f(a)}{b-a}$ and rewrite your answer as a polynomial or as a reduced fraction. Go slowly through the slide and write down the answer to each part before you move ahead.

3.1 Let
$$f(x) = x - x^2$$
; $a = x, b = x - h$. Then

$$\frac{f(b) - f(a)}{b - a} = \frac{f(x - h) - f(x)}{(x - h) - x} = \frac{f(x - h) - f(x)}{-h}$$

$$= -\frac{1}{h} \left((x - h) - (x - h)^2 - (x - x^2) \right)$$

$$= -\frac{1}{h} \left(x - h - (x^2 - 2hx + h^2) - x + x^2 \right)$$

$$= -\frac{1}{h} \left(x - h - x^2 + 2hx - h^2 - x + x^2 \right)$$

$$= -\frac{1}{h} \left(x - h - x^2 + 2hx - h^2 - x + x^2 \right)$$

$$= -\frac{1}{h} \left(x - h - x^2 + 2hx - h^2 - x + x^2 \right)$$

$$= -\frac{1}{h} \left(-h + 2hx - h^2 \right)$$

$$= -\frac{1}{h} \left(-h + 2hx - h^2 \right)$$

en 3.2 Let
$$f(x) = x - x^2; a = x; b = x + h$$
. Then
$$\frac{f(b) - f(a)}{b - a}$$

3. In each of the following, find $\frac{f(b)-f(a)}{b-a}$ and rewrite your answer as a polynomial or as a reduced fraction. Go slowly through the slide and write down the answer to each part before you move ahead.

3.1 Let
$$f(x) = x - x^2$$
; $a = x, b = x - h$. Then

$$\frac{f(b) - f(a)}{b - a} = \frac{f(x - h) - f(x)}{(x - h) - x} = \frac{f(x - h) - f(x)}{-h}$$

$$= -\frac{1}{h} \left((x - h) - (x - h)^2 - (x - x^2) \right)$$

$$= -\frac{1}{h} \left(x - h - (x^2 - 2hx + h^2) - x + x^2 \right)$$

$$= -\frac{1}{h} \left(x - h - x^2 + 2hx - h^2 - x + x^2 \right)$$

$$= -\frac{1}{h} \left(x - h - x^2 + 2hx - h^2 - x + x^2 \right)$$

$$= -\frac{1}{h} \left(x - h - x^2 + 2hx - h^2 - x + x^2 \right)$$

$$= -\frac{1}{h} \left(-h + 2hx - h^2 \right)$$

$$= -\frac{1}{h} \left(-h + 2hx - h^2 \right)$$

en 3.2 Let
$$f(x) = x - x^2; a = x; b = x + h$$
. Then
$$\frac{f(b) - f(a)}{b - a} = \frac{f(x+h) - f(x)}{(x+h) - x}$$

3. In each of the following, find $\frac{f(b)-f(a)}{b-a}$ and rewrite your answer as a polynomial or as a reduced fraction. Go slowly through the slide and write down the answer to each part before you move ahead.

3.1 Let
$$f(x) = x - x^2$$
; $a = x, b = x - h$. Then

$$\frac{f(b) - f(a)}{b - a} = \frac{f(x - h) - f(x)}{(x - h) - x} = \frac{f(x - h) - f(x)}{-h}$$

$$= \frac{-1}{h} \left((x - h) - (x - h)^2 - (x - x^2) \right)$$

$$= -\frac{1}{h} \left(x - h - (x^2 - 2hx + h^2) - x + x^2 \right)$$

$$= -\frac{1}{h} \left(x - h - x^2 + 2hx - h^2 - x + x^2 \right)$$

$$= -\frac{1}{h} \left(x - h - x^2 + 2hx - h^2 - x + x^2 \right)$$

$$= -\frac{1}{h} \left(x - h - x^2 + 2hx - h^2 - x + x^2 \right)$$

$$= -\frac{1}{h} \left(-h + 2hx - h^2 \right)$$

$$= -\frac{1}{h} \left(-h + 2hx - h^2 \right)$$

3.2 Let
$$f(x) = x - x^2$$
; $a = x$; $b = x + h$. Then

$$\frac{f(b) - f(a)}{b - a} = \frac{f(x+h) - f(x)}{(x+h) - x} = \frac{f(x+h) - f(x)}{h}$$

3. In each of the following, find $\frac{f(b)-f(a)}{b-a}$ and rewrite your answer as a polynomial or as a reduced fraction. Go slowly through the slide and write down the answer to each part before you move ahead.

3.1 Let
$$f(x) = x - x^2$$
; $a = x, b = x - h$. Then

$$\frac{f(b) - f(a)}{b - a} = \frac{f(x - h) - f(x)}{(x - h) - x} = \frac{f(x - h) - f(x)}{-h}$$

$$= \frac{-1}{h} \left((x - h) - (x - h)^2 - (x - x^2) \right)$$

$$= -\frac{1}{h} \left(x - h - (x^2 - 2hx + h^2) - x + x^2 \right)$$

$$= -\frac{1}{h} \left(x - h - x^2 + 2hx - h^2 - x + x^2 \right)$$

$$= -\frac{1}{h} \left(x - h - x^2 + 2hx - h^2 - x + x^2 \right)$$

$$= -\frac{1}{h} \left(x - h - x^2 + 2hx - h^2 - x + x^2 \right)$$

$$= -\frac{1}{h} \left(-h + 2hx - h^2 \right)$$

$$= -\frac{1}{h} \left(-h + 2hx - h^2 \right)$$

3.2 Let
$$f(x) = x - x^2$$
; $a = x$; $b = x + h$. Then

$$\frac{f(b) - f(a)}{b - a} = \frac{f(x+h) - f(x)}{(x+h) - x} = \frac{f(x+h) - f(x)}{h}$$

$$= \frac{1}{h} \left((x+h) - (x+h)^2 - (x-x^2) \right)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 めへで

3. In each of the following, find $\frac{f(b)-f(a)}{b-a}$ and rewrite your answer as a polynomial or as a reduced fraction. Go slowly through the slide and write down the answer to each part before you move ahead.

3.1 Let
$$f(x) = x - x^2$$
; $a = x, b = x - h$. Then

$$\frac{f(b) - f(a)}{b - a} = \frac{f(x - h) - f(x)}{(x - h) - x} = \frac{f(x - h) - f(x)}{-h}$$

$$= -\frac{1}{h} \left((x - h) - (x - h)^2 - (x - x^2) \right)$$

$$= -\frac{1}{h} \left(x - h - (x^2 - 2hx + h^2) - x + x^2 \right)$$

$$= -\frac{1}{h} \left(x - h - x^2 + 2hx - h^2 - x + x^2 \right)$$

$$= -\frac{1}{h} \left(x - h - x^2 + 2hx - h^2 - x + x^2 \right)$$

$$= -\frac{1}{h} \left(x - h - x^2 + 2hx - h^2 - x + x^2 \right)$$

$$= -\frac{1}{h} \left(-h + 2hx - h^2 \right)$$

$$= -\frac{1}{h} \left(-h + 2hx - h^2 \right)$$

3.2 Let
$$f(x) = x - x^2$$
; $a = x$; $b = x + h$. Then

$$\frac{f(b) - f(a)}{b - a} = \frac{f(x+h) - f(x)}{(x+h) - x} = \frac{f(x+h) - f(x)}{h}$$

$$= \frac{1}{h} \left((x+h) - (x+h)^2 - (x-x^2) \right)$$

$$= \frac{1}{h} \left(x + h - (x^2 + 2hx + h^2) - x + x^2 \right)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 めへで

3. In each of the following, find $\frac{f(b)-f(a)}{b-a}$ and rewrite your answer as a polynomial or as a reduced fraction. Go slowly through the slide and write down the answer to each part before you move ahead.

3.1 Let
$$f(x) = x - x^2; a = x, b = x - h$$
. Then

$$\frac{f(b) - f(a)}{b - a} = \frac{f(x - h) - f(x)}{(x - h) - x} = \frac{f(x - h) - f(x)}{-h}$$

$$= \frac{-1}{h} \left((x - h) - (x - h)^2 - (x - x^2) \right)$$

$$= -\frac{1}{h} \left(x - h - (x^2 - 2hx + h^2) - x + x^2 \right)$$

$$= -\frac{1}{h} \left(x - h - x^2 + 2hx - h^2 - x + x^2 \right)$$

$$= -\frac{1}{h} \left(x - h - x^2 + 2hx - h^2 - x + x^2 \right)$$

$$= -\frac{1}{h} \left(x - h - x^2 + 2hx - h^2 - x + x^2 \right)$$

$$= -\frac{1}{h} \left(-h + 2hx - h^2 \right)$$

$$= -\frac{1}{h} \left(-h + 2hx - h^2 \right)$$

3.2 Let
$$f(x) = x - x^2$$
; $a = x$; $b = x + h$. Then

$$\frac{f(b) - f(a)}{b - a} = \frac{f(x + h) - f(x)}{(x + h) - x} = \frac{f(x + h) - f(x)}{h}$$

$$= \frac{1}{h} \left((x + h) - (x + h)^2 - (x - x^2) \right)$$

$$= \frac{1}{h} \left(x + h - (x^2 + 2hx + h^2) - x + x^2 \right)$$

$$= \frac{1}{h} \left(x + h - x^2 - 2hx - h^2 - x + x^2 \right)$$

3. In each of the following, find $\frac{f(b)-f(a)}{b-a}$ and rewrite your answer as a polynomial or as a reduced fraction. Go slowly through the slide and write down the answer to each part before you move ahead.

