The Three Ancient Geometric Problems

Constructions

- trisect the angle
- double the cube
- square the circle

trisecting the angle

Given an angle,

trisecting the angle

Given an angle,

break it up into three equal angles.

doubling the cube

Given a cube,

doubling the cube

Given a cube,

construct one with twice the volume.

squaring the circle

Given a circle,

squaring the circle

Given a circle,

construct a square of the same area.

first encountered in the fifth century BCE

first encountered in the fifth century BCE

the three problems: Anaxagoras (~ 450)

first encountered in the fifth century BCE

the three problems: Anaxagoras (~ 450)

straightedge and compass rule came two centuries later (Apollonius)

Originally: Construct a geometric figure with stated properties.

Construct a geometric figure with stated properties.

Construct a regular octagon.

Construct a geometric figure with stated properties.

Given a triangle, construct the

construct the circumcircle.

Later: Partition or enlarge.

Given an angle, bisect it.

Partition.

Given a segment,

trisect it.

<u>method</u>

Partition.

Given an angle,

trisect the angle.

Enlarge.

Given a square,

construct one twice as big.

Enlarge.

Given a square,

double two adjacent sides and their diagonal.

Enlarge.

Given a square, join the ends.

Enlarge.

Given a square,

the red one is twice as wide and twice as tall.

Enlarge.

Given a square,

the red one has four times the

Enlarge.

Given a square,

the black one has twice the

Enlarge.

Given a cube,

double the cube.

Finally: Quadratures

Given a triangle,

construct a square of the same area.

Quadratures

Given a triangle,

construct the parallel to the base through the top.

Quadratures

Raise the perpendiculars to the parallel.

Quadratures

Construct the perpendicular bisector of the base.

Quadratures

Given a triangle, this rectangle

this rectangle has the same area.

Quadratures

Given a rectangle,

construct a square of the same area.

Quadratures

Given a circle,

square the circle.

Quadratures: Lunes

> region (blue) inside a circle, outside a bigger one

Quadratures: One Lune of Hippocrates

Start with a circle.

Quadratures: One Lune of Hippocrates

Construct perpendicular diameters.

Quadratures: One Lune of Hippocrates

Construct the circle centered at D reaching A and C.

Quadratures: **One Lune of Hippocrates**

The lune has the triangle ABC. same area as

<u>page 18</u>

Quadratures: One Lune of Hippocrates

The lune has the same area as

the square with diagonal BC.

Impossibility: Circumscribing a parallelogram that is not a rectangle

parallelogram

Impossibility: Circumscribing a parallelogram that is not a rectangle

inscribed quadrilateral

Impossibility: Circumscribing a parallelogram that is not a rectangle

parallelogram

opposites are supplementary

developed from Al Khwarismi (ninth century CE)

wrote the book *Al Jabr*... practical

methodoriented

<u>example</u>

developed from Al Khwarismi (ninth century CE)

wrote the book *Al Jabr*... practical

methodoriented

"algorithmic"

through Leonardo of Pisa ("Fibonacci," ~ 1180-1250)

wrote the book *Liber Abaci* brought algebra into Latin

methods for quadratic, even some cubics

through Geronimo Cardano (1501-1576)

wrote the book Ars Magna solutions of cubics and quartics

just solutions; no thought of practicality

through Geronimo Cardano (1501-1576)

wrote the book Ars Magna just solutions; no thought of practicality

suggested complex numbers

through François Viète (1540-1603)

distinguished unknowns (represented by vowels) from coefficients ("parameters")

not concerned with solution methods

sought relations between roots and coefficients

<u>example</u>

to Évariste Galois (1811-1832)

completely abstract treatment: "groups" connected groups with polynomials

proved that no formula solves degree ≥ 5

Mario Livio, *The Equation That Couldn't Be Solved*

to Évariste Galois (1811-1832)

completely abstract treatment: "groups" connected groups with polynomials

connected polynomials with constructions

Theorem: A number is constructible if and only if it satisfies an integer polynomial and the degree of the minimal such polynomial is a power of 2.