3.1 Let
$$f(x) = x - x^2$$
; $a = x, b = x - h$. Then

$$\frac{f(b) - f(a)}{b - a} = \frac{f(x - h) - f(x)}{(x - h) - x} = \frac{f(x - h) - f(x)}{-h}$$

$$= -\frac{1}{h} \left((x - h) - (x - h)^2 - (x - x^2) \right)$$

$$= -\frac{1}{h} \left(x - h - (x^2 - 2hx + h^2) - x + x^2 \right)$$

$$= -\frac{1}{h} \left(x - h - x^2 + 2hx - h^2 - x + x^2 \right)$$

$$= -\frac{1}{h} \left(x - h - x^2 + 2hx - h^2 - x + x^2 \right)$$

$$= -\frac{1}{h} \left(x - h - x^2 + 2hx - h^2 - x + x^2 \right)$$

$$= -\frac{1}{h} \left(-h + 2hx - h^2 \right)$$

$$= -\frac{1}{h} \left(-h + 2hx - h^2 \right)$$

3.2 Let
$$f(x) = x - x^2$$
; $a = x; b = x + h$. Then

$$\frac{f(b) - f(a)}{b - a} = \frac{f(x + h) - f(x)}{(x + h) - x} = \frac{f(x + h) - f(x)}{h}$$

$$= \frac{1}{h} \left((x + h) - (x + h)^2 - (x - x^2) \right)$$

$$= \frac{1}{h} \left(x + h - (x^2 + 2hx + h^2) - x + x^2 \right)$$

$$= \frac{1}{h} \left(x + h - x^2 - 2hx - h^2 - x + x^2 \right)$$

$$= \frac{1}{h} \left(x + h - x^2 - 2hx - h^2 - x + x^2 \right)$$

3. In each of the following, find $\frac{f(b)-f(a)}{b-a}$ and rewrite your answer as a polynomial or as a reduced fraction. Go slowly through the slide and write down the answer to each part before you move ahead.

3.1 Let
$$f(x) = x - x^2; a = x, b = x - h$$
. Then

$$\frac{f(b) - f(a)}{b - a} = \frac{f(x - h) - f(x)}{(x - h) - x} = \frac{f(x - h) - f(x)}{-h}$$

$$= -\frac{1}{h} \left((x - h) - (x - h)^2 - (x - x^2) \right)$$

$$= -\frac{1}{h} \left(x - h - (x^2 - 2hx + h^2) - x + x^2 \right)$$

$$= -\frac{1}{h} \left(x - h - x^2 + 2hx - h^2 - x + x^2 \right)$$

$$= -\frac{1}{h} \left(x - h - x^2 + 2hx - h^2 - x + x^2 \right)$$

$$= -\frac{1}{h} \left(x - h - x^2 + 2hx - h^2 - x + x^2 \right)$$

$$= -\frac{1}{h} \left(-h + 2hx - h^2 \right)$$

$$= -\frac{1}{h} \left(-h + 2hx - h^2 \right)$$

3.2 Let
$$f(x) = x - x^2$$
; $a = x; b = x + h$. Then

$$\frac{f(b) - f(a)}{b - a} = \frac{f(x+h) - f(x)}{(x+h) - x} = \frac{f(x+h) - f(x)}{h}$$

$$= \frac{1}{h} \left((x+h) - (x+h)^2 - (x-x^2) \right)$$

$$= \frac{1}{h} \left(x + h - (x^2 + 2hx + h^2) - x + x^2 \right)$$

$$= \frac{1}{h} \left(x + h - x^2 - 2hx - h^2 - x + x^2 \right)$$

$$= \frac{1}{h} \left(x + h - x^2 - 2hx - h^2 - x + x^2 \right)$$

$$= \frac{1}{h} \left(x - h - x^2 - 2hx - h^2 - x + x^2 \right)$$

$$= \frac{1}{h} \left(h - 2hx - h^2 \right)$$

・ロト ・ 日 ・ モ ト ・ モ ・ うへで

eurrent

3. In each of the following, find $\frac{f(b)-f(a)}{b-a}$ and rewrite your answer as a polynomial or as a reduced fraction. Go slowly through the slide and write down the answer to each part before you move ahead.

3.1 Let
$$f(x) = x - x^2$$
; $a = x, b = x - h$. Then

$$\frac{f(b) - f(a)}{b - a} = \frac{f(x - h) - f(x)}{(x - h) - x} = \frac{f(x - h) - f(x)}{-h}$$

$$= \frac{-1}{h} \left((x - h) - (x - h)^2 - (x - x^2) \right)$$

$$= -\frac{1}{h} \left(x - h - (x^2 - 2hx + h^2) - x + x^2 \right)$$

$$= -\frac{1}{h} \left(x - h - x^2 + 2hx - h^2 - x + x^2 \right)$$

$$= -\frac{1}{h} \left(x - h - x^2 + 2hx - h^2 - x + x^2 \right)$$

$$= -\frac{1}{h} \left(x - h - x^2 + 2hx - h^2 - x + x^2 \right)$$

$$= -\frac{1}{h} \left(-h + 2hx - h^2 \right)$$

$$= -\frac{1}{h} \left(-h + 2hx - h^2 \right)$$

3.2 Let
$$f(x) = x - x^2$$
; $a = x$; $b = x + h$. Then

$$\frac{f(b) - f(a)}{b - a} = \frac{f(x+h) - f(x)}{(x+h) - x} = \frac{f(x+h) - f(x)}{h}$$

$$= \frac{1}{h} \left((x+h) - (x+h)^2 - (x-x^2) \right)$$

$$= \frac{1}{h} \left(x + h - (x^2 + 2hx + h^2) - x + x^2 \right)$$

$$= \frac{1}{h} \left(x + h - x^2 - 2hx - h^2 - x + x^2 \right)$$

$$= \frac{1}{h} \left(x + h - x^2 - 2hx - h^2 - x + x^2 \right)$$

$$= \frac{1}{h} \left(h - 2hx - h^2 \right)$$

$$= \frac{1}{h} \left(h - 2hx - h^2 \right)$$

$$= \frac{1}{h} \left(h (1 - 2x - h) \right) = \boxed{-2x + 1 - h}$$

3.3 Let $f(x)=\frac{1}{x}; a=x, b=x+h.$ Then $\frac{f(b)-f(a)}{b-a}=$

・ロト ・ 日 ・ モ ト ・ モ ・ うへで

3.3 Let $f(x) = \frac{1}{x}; a = x, b = x + h$. Then $\frac{f(b)-f(a)}{b-a} = \frac{f(x+h)-f(x)}{(x+h)-x}$

◆□> ◆□> ◆目> ◆目> ・目 ・のへぐ

3.3 Let $f(x) = \frac{1}{x}; a = x, b = x + h$. Then $\frac{f(b) - f(a)}{b - a} = \frac{f(x+h) - f(x)}{(x+h) - x} = \frac{f(x+h) - f(x)}{h}$

=

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

3.3 Let $f(x) = \frac{1}{x}$; a = x, b = x + h. Then $\frac{f(b) - f(a)}{b - a} = \frac{f(x+h) - f(x)}{(x+h) - x} = \frac{f(x+h) - f(x)}{h}$ $= \frac{1}{h} (f(x+h) - f(x))$

=

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

3.3 Let $f(x) = \frac{1}{x}; a = x, b = x + h$. Then $\frac{f(b) - f(a)}{b - a} = \frac{f(x+h) - f(x)}{(x+h) - x} = \frac{f(x+h) - f(x)}{h}$ $= \frac{1}{h} (f(x+h) - f(x))$ $= \frac{1}{h} \left(\frac{1}{x+h} - \frac{1}{x}\right)$

=

Stanley Ocken Sabbatical Notes : Calculus Preparation

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

=

3 Find $\frac{f(b)-f(a)}{b-a}$ and rewrite your answer as a polynomial or as a reduced fraction. Go slowly through the slide and write down the answer to each part before you move ahead.

3.3 Let $f(x) = \frac{1}{x}; a = x, b = x + h$. Then $\frac{f(b) - f(a)}{b - a} = \frac{f(x+h) - f(x)}{(x+h) - x} = \frac{f(x+h) - f(x)}{h}$ $= \frac{1}{h} (f(x+h) - f(x))$ $= \frac{1}{h} \left(\frac{1}{x+h} - \frac{1}{x}\right)$ $= \frac{1}{h} \left(\frac{1}{x+h} \cdot \frac{x}{x} - \frac{1}{x} \cdot \frac{x+h}{x+h}\right)$

=

3 Find $\frac{f(b)-f(a)}{b-a}$ and rewrite your answer as a polynomial or as a reduced fraction. Go slowly through the slide and write down the answer to each part before you move ahead.

3.3 Let $f(x) = \frac{1}{x}; a = x, b = x + h$. Then $\frac{f(b) - f(a)}{b - a} = \frac{f(x+h) - f(x)}{(x+h) - x} = \frac{f(x+h) - f(x)}{h}$ $= \frac{1}{h} \left(f(x+h) - f(x) \right)$ $= \frac{1}{h} \left(\frac{1}{x+h} - \frac{1}{x} \right)$ $= \frac{1}{h} \left(\frac{1}{x+h} \cdot \frac{x}{x} - \frac{1}{x} \cdot \frac{x+h}{x+h} \right)$ $= \frac{1}{h} \left(\frac{x}{(x+h)x} - \frac{x+h}{x(x+h)} \right)$

3 Find $\frac{f(b)-f(a)}{b-a}$ and rewrite your answer as a polynomial or as a reduced fraction. Go slowly through the slide and write down the answer to each part before you move ahead.

3.3 Let $f(x) = \frac{1}{x}; a = x, b = x + h$. Then $\frac{f(b) - f(a)}{b - a} = \frac{f(x+h) - f(x)}{(x+h) - x} = \frac{f(x+h) - f(x)}{h}$ $= \frac{1}{h} \left(f(x+h) - f(x) \right)$ $= \frac{1}{h} \left(\frac{1}{x+h} - \frac{1}{x} \right)$ $= \frac{1}{h} \left(\frac{1}{x+h} \cdot \frac{x}{x} - \frac{1}{x} \cdot \frac{x+h}{x+h} \right)$ $= \frac{1}{h} \left(\frac{x}{(x+h)x} - \frac{x+h}{x(x+h)} \right)$ $= \frac{1}{h} \left(\frac{x-(x+h)}{x(x+h)} \right) = \frac{1}{h} \cdot \frac{x-x-h}{x(x+h)}$

=

◆□> ◆□> ◆目> ◆目> ・目 ・のへぐ

3 Find $\frac{f(b)-f(a)}{b-a}$ and rewrite your answer as a polynomial or as a reduced fraction. Go slowly through the slide and write down the answer to each part before you move ahead.

3.3 Let
$$f(x) = \frac{1}{x}; a = x, b = x + h$$
. Then

$$\frac{f(b) - f(a)}{b - a} = \frac{f(x + h) - f(x)}{(x + h) - x} = \frac{f(x + h) - f(x)}{h}$$

$$3.4 \text{ Let } f(x) = \frac{x}{2x + 3}; a = x, b = x + h.$$
 Then

$$\frac{f(b) - f(a)}{b - a} =$$

$$= \frac{1}{h} (f(x + h) - f(x))$$

$$= \frac{1}{h} (\frac{1}{x + h} - \frac{1}{x})$$

$$= \frac{1}{h} (\frac{1}{x + h} - \frac{x + h}{x + h})$$

$$= \frac{1}{h} (\frac{x}{(x + h)x} - \frac{x + h}{x(x + h)})$$

$$= \frac{1}{h} (\frac{x - (x + h)}{x(x + h)}) = \frac{1}{h} \cdot \frac{x - x - h}{x(x + h)}$$

$$= \frac{1}{h} \cdot \frac{2h}{x(x + h)} = \frac{-1}{x(x + h)}$$

3 Find $\frac{f(b)-f(a)}{b-a}$ and rewrite your answer as a polynomial or as a reduced fraction. Go slowly through the slide and write down the answer to each part before you move ahead.

3.3 Let
$$f(x) = \frac{1}{x}; a = x, b = x + h$$
. Then

$$\frac{f(b) - f(a)}{b - a} = \frac{f(x + h) - f(x)}{(x + h) - x} = \frac{f(x + h) - f(x)}{h}$$

$$= \frac{1}{h} (f(x + h) - f(x))$$

$$= \frac{1}{h} (\frac{1}{x + h} - \frac{1}{x})$$

$$= \frac{1}{h} (\frac{1}{x + h} - \frac{1}{x})$$

$$= \frac{1}{h} (\frac{x}{(x + h)x} - \frac{x + h}{x(x + h)})$$

$$= \frac{1}{h} (\frac{x - (x + h)}{x(x + h)}) = \frac{1}{h} \cdot \frac{x - x - h}{x(x + h)}$$

3 Find $\frac{f(b)-f(a)}{b-a}$ and rewrite your answer as a polynomial or as a reduced fraction. Go slowly through the slide and write down the answer to each part before you move ahead.

3.3 Let
$$f(x) = \frac{1}{x}; a = x, b = x + h$$
. Then

$$\frac{f(b) - f(a)}{b - a} = \frac{f(x+h) - f(x)}{(x+h) - x} = \frac{f(x+h) - f(x)}{h}$$

$$= \frac{1}{h} (f(x+h) - f(x))$$

$$= \frac{1}{h} (\frac{1}{x+h} - \frac{1}{x})$$

$$= \frac{1}{h} (\frac{1}{x+h} - \frac{1}{x})$$

$$= \frac{1}{h} (\frac{x}{(x+h)x} - \frac{x+h}{x(x+h)})$$

$$= \frac{1}{h} (\frac{x}{(x+h)x} - \frac{x+h}{x(x+h)})$$

$$= \frac{1}{h} (\frac{x-(x+h)}{x(x+h)}) = \frac{1}{h} \cdot \frac{x-x-h}{x(x+h)}$$

3 Find $\frac{f(b)-f(a)}{b-a}$ and rewrite your answer as a polynomial or as a reduced fraction. Go slowly through the slide and write down the answer to each part before you move ahead.

3.3 Let
$$f(x) = \frac{1}{x}$$
; $a = x, b = x + h$. Then

$$\frac{f(b) - f(a)}{b - a} = \frac{f(x+h) - f(x)}{(x+h) - x} = \frac{f(x+h) - f(x)}{h}$$

$$= \frac{1}{h} (f(x+h) - f(x))$$

$$= \frac{1}{h} (\frac{1}{x+h} - \frac{1}{x})$$

$$= \frac{1}{h} (\frac{1}{x+h} - \frac{1}{x} - \frac{1}{x} \cdot \frac{x+h}{x+h})$$

$$= \frac{1}{h} (\frac{x}{(x+h)x} - \frac{x+h}{x(x+h)})$$

$$= \frac{1}{h} (\frac{x - (x+h)}{x(x+h)}) = \frac{1}{h} \cdot \frac{x - x - h}{x(x+h)}$$

3.4 Let
$$f(x) = \frac{x}{2x+3}; a = x, b = x + h$$
. Then

$$\frac{f(b)-f(a)}{b-a} = \frac{f(x+h)-f(x)}{(x+h)-x} = \frac{f(x+h)-f(x)}{h}$$

$$= \frac{1}{h} \left(f(x+h) - f(x) \right)$$

3 Find $\frac{f(b)-f(a)}{b-a}$ and rewrite your answer as a polynomial or as a reduced fraction. Go slowly through the slide and write down the answer to each part before you move ahead.

3.3 Let
$$f(x) = \frac{1}{x}; a = x, b = x + h$$
. Then

$$\frac{f(b) - f(a)}{b - a} = \frac{f(x+h) - f(x)}{(x+h) - x} = \frac{f(x+h) - f(x)}{h}$$

$$= \frac{1}{h} (f(x+h) - f(x))$$

$$= \frac{1}{h} \left(\frac{1}{x+h} - \frac{1}{x}\right)$$

$$= \frac{1}{h} \left(\frac{1}{x+h} \cdot \frac{x}{x} - \frac{1}{x} \cdot \frac{x+h}{x+h}\right)$$

$$= \frac{1}{h} \left(\frac{x}{(x+h)x} - \frac{x+h}{x(x+h)}\right)$$

$$= \frac{1}{h} \left(\frac{x - (x+h)}{x(x+h)}\right) = \frac{1}{h} \cdot \frac{x - x - h}{x(x+h)}$$

$$= \frac{1}{h} \cdot \frac{x}{x(x+h)} = \frac{-1}{x(x+h)}$$

3.4 Let
$$f(x) = \frac{x}{2x+3}$$
; $a = x, b = x + h$. Then

$$\frac{f(b)-f(a)}{b-a} = \frac{f(x+h)-f(x)}{(x+h)-x} = \frac{f(x+h)-f(x)}{h}$$

$$= \frac{1}{h} \left(f(x+h) - f(x) \right)$$

$$= \frac{1}{h} \left(\frac{x+h}{2x+2h+3} - \frac{x}{2x+3} \right)$$

=

3 Find $\frac{f(b)-f(a)}{b-a}$ and rewrite your answer as a polynomial or as a reduced fraction. Go slowly through the slide and write down the answer to each part before you move ahead.

3.3 Let
$$f(x) = \frac{1}{x}; a = x, b = x + h$$
. Then

$$\frac{f(b) - f(a)}{b - a} = \frac{f(x+h) - f(x)}{(x+h) - x} = \frac{f(x+h) - f(x)}{h}$$

$$= \frac{1}{h} (f(x+h) - f(x))$$

$$= \frac{1}{h} \left(\frac{1}{x+h} - \frac{1}{x}\right)$$

$$= \frac{1}{h} \left(\frac{1}{x+h} \cdot \frac{x}{x} - \frac{1}{x} \cdot \frac{x+h}{x+h}\right)$$

$$= \frac{1}{h} \left(\frac{x}{(x+h)x} - \frac{x+h}{x(x+h)}\right)$$

$$= \frac{1}{h} \left(\frac{x-(x+h)}{x(x+h)}\right) = \frac{1}{h} \cdot \frac{x-x-h}{x(x+h)}$$

$$= \frac{1}{h} \cdot \frac{\pi}{x(x+h)} = \frac{-1}{x(x+h)}$$

3.4 Let
$$f(x) = \frac{x}{2x+3}; a = x, b = x + h$$
. Then

$$\frac{f(b) - f(a)}{b-a} = \frac{f(x+h) - f(x)}{(x+h) - x} = \frac{f(x+h) - f(x)}{h}$$

$$= \frac{1}{h} \left(f(x+h) - f(x) \right)$$

$$= \frac{1}{h} \left(\frac{x+h}{2x+2h+3} - \frac{x}{2x+3} \right)$$

$$= \frac{1}{h} \left(\frac{x+h}{2x+2h+3} \cdot \frac{2x+3}{2x+3} - \frac{x}{2x+3} \cdot \frac{2x+2h+3}{2x+2h+3} \right)$$

$$=$$

3 Find $\frac{f(b)-f(a)}{b-a}$ and rewrite your answer as a polynomial or as a reduced fraction. Go slowly through the slide and write down the answer to each part before you move ahead.

3.3 Let
$$f(x) = \frac{1}{x}; a = x, b = x + h$$
. Then

$$\frac{f(b) - f(a)}{b - a} = \frac{f(x+h) - f(x)}{(x+h) - x} = \frac{f(x+h) - f(x)}{h}$$

$$= \frac{1}{h} (f(x+h) - f(x))$$

$$= \frac{1}{h} \left(\frac{1}{x+h} - \frac{1}{x}\right)$$

$$= \frac{1}{h} \left(\frac{1}{x+h} \cdot \frac{x}{x} - \frac{1}{x} \cdot \frac{x+h}{x+h}\right)$$

$$= \frac{1}{h} \left(\frac{x}{(x+h)x} - \frac{x+h}{x(x+h)}\right)$$

$$= \frac{1}{h} \left(\frac{x-(x+h)}{x(x+h)}\right) = \frac{1}{h} \cdot \frac{x-x-h}{x(x+h)}$$

$$= \frac{1}{h} \cdot \frac{x}{x(x+h)} = \boxed{-\frac{1}{x(x+h)}}$$

3.4 Let
$$f(x) = \frac{x}{2x+3}; a = x, b = x + h$$
. Then

$$\frac{f(b)-f(a)}{b-a} = \frac{f(x+h)-f(x)}{(x+h)-x} = \frac{f(x+h)-f(x)}{h}$$

$$= \frac{1}{h} \left(f(x+h) - f(x) \right)$$

$$= \frac{1}{h} \left(\frac{x+h}{2x+2h+3} - \frac{x}{2x+3} \right)$$

$$= \frac{1}{h} \left(\frac{x+h}{2x+2h+3} \cdot \frac{2x+3}{2x+3} - \frac{x}{2x+3} \cdot \frac{2x+2h+3}{2x+2h+3} \right)$$

$$= \frac{1}{h} \left(\frac{x(2x)+x(3)+h(2x)+h(3)}{(2x+3+2h)(2x+3)} - \frac{x(2x)+x(2h)+x(3)}{(2x+3+2h)(2x+3)} \right)$$

=

current

3 Find $\frac{f(b)-f(a)}{b-a}$ and rewrite your answer as a polynomial or as a reduced fraction. Go slowly through the slide and write down the answer to each part before you move ahead.

3.3 Let
$$f(x) = \frac{1}{x}; a = x, b = x + h$$
. Then

$$\frac{f(b) - f(a)}{b - a} = \frac{f(x+h) - f(x)}{(x+h) - x} = \frac{f(x+h) - f(x)}{h}$$

$$= \frac{1}{h} (f(x+h) - f(x))$$

$$= \frac{1}{h} \left(\frac{1}{x+h} - \frac{1}{x}\right)$$

$$= \frac{1}{h} \left(\frac{1}{x+h} - \frac{1}{x} - \frac{1}{x} \cdot \frac{x+h}{x+h}\right)$$

$$= \frac{1}{h} \left(\frac{x}{(x+h)x} - \frac{x+h}{x(x+h)}\right)$$

$$= \frac{1}{h} \left(\frac{x-(x+h)}{x(x+h)}\right) = \frac{1}{h} \cdot \frac{x-x-h}{x(x+h)}$$

$$= \frac{1}{h} \cdot \frac{x-h}{x(x+h)} = \boxed{-1}{x(x+h)}$$

3.4 Let
$$f(x) = \frac{x}{2x+3}$$
; $a = x, b = x + h$. Then

$$\frac{f(b)-f(a)}{b-a} = \frac{f(x+h)-f(x)}{(x+h)-x} = \frac{f(x+h)-f(x)}{h}$$

$$= \frac{1}{h} \left(f(x+h) - f(x) \right)$$

$$= \frac{1}{h} \left(\frac{x+h}{2x+2h+3} - \frac{x}{2x+3} \right)$$

$$= \frac{1}{h} \left(\frac{x+h}{2x+2h+3} \cdot \frac{2x+3}{2x+3} - \frac{x}{2x+3} \cdot \frac{2x+2h+3}{2x+2h+3} \right)$$

$$= \frac{1}{h} \left(\frac{x(2x)+x(3)+h(2x)+h(3)}{(2x+3+2h)(2x+3)} - \frac{x(2x)+x(2h)+x(3)}{(2x+3+2h)(2x+3)} \right)$$

$$= \frac{2x^2+3x+2hx+3h-(2x^2+2xh+3x)}{h(2x+3+2h)(2x+3)}$$

current

3 Find $\frac{f(b)-f(a)}{b-a}$ and rewrite your answer as a polynomial or as a reduced fraction. Go slowly through the slide and write down the answer to each part before you move ahead.

3.3 Let
$$f(x) = \frac{1}{x}; a = x, b = x + h$$
. Then

$$\frac{f(b) - f(a)}{b - a} = \frac{f(x+h) - f(x)}{(x+h) - x} = \frac{f(x+h) - f(x)}{h}$$

$$= \frac{1}{h} (f(x+h) - f(x))$$

$$= \frac{1}{h} \left(\frac{1}{x+h} - \frac{1}{x}\right)$$

$$= \frac{1}{h} \left(\frac{1}{x+h} - \frac{1}{x} - \frac{1}{x} \cdot \frac{x+h}{x+h}\right)$$

$$= \frac{1}{h} \left(\frac{x}{(x+h)x} - \frac{x+h}{x(x+h)}\right)$$

$$= \frac{1}{h} \left(\frac{x-(x+h)}{x(x+h)}\right) = \frac{1}{h} \cdot \frac{x-x-h}{x(x+h)}$$

$$= \frac{1}{h} \cdot \frac{x}{x(x+h)} = \boxed{\frac{-1}{x(x+h)}}$$

3.4 Let
$$f(x) = \frac{x}{2x+3}$$
; $a = x, b = x + h$. Then

$$\frac{f(b) - f(a)}{b-a} = \frac{f(x+h) - f(x)}{(x+h) - x} = \frac{f(x+h) - f(x)}{h}$$

$$= \frac{1}{h} \left(f(x+h) - f(x) \right)$$

$$= \frac{1}{h} \left(\frac{x+h}{2x+2h+3} - \frac{x}{2x+3} \right)$$

$$= \frac{1}{h} \left(\frac{x+h}{2x+2h+3} \cdot \frac{2x+3}{2x+3} - \frac{x}{2x+3} \cdot \frac{2x+2h+3}{2x+2h+3} \right)$$

$$= \frac{1}{h} \left(\frac{x(2x) + x(3) + h(2x) + h(3)}{(2x+3+2h)(2x+3)} - \frac{x(2x) + x(2h) + x(3)}{(2x+3+2h)(2x+3)} \right)$$

$$= \frac{2x^2 + 3x + 2hx + 3h - (2x^2 + 2xh + 3x)}{h(2x+3+2h)(2x+3)}$$

$$= \frac{2x^2 + 3x + 2hx + 3h - (2x^2 - 2xh - 3x)}{h(2x+3+2h)(2x+3)}$$

current

3 Find $\frac{f(b)-f(a)}{b-a}$ and rewrite your answer as a polynomial or as a reduced fraction. Go slowly through the slide and write down the answer to each part before you move ahead.

3.3 Let
$$f(x) = \frac{1}{x}; a = x, b = x + h$$
. Then

$$\frac{f(b) - f(a)}{b - a} = \frac{f(x+h) - f(x)}{(x+h) - x} = \frac{f(x+h) - f(x)}{h}$$

$$= \frac{1}{h} (f(x+h) - f(x))$$

$$= \frac{1}{h} \left(\frac{1}{x+h} - \frac{1}{x}\right)$$

$$= \frac{1}{h} \left(\frac{1}{x+h} \cdot \frac{x}{x} - \frac{1}{x} \cdot \frac{x+h}{x+h}\right)$$

$$= \frac{1}{h} \left(\frac{x}{(x+h)x} - \frac{x+h}{x(x+h)}\right)$$

$$= \frac{1}{h} \left(\frac{x - (x+h)}{x(x+h)}\right) = \frac{1}{h} \cdot \frac{x - x - h}{x(x+h)}$$

$$= \frac{1}{h} \cdot \frac{h}{x(x+h)} = \boxed{-1}{x(x+h)}$$

3.4 Let
$$f(x) = \frac{x}{2x+3}; a = x, b = x + h$$
. Then

$$\frac{f(b)-f(a)}{b-a} = \frac{f(x+h)-f(x)}{(x+h)-x} = \frac{f(x+h)-f(x)}{h}$$

$$= \frac{1}{h} \left(f(x+h) - f(x) \right)$$

$$= \frac{1}{h} \left(\frac{x+h}{2x+2h+3} - \frac{x}{2x+3} \right)$$

$$= \frac{1}{h} \left(\frac{x+h}{2x+2h+3} \cdot \frac{2x+3}{2x+3} - \frac{x}{2x+3} \cdot \frac{2x+2h+3}{2x+2h+3} \right)$$

$$= \frac{1}{h} \left(\frac{x(2x)+x(3)+h(2x)+h(3)}{(2x+3+2h)(2x+3)} - \frac{x(2x)+x(2h)+x(3)}{2(2x+3+2h)(2x+3)} \right)$$

$$= \frac{2x^2+3x+2hx+3h-(2x^2+2xh+3x)}{h(2x+3+2h)(2x+3)}$$

$$= \frac{2x^2+3x+2hx+3h-(2x^2+2xh+3x)}{h(2x+3+2h)(2x+3)}$$

$$= \frac{2x^2+3x+2hx+3h-(2x^2+2xh+3x)}{h(2x+3+2h)(2x+3)}$$

$$= \frac{3x^2}{h(2x+3+2h)(2x+3)} = \boxed{\frac{3}{(2x+3+2h)(2x+3)}}$$

3.5 Let $f(x) = \sqrt{x}$; a = x, b = x + h. Then $\frac{f(b) - f(a)}{b - a} =$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

3.5 Let
$$f(x)=\sqrt{x};a=x,b=x+h.$$
 Then $\frac{f(b)-f(a)}{b-a}=\frac{f(x+h)-f(x)}{(x+h)-x}$

Stanley Ocken Sabbatical Notes : Calculus Preparation

3.5 Let $f(x) = \sqrt{x}; a = x, b = x + h$. Then $\frac{f(b) - f(a)}{b - a} = \frac{f(x+h) - f(x)}{(x+h) - x} = \frac{f(x+h) - f(x)}{h}$

=

Stanley Ocken Sabbatical Notes : Calculus Preparation

3.5 Let $f(x) = \sqrt{x}$; a = x, b = x + h. Then $\frac{f(b) - f(a)}{b - a} = \frac{f(x+h) - f(x)}{(x+h) - x} = \frac{f(x+h) - f(x)}{h}$ $= \frac{1}{h} (f(x+h) - f(x))$

=

3.5 Let
$$f(x) = \sqrt{x}$$
; $a = x, b = x + h$. Then

$$\frac{f(b) - f(a)}{b - a} = \frac{f(x+h) - f(x)}{(x+h) - x} = \frac{f(x+h) - f(x)}{h}$$

$$= \frac{1}{h} (f(x+h) - f(x))$$

$$= \frac{\sqrt{x+h} - \sqrt{x}}{h}$$

=

3.5 Let
$$f(x) = \sqrt{x}$$
; $a = x, b = x + h$. Then

$$\frac{f(b) - f(a)}{b - a} = \frac{f(x+h) - f(x)}{(x+h) - x} = \frac{f(x+h) - f(x)}{h}$$

$$= \frac{1}{h} \left(f(x+h) - f(x) \right)$$

$$= \frac{\sqrt{x+h} - \sqrt{x}}{h}$$

$$= \frac{\sqrt{x+h} - \sqrt{x}}{h} \cdot \frac{\sqrt{x+h} + \sqrt{x}}{\sqrt{x+h} + \sqrt{x}}$$

=

Stanley Ocken Sabbatical Notes : Calculus Preparation

3.5 Let
$$f(x) = \sqrt{x}$$
; $a = x, b = x + h$. Then

$$\frac{f(b)-f(a)}{b-a} = \frac{f(x+h)-f(x)}{(x+h)-x} = \frac{f(x+h)-f(x)}{h}$$

$$= \frac{1}{h} \left(f(x+h) - f(x) \right)$$

$$= \frac{\sqrt{x+h}-\sqrt{x}}{h}$$

$$= \frac{\sqrt{x+h}-\sqrt{x}}{h} \cdot \frac{\sqrt{x+h}+\sqrt{x}}{\sqrt{x+h}+\sqrt{x}}$$

$$= \frac{(\sqrt{x+h}-\sqrt{x})\cdot(\sqrt{x+h}+\sqrt{x})}{h(\sqrt{x+h}+\sqrt{x})}$$

=

3.5 Let
$$f(x) = \sqrt{x}$$
; $a = x, b = x + h$. Then

$$\frac{f(b)-f(a)}{b-a} = \frac{f(x+h)-f(x)}{(x+h)-x} = \frac{f(x+h)-f(x)}{h}$$

$$= \frac{1}{h} \left(f(x+h) - f(x) \right)$$

$$= \frac{\sqrt{x+h}-\sqrt{x}}{h}$$

$$= \frac{\sqrt{x+h}-\sqrt{x}}{h} \cdot \frac{\sqrt{x+h}+\sqrt{x}}{\sqrt{x+h}+\sqrt{x}}$$

$$= \frac{(\sqrt{x+h}-\sqrt{x}) \cdot (\sqrt{x+h}+\sqrt{x})}{h(\sqrt{x+h}+\sqrt{x})}$$

$$= \frac{(\sqrt{x+h})^2 - (\sqrt{x})^2}{h(\sqrt{x+h}+\sqrt{x})}$$

=

3.5 Let
$$f(x) = \sqrt{x}$$
; $a = x, b = x + h$. Then

$$\frac{f(b) - f(a)}{b - a} = \frac{f(x+h) - f(x)}{(x+h) - x} = \frac{f(x+h) - f(x)}{h}$$

$$= \frac{1}{h} (f(x+h) - f(x))$$

$$= \frac{\sqrt{x+h} - \sqrt{x}}{h}$$

$$= \frac{\sqrt{x+h} - \sqrt{x}}{h} \cdot \frac{\sqrt{x+h} + \sqrt{x}}{\sqrt{x+h} + \sqrt{x}}$$

$$= \frac{(\sqrt{x+h} - \sqrt{x}) \cdot (\sqrt{x+h} + \sqrt{x})}{h(\sqrt{x+h} + \sqrt{x})}$$

$$= \frac{(\sqrt{x+h} - \sqrt{x}) \cdot (\sqrt{x+h} + \sqrt{x})}{h(\sqrt{x+h} + \sqrt{x})}$$

$$= \frac{(x+h)^2 - (\sqrt{x})^2}{h(\sqrt{x+h} + \sqrt{x})}$$

=

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

3.5 Let
$$f(x) = \sqrt{x}$$
; $a = x, b = x + h$. Then

$$\frac{f(b) - f(a)}{b - a} = \frac{f(x+h) - f(x)}{(x+h) - x} = \frac{f(x+h) - f(x)}{h}$$

$$= \frac{1}{h} \left(f(x+h) - f(x) \right)$$

$$= \frac{\sqrt{x+h} - \sqrt{x}}{h}$$

$$= \frac{\sqrt{x+h} - \sqrt{x}}{h} \cdot \frac{\sqrt{x+h} + \sqrt{x}}{\sqrt{x+h} + \sqrt{x}}$$

$$= \frac{(\sqrt{x+h} - \sqrt{x}) \cdot (\sqrt{x+h} + \sqrt{x})}{h(\sqrt{x+h} + \sqrt{x})}$$

$$= \frac{(\sqrt{x+h} - \sqrt{x}) \cdot (\sqrt{x+h} + \sqrt{x})}{h(\sqrt{x+h} + \sqrt{x})}$$

$$= \frac{x+h - x}{h(\sqrt{x+h} + \sqrt{x})}$$

$$= \frac{1}{\sqrt{x+h} - \sqrt{x}}$$

3.6 Let
$$f(x) = \frac{1}{\sqrt{x}}; a = x, b = x + h$$
. Then
$$\frac{f(b) - f(a)}{b - a} =$$

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 の < @

3.5 Let
$$f(x) = \sqrt{x}$$
; $a = x, b = x + h$. Then

$$\frac{f(b) - f(a)}{b - a} = \frac{f(x+h) - f(x)}{(x+h) - x} = \frac{f(x+h) - f(x)}{h}$$

$$= \frac{1}{h} \left(f(x+h) - f(x) \right)$$

$$= \frac{\sqrt{x+h} - \sqrt{x}}{h}$$

$$= \frac{\sqrt{x+h} - \sqrt{x}}{h} \cdot \frac{\sqrt{x+h} + \sqrt{x}}{\sqrt{x+h} + \sqrt{x}}$$

$$= \frac{(\sqrt{x+h} - \sqrt{x}) \cdot (\sqrt{x+h} + \sqrt{x})}{h(\sqrt{x+h} + \sqrt{x})}$$

$$= \frac{(\sqrt{x+h})^2 - (\sqrt{x})^2}{h(\sqrt{x+h} + \sqrt{x})}$$

$$= \frac{x+h - x}{h(\sqrt{x+h} + \sqrt{x})}$$

$$= \frac{1}{\sqrt{x+h} - \sqrt{x}}$$

3.6 Let
$$f(x) = \frac{1}{\sqrt{x}}; a = x, b = x + h$$
. Then

$$\frac{f(b) - f(a)}{b - a} = \frac{f(x + h) - f(x)}{(x + h) - x}$$

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 の < @

3.5 Let
$$f(x) = \sqrt{x}$$
; $a = x, b = x + h$. Then

$$\frac{f(b) - f(a)}{b - a} = \frac{f(x+h) - f(x)}{(x+h) - x} = \frac{f(x+h) - f(x)}{h}$$

$$= \frac{1}{h} \left(f(x+h) - f(x) \right)$$

$$= \frac{\sqrt{x+h} - \sqrt{x}}{h}$$

$$= \frac{\sqrt{x+h} - \sqrt{x}}{h} \cdot \frac{\sqrt{x+h} + \sqrt{x}}{\sqrt{x+h} + \sqrt{x}}$$

$$= \frac{(\sqrt{x+h} - \sqrt{x}) \cdot (\sqrt{x+h} + \sqrt{x})}{h(\sqrt{x+h} + \sqrt{x})}$$

$$= \frac{(\sqrt{x+h} - \sqrt{x}) \cdot (\sqrt{x+h} + \sqrt{x})}{h(\sqrt{x+h} + \sqrt{x})}$$

$$= \frac{x+h - x}{h(\sqrt{x+h} + \sqrt{x})}$$

$$= \frac{1}{\sqrt{x+h} - \sqrt{x}}$$

3.6 Let
$$f(x) = \frac{1}{\sqrt{x}}$$
; $a = x, b = x + h$. Then
 $\frac{f(b) - f(a)}{b - a} = \frac{f(x+h) - f(x)}{(x+h) - x} = \frac{f(x+h) - f(x)}{h}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

3.5 Let
$$f(x) = \sqrt{x}$$
; $a = x, b = x + h$. Then

$$\frac{f(b) - f(a)}{b - a} = \frac{f(x+h) - f(x)}{(x+h) - x} = \frac{f(x+h) - f(x)}{h}$$

$$= \frac{1}{h} \left(f(x+h) - f(x) \right)$$

$$= \frac{\sqrt{x+h} - \sqrt{x}}{h}$$

$$= \frac{\sqrt{x+h} - \sqrt{x}}{h} \cdot \frac{\sqrt{x+h} + \sqrt{x}}{\sqrt{x+h} + \sqrt{x}}$$

$$= \frac{(\sqrt{x+h} - \sqrt{x}) \cdot (\sqrt{x+h} + \sqrt{x})}{h(\sqrt{x+h} + \sqrt{x})}$$

$$= \frac{(\sqrt{x+h} - \sqrt{x})}{h(\sqrt{x+h} + \sqrt{x})}$$

$$= \frac{x+h - x}{h(\sqrt{x+h} + \sqrt{x})}$$

$$= \frac{1}{\sqrt{x+h} + \sqrt{x}}$$

3.6 Let
$$f(x) = \frac{1}{\sqrt{x}}$$
; $a = x, b = x + h$. Then
 $\frac{f(b) - f(a)}{b - a} = \frac{f(x+h) - f(x)}{(x+h) - x} = \frac{f(x+h) - f(x)}{h}$
 $= \frac{1}{h} (f(x+h) - f(x))$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

3.5 Let
$$f(x) = \sqrt{x}$$
; $a = x, b = x + h$. Then

$$\frac{f(b)-f(a)}{b-a} = \frac{f(x+h)-f(x)}{(x+h)-x} = \frac{f(x+h)-f(x)}{h}$$

$$= \frac{1}{h} (f(x+h) - f(x))$$

$$= \frac{\sqrt{x+h}-\sqrt{x}}{h}$$

$$= \frac{\sqrt{x+h}-\sqrt{x}}{h} \cdot \frac{\sqrt{x+h}+\sqrt{x}}{\sqrt{x+h}+\sqrt{x}}$$

$$= \frac{(\sqrt{x+h}-\sqrt{x}) \cdot (\sqrt{x+h}+\sqrt{x})}{h(\sqrt{x+h}+\sqrt{x})}$$

$$= \frac{(\sqrt{x+h})^2 - (\sqrt{x})^2}{h(\sqrt{x+h}+\sqrt{x})}$$

$$= \frac{1}{h(\sqrt{x+h}+\sqrt{x})}$$

$$= \frac{1}{\sqrt{x+h}+\sqrt{x}}$$

3.6 Let
$$f(x) = \frac{1}{\sqrt{x}}; a = x, b = x + h$$
. Then

$$\frac{f(b) - f(a)}{b - a} = \frac{f(x+h) - f(x)}{(x+h) - x} = \frac{f(x+h) - f(x)}{h}$$

$$= \frac{1}{h} (f(x+h) - f(x))$$

$$= \frac{1}{h} \cdot \left(\frac{1}{\sqrt{x+h}} - \frac{1}{\sqrt{x}}\right)$$

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 の < @

3.5 Let
$$f(x) = \sqrt{x}$$
; $a = x, b = x + h$. Then

$$\frac{f(b) - f(a)}{b - a} = \frac{f(x+h) - f(x)}{(x+h) - x} = \frac{f(x+h) - f(x)}{h}$$

$$= \frac{1}{h} \left(f(x+h) - f(x) \right)$$

$$= \frac{\sqrt{x+h} - \sqrt{x}}{h}$$

$$= \frac{\sqrt{x+h} - \sqrt{x}}{h} \cdot \frac{\sqrt{x+h} + \sqrt{x}}{\sqrt{x+h} + \sqrt{x}}$$

$$= \frac{(\sqrt{x+h} - \sqrt{x}) \cdot (\sqrt{x+h} + \sqrt{x})}{h(\sqrt{x+h} + \sqrt{x})}$$

$$= \frac{(\sqrt{x+h} - \sqrt{x})}{h(\sqrt{x+h} + \sqrt{x})}$$

$$= \frac{x+h - x}{h(\sqrt{x+h} + \sqrt{x})}$$

$$= \frac{1}{\sqrt{x+h} + \sqrt{x}}$$

3.6 Let
$$f(x) = \frac{1}{\sqrt{x}}; a = x, b = x + h$$
. Then

$$\frac{f(b) - f(a)}{b - a} = \frac{f(x+h) - f(x)}{(x+h) - x} = \frac{f(x+h) - f(x)}{h}$$

$$= \frac{1}{h} \left(f(x+h) - f(x) \right)$$

$$= \frac{1}{h} \cdot \left(\frac{1}{\sqrt{x+h}} - \frac{1}{\sqrt{x}} \right)$$

$$= \frac{1}{h} \cdot \left(\frac{1}{\sqrt{x+h}} \frac{\sqrt{x}}{\sqrt{x}} - \frac{1}{\sqrt{x}} \frac{\sqrt{x+h}}{\sqrt{x+h}} \right)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

3.5 Let
$$f(x) = \sqrt{x}$$
; $a = x, b = x + h$. Then

$$\frac{f(b) - f(a)}{b - a} = \frac{f(x+h) - f(x)}{(x+h) - x} = \frac{f(x+h) - f(x)}{h}$$

$$= \frac{1}{h} \left(f(x+h) - f(x) \right)$$

$$= \frac{\sqrt{x+h} - \sqrt{x}}{h}$$

$$= \frac{\sqrt{x+h} - \sqrt{x}}{h} \cdot \frac{\sqrt{x+h} + \sqrt{x}}{\sqrt{x+h} + \sqrt{x}}$$

$$= \frac{(\sqrt{x+h} - \sqrt{x}) \cdot (\sqrt{x+h} + \sqrt{x})}{h(\sqrt{x+h} + \sqrt{x})}$$

$$= \frac{(\sqrt{x+h} - \sqrt{x}) \cdot (\sqrt{x+h} + \sqrt{x})}{h(\sqrt{x+h} + \sqrt{x})}$$

$$= \frac{x+h-x}{h(\sqrt{x+h} + \sqrt{x})}$$

$$= \frac{1}{\sqrt{x+h} - \sqrt{x}}$$

3.6 Let
$$f(x) = \frac{1}{\sqrt{x}}$$
; $a = x, b = x + h$. Then

$$\frac{f(b) - f(a)}{b - a} = \frac{f(x+h) - f(x)}{(x+h) - x} = \frac{f(x+h) - f(x)}{h}$$

$$= \frac{1}{h} \left(f(x+h) - f(x) \right)$$

$$= \frac{1}{h} \cdot \left(\frac{1}{\sqrt{x+h}} - \frac{1}{\sqrt{x}} \right)$$

$$= \frac{1}{h} \cdot \left(\frac{1}{\sqrt{x+h}} \frac{\sqrt{x}}{\sqrt{x}} - \frac{1}{\sqrt{x}} \frac{\sqrt{x+h}}{\sqrt{x+h}} \right)$$

$$= \frac{1}{h} \cdot \left(\frac{\sqrt{x} - \sqrt{x+h}}{\sqrt{x}\sqrt{x+h}} \right)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

3.5 Let
$$f(x) = \sqrt{x}$$
; $a = x, b = x + h$. Then

$$\frac{f(b) - f(a)}{b - a} = \frac{f(x+h) - f(x)}{(x+h) - x} = \frac{f(x+h) - f(x)}{h}$$

$$= \frac{1}{h} \left(f(x+h) - f(x) \right)$$

$$= \frac{\sqrt{x+h} - \sqrt{x}}{h}$$

$$= \frac{\sqrt{x+h} - \sqrt{x}}{h} \cdot \frac{\sqrt{x+h} + \sqrt{x}}{\sqrt{x+h} + \sqrt{x}}$$

$$= \frac{(\sqrt{x+h} - \sqrt{x}) \cdot (\sqrt{x+h} + \sqrt{x})}{h(\sqrt{x+h} + \sqrt{x})}$$

$$= \frac{(\sqrt{x+h} - \sqrt{x})}{h(\sqrt{x+h} + \sqrt{x})}$$

$$= \frac{x+h - x}{h(\sqrt{x+h} + \sqrt{x})}$$

$$= \frac{1}{\sqrt{x+h} + \sqrt{x}}$$

3.6 Let
$$f(x) = \frac{1}{\sqrt{x}}$$
; $a = x, b = x + h$. Then

$$\frac{f(b) - f(a)}{b - a} = \frac{f(x+h) - f(x)}{(x+h) - x} = \frac{f(x+h) - f(x)}{h}$$

$$= \frac{1}{h} \left(f(x+h) - f(x) \right)$$

$$= \frac{1}{h} \cdot \left(\frac{1}{\sqrt{x+h}} - \frac{1}{\sqrt{x}} \right)$$

$$= \frac{1}{h} \cdot \left(\frac{1}{\sqrt{x+h}} - \frac{1}{\sqrt{x}} \frac{\sqrt{x+h}}{\sqrt{x+h}} \right)$$

$$= \frac{1}{h} \cdot \left(\frac{\sqrt{x} - \sqrt{x+h}}{\sqrt{x}\sqrt{x+h}} \right)$$

$$= \frac{1}{h} \cdot \left(\frac{\sqrt{x} - \sqrt{x+h}}{\sqrt{x}\sqrt{x+h}} \right) \cdot \frac{\sqrt{x} + \sqrt{x+h}}{\sqrt{x+\sqrt{x+h}}}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

3.5 Let
$$f(x) = \sqrt{x}$$
; $a = x, b = x + h$. Then

$$\frac{f(b) - f(a)}{b - a} = \frac{f(x+h) - f(x)}{(x+h) - x} = \frac{f(x+h) - f(x)}{h}$$

$$= \frac{1}{h} \left(f(x+h) - f(x) \right)$$

$$= \frac{\sqrt{x+h} - \sqrt{x}}{h}$$

$$= \frac{\sqrt{x+h} - \sqrt{x}}{h} \cdot \frac{\sqrt{x+h} + \sqrt{x}}{\sqrt{x+h} + \sqrt{x}}$$

$$= \frac{(\sqrt{x+h} - \sqrt{x}) \cdot (\sqrt{x+h} + \sqrt{x})}{h(\sqrt{x+h} + \sqrt{x})}$$

$$= \frac{(\sqrt{x+h} - \sqrt{x})}{h(\sqrt{x+h} + \sqrt{x})}$$

$$= \frac{x+h-x}{h(\sqrt{x+h} + \sqrt{x})}$$

$$= \frac{1}{h(\sqrt{x+h} + \sqrt{x})}$$

3.6 Let
$$f(x) = \frac{1}{\sqrt{x}}$$
; $a = x, b = x + h$. Then

$$\frac{f(b) - f(a)}{b - a} = \frac{f(x+h) - f(x)}{(x+h) - x} = \frac{f(x+h) - f(x)}{h}$$

$$= \frac{1}{h} \left(f(x+h) - f(x) \right)$$

$$= \frac{1}{h} \cdot \left(\frac{1}{\sqrt{x+h}} - \frac{1}{\sqrt{x}} \right)$$

$$= \frac{1}{h} \cdot \left(\frac{1}{\sqrt{x+h}} \frac{\sqrt{x}}{\sqrt{x}} - \frac{1}{\sqrt{x}} \frac{\sqrt{x+h}}{\sqrt{x+h}} \right)$$

$$= \frac{1}{h} \cdot \left(\frac{\sqrt{x} - \sqrt{x+h}}{\sqrt{x}\sqrt{x+h}} \right) \cdot \frac{\sqrt{x} + \sqrt{x+h}}{\sqrt{x} + \sqrt{x+h}}$$

$$= \frac{1}{h} \cdot \left(\frac{\sqrt{x} - \sqrt{x+h}}{\sqrt{x}\sqrt{x+h}} \right) \cdot \frac{\sqrt{x} + \sqrt{x+h}}{\sqrt{x}\sqrt{x+h}}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

3.5 Let
$$f(x) = \sqrt{x}$$
; $a = x, b = x + h$. Then

$$\frac{f(b) - f(a)}{b - a} = \frac{f(x+h) - f(x)}{(x+h) - x} = \frac{f(x+h) - f(x)}{h}$$

$$= \frac{1}{h} \left(f(x+h) - f(x) \right)$$

$$= \frac{\sqrt{x+h} - \sqrt{x}}{h}$$

$$= \frac{\sqrt{x+h} - \sqrt{x}}{h} \cdot \frac{\sqrt{x+h} + \sqrt{x}}{\sqrt{x+h} + \sqrt{x}}$$

$$= \frac{(\sqrt{x+h} - \sqrt{x}) \cdot (\sqrt{x+h} + \sqrt{x})}{h(\sqrt{x+h} + \sqrt{x})}$$

$$= \frac{(\sqrt{x+h})^2 - (\sqrt{x})^2}{h(\sqrt{x+h} + \sqrt{x})}$$

$$= \frac{x+h - x}{h(\sqrt{x+h} + \sqrt{x})}$$

$$= \frac{1}{\sqrt{x+h} - \sqrt{x}}$$

3.6 Let
$$f(x) = \frac{1}{\sqrt{x}}; a = x, b = x + h$$
. Then

$$\frac{f(b) - f(a)}{b - a} = \frac{f(x+h) - f(x)}{(x+h) - x} = \frac{f(x+h) - f(x)}{h}$$

$$= \frac{1}{h} \left(f(x+h) - f(x) \right)$$

$$= \frac{1}{h} \cdot \left(\frac{1}{\sqrt{x+h}} - \frac{1}{\sqrt{x}} \right)$$

$$= \frac{1}{h} \cdot \left(\frac{\sqrt{x} - \sqrt{x+h}}{\sqrt{x}\sqrt{x+h}} \right)$$

$$= \frac{1}{h} \cdot \left(\frac{\sqrt{x} - \sqrt{x+h}}{\sqrt{x}\sqrt{x+h}} \right) \cdot \frac{\sqrt{x} + \sqrt{x+h}}{\sqrt{x} + \sqrt{x+h}}$$

$$= \frac{1}{h} \cdot \frac{(\sqrt{x} - \sqrt{x+h})}{(\sqrt{x}\sqrt{x+h}) (\sqrt{x} + \sqrt{x+h})}$$

$$= \frac{1}{h} \cdot \frac{(\sqrt{x} - \sqrt{x+h})}{(\sqrt{x}\sqrt{x+h}) (\sqrt{x} + \sqrt{x+h})}$$

$$= \frac{1}{h} \cdot \frac{(\sqrt{x})^2 - (\sqrt{x+h})^2}{\sqrt{x}\sqrt{x+h}(\sqrt{x}+\sqrt{x+h})}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Stanley Ocken Sabbatical Notes : Calculus Preparation

3.5 Let
$$f(x) = \sqrt{x}$$
; $a = x, b = x + h$. Then

$$\frac{f(b) - f(a)}{b - a} = \frac{f(x+h) - f(x)}{(x+h) - x} = \frac{f(x+h) - f(x)}{h}$$

$$= \frac{1}{h} \left(f(x+h) - f(x) \right)$$

$$= \frac{\sqrt{x+h} - \sqrt{x}}{h}$$

$$= \frac{\sqrt{x+h} - \sqrt{x}}{h} \cdot \frac{\sqrt{x+h} + \sqrt{x}}{\sqrt{x+h} + \sqrt{x}}$$

$$= \frac{(\sqrt{x+h} - \sqrt{x}) \cdot (\sqrt{x+h} + \sqrt{x})}{h(\sqrt{x+h} + \sqrt{x})}$$

$$= \frac{(\sqrt{x+h})^2 - (\sqrt{x})^2}{h(\sqrt{x+h} + \sqrt{x})}$$

$$= \frac{x+h - x}{h(\sqrt{x+h} + \sqrt{x})}$$

$$= \frac{1}{\sqrt{x+h} - \sqrt{x}}$$

3.6 Let
$$f(x) = \frac{1}{\sqrt{x}}; a = x, b = x + h$$
. Then

$$\frac{f(b) - f(a)}{b - a} = \frac{f(x+h) - f(x)}{(x+h) - x} = \frac{f(x+h) - f(x)}{h}$$

$$= \frac{1}{h} \left(f(x+h) - f(x) \right)$$

$$= \frac{1}{h} \cdot \left(\frac{1}{\sqrt{x+h}} - \frac{1}{\sqrt{x}} \right)$$

$$= \frac{1}{h} \cdot \left(\frac{\sqrt{x} - \sqrt{x+h}}{\sqrt{x}\sqrt{x+h}} \right)$$

$$= \frac{1}{h} \cdot \left(\frac{\sqrt{x} - \sqrt{x+h}}{\sqrt{x}\sqrt{x+h}} \right) \cdot \frac{\sqrt{x} + \sqrt{x+h}}{\sqrt{x} + \sqrt{x+h}}$$

$$= \frac{1}{h} \cdot \left(\frac{\sqrt{x} - \sqrt{x+h}}{\sqrt{x}\sqrt{x+h}} \right) \cdot \frac{\sqrt{x} + \sqrt{x+h}}{\sqrt{x}\sqrt{x+h}}$$

$$= \frac{1}{h} \cdot \frac{(\sqrt{x} - \sqrt{x+h}) (\sqrt{x} + \sqrt{x+h})}{(\sqrt{x}\sqrt{x+h} (\sqrt{x} + \sqrt{x+h})}$$

$$= \frac{1}{h} \cdot \frac{(\sqrt{x})^2 - (\sqrt{x+h})^2}{\sqrt{x}\sqrt{x+h}(\sqrt{x} + \sqrt{x+h})}$$

$$= \frac{1}{h} \cdot \frac{x - (x+h)}{\sqrt{x}\sqrt{x+h}(\sqrt{x} + \sqrt{x+h})}$$

3.5 Let
$$f(x) = \sqrt{x}$$
; $a = x, b = x + h$. Then

$$\frac{f(b) - f(a)}{b - a} = \frac{f(x+h) - f(x)}{(x+h) - x} = \frac{f(x+h) - f(x)}{h}$$

$$= \frac{1}{h} \left(f(x+h) - f(x) \right)$$

$$= \frac{\sqrt{x+h} - \sqrt{x}}{h}$$

$$= \frac{\sqrt{x+h} - \sqrt{x}}{h} \cdot \frac{\sqrt{x+h} + \sqrt{x}}{\sqrt{x+h} + \sqrt{x}}$$

$$= \frac{(\sqrt{x+h} - \sqrt{x}) \cdot (\sqrt{x+h} + \sqrt{x})}{h(\sqrt{x+h} + \sqrt{x})}$$

$$= \frac{(\sqrt{x+h})^2 - (\sqrt{x})^2}{h(\sqrt{x+h} + \sqrt{x})}$$

$$= \frac{x+h - x}{h(\sqrt{x+h} + \sqrt{x})}$$

$$= \frac{1}{\sqrt{x+h} - \sqrt{x}}$$

3.6 Let
$$f(x) = \frac{1}{\sqrt{x}}; a = x, b = x + h$$
. Then

$$\frac{f(b) - f(a)}{b - a} = \frac{f(x+h) - f(x)}{(x+h) - x} = \frac{f(x+h) - f(x)}{h}$$

$$= \frac{1}{h} \left(f(x+h) - f(x) \right)$$

$$= \frac{1}{h} \cdot \left(\frac{1}{\sqrt{x+h}} - \frac{1}{\sqrt{x}} \right)$$

$$= \frac{1}{h} \cdot \left(\frac{1}{\sqrt{x+h}} - \frac{1}{\sqrt{x}} \frac{\sqrt{x+h}}{\sqrt{x+h}} \right)$$

$$= \frac{1}{h} \cdot \left(\frac{\sqrt{x} - \sqrt{x+h}}{\sqrt{x}\sqrt{x+h}} \right) \cdot \frac{\sqrt{x} + \sqrt{x+h}}{\sqrt{x} + \sqrt{x+h}}$$

$$= \frac{1}{h} \cdot \left(\frac{\sqrt{x} - \sqrt{x+h}}{\sqrt{x}\sqrt{x+h}} \right) \cdot \frac{\sqrt{x} + \sqrt{x+h}}{\sqrt{x} + \sqrt{x+h}}$$

$$= \frac{1}{h} \cdot \frac{(\sqrt{x} - \sqrt{x+h}) (\sqrt{x} + \sqrt{x+h})}{(\sqrt{x}\sqrt{x+h}) (\sqrt{x} + \sqrt{x+h})}$$

$$= \frac{1}{h} \cdot \frac{(\sqrt{x})^2 - (\sqrt{x+h})^2}{\sqrt{x}\sqrt{x+h} (\sqrt{x} + \sqrt{x+h})}$$

$$= \frac{1}{h} \cdot \frac{x - (x+h)}{\sqrt{x}\sqrt{x+h} (\sqrt{x} + \sqrt{x+h})}$$

$$= \frac{1}{h} \cdot \frac{\sqrt{x}}{\sqrt{x}\sqrt{x+h} (\sqrt{x} + \sqrt{x+h})} =$$

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 の < @

Stanley Ocken Sabbatical Notes : Calculus Preparation

3.5 Let
$$f(x) = \sqrt{x}$$
; $a = x, b = x + h$. Then

$$\frac{f(b) - f(a)}{b - a} = \frac{f(x+h) - f(x)}{(x+h) - x} = \frac{f(x+h) - f(x)}{h}$$

$$= \frac{1}{h} \left(f(x+h) - f(x) \right)$$

$$= \frac{\sqrt{x+h} - \sqrt{x}}{h}$$

$$= \frac{\sqrt{x+h} - \sqrt{x}}{h} \cdot \frac{\sqrt{x+h} + \sqrt{x}}{\sqrt{x+h} + \sqrt{x}}$$

$$= \frac{(\sqrt{x+h} - \sqrt{x}) \cdot (\sqrt{x+h} + \sqrt{x})}{h(\sqrt{x+h} + \sqrt{x})}$$

$$= \frac{(\sqrt{x+h})^2 - (\sqrt{x})^2}{h(\sqrt{x+h} + \sqrt{x})}$$

$$= \frac{\frac{x+h - x}{h(\sqrt{x+h} + \sqrt{x})}}{h(\sqrt{x+h} + \sqrt{x})}$$

$$= \frac{1}{\sqrt{x+h} - \sqrt{x}}$$

3.6 Let
$$f(x) = \frac{1}{\sqrt{x}}$$
; $a = x, b = x + h$. Then

$$\frac{f(b) - f(a)}{b - a} = \frac{f(x+h) - f(x)}{(x+h) - x} = \frac{f(x+h) - f(x)}{h}$$

$$= \frac{1}{h} (f(x+h) - f(x))$$

$$= \frac{1}{h} \cdot \left(\frac{1}{\sqrt{x+h}} - \frac{1}{\sqrt{x}}\right)$$

$$= \frac{1}{h} \cdot \left(\frac{1}{\sqrt{x+h}} - \frac{1}{\sqrt{x}} \sqrt{\frac{x+h}{\sqrt{x+h}}}\right)$$

$$= \frac{1}{h} \cdot \left(\frac{\sqrt{x} - \sqrt{x+h}}{\sqrt{x}\sqrt{x+h}}\right) \cdot \frac{\sqrt{x} + \sqrt{x+h}}{\sqrt{x} + \sqrt{x+h}}$$

$$= \frac{1}{h} \cdot \left(\frac{\sqrt{x} - \sqrt{x+h}}{\sqrt{x}\sqrt{x+h}}\right) \cdot \frac{\sqrt{x} + \sqrt{x+h}}{\sqrt{x} + \sqrt{x+h}}$$

$$= \frac{1}{h} \cdot \frac{(\sqrt{x} - \sqrt{x+h})(\sqrt{x} + \sqrt{x+h})}{(\sqrt{x}\sqrt{x+h})(\sqrt{x} + \sqrt{x+h})}$$

$$= \frac{1}{h} \cdot \frac{(\sqrt{x})^2 - (\sqrt{x+h})^2}{\sqrt{x}\sqrt{x+h}(\sqrt{x} + \sqrt{x+h})}$$

$$= \frac{1}{h} \cdot \frac{x - (x+h)}{\sqrt{x}\sqrt{x+h}(\sqrt{x} + \sqrt{x+h})}$$

$$= \frac{1}{h} \cdot \frac{-1}{\sqrt{x}\sqrt{x+h}(\sqrt{x} + \sqrt{x+h})} = \frac{-1}{\sqrt{x}\sqrt{x+h}(\sqrt{x} + \sqrt{x+h})}$$

(日) (回) (E) (E) (E)