Theorem: A number is constructible

Given length 1,

1

construct any integer.

Theorem: A number is constructible

Given length 1,

1

construct any integer.

Theorem: A number is constructible

Given length 1,

1

Theorem: A number is constructible

Given length 1,

1

Theorem: A number is constructible

Given length 1,

1

Theorem: A number is constructible

Given length 1,

1

Theorem: A number is constructible

Given length 1,

1

Theorem: A number is constructible

Given length 1, construct $\sqrt{2}$.

1

Theorem: A number is constructible

Given length 1, construct $\sqrt{2}$.

Theorem: A number is constructible

To trisect this angle

Theorem: A number is constructible

To trisect this angle

is to construct *cos* 20°.

Theorem: A number is constructible

To double this cube

Theorem: A number is constructible

To double this cube

is to construct $\sqrt[3]{2}$.

Theorem: A number is constructible

To square this circle

Theorem: A number is constructible

To square this circle

is to construct $\sqrt{\pi}$.

Theorem: A number is constructible if and only if

The following numbers are constructible, and no others.

Theorem: A number is constructible if and only if it satisfies an integer polynomial

 $\sqrt{2}$ satisfies

$$x^2-2=0.$$

Theorem: A number is constructible if and only if it satisfies an integer polynomial

5/6 satisfies

6x - 5 = 0.

Theorem: A number is constructible if and only if it satisfies an integer polynomial

 $\sqrt[3]{2}$ satisfies

$$x^3 - 2 = 0.$$

Theorem: A number is constructible if and only if it satisfies an integer polynomial and the degree of the minimal such polynomial ...

 $\sqrt{2}$ satisfies

 $x^2 - 2 = 0.$

Theorem: A number is constructible if and only if it satisfies an integer polynomial and the degree of the minimal such polynomial ...

 $\sqrt{2}$ satisfies

and $(x^2 - 2)^3 = 0$

 $x^2-2=0,$

Theorem: A number is constructible if and only if it satisfies an integer polynomial and the degree of the minimal such polynomial ...

 $\sqrt{2}$ satisfies

and $(x^2 - 2)^3 = 0$

 $x^2-2=0,$

and $(x^2 - 2)(x^{15} + 1) = 0.$

Theorem: A number is constructible if and only if it satisfies an integer polynomial and the degree of the minimal such polynomial ...

 $\sqrt{2}$ satisfies

That is minimal.

 $x^2 - 2 = 0.$

Theorem: A number is constructible if and only if it satisfies an integer polynomial and the degree of the minimal such polynomial is a power of 2.

 $\sqrt{2}$ satisfies That is minimal.

 $x^2 - 2 = 0.$

Therefore you can construct $\sqrt{2}$.

Theorem: A number is constructible if and only if it satisfies an integer polynomial and the degree of the minimal such polynomial is a power of 2.

5/6 satisfies That is minimal.

6x-5=0.

Therefore you can construct 5/6.

Theorem: A number is constructible if and only if it satisfies an integer polynomial and the degree of the minimal such polynomial is a power of 2.

∛2 satisfies

 $x^3 - 2 = 0.$

That is minimal.

<u>evidence</u>

Therefore you CANNOT construct ∛2.

Theorem: A number is constructible if and only if it satisfies an integer polynomial and the degree of the minimal such polynomial is a power of 2.

You cannot construct ∛2. Therefore you cannot construct this cube.

Theorem: A number is constructible if and only if it satisfies an integer polynomial and the degree of the minimal such polynomial is a power of 2.

You cannot construct this cube.

Therefore you cannot double this one.

Theorem: A number is constructible if and only if it satisfies an integer polynomial and the degree of the minimal such polynomial is a power of 2.

cos 20° satisfies

 $8x^3 - 6x - 1 = 0.$

proof

That is minimal.

<u>evidence</u>

Therefore you CANNOT construct *cos* 20°.

Theorem: A number is constructible if and only if it satisfies an integer polynomial and the degree of the minimal such polynomial is a power of 2.

You cannot construct *cos* 20°. Therefore you cannot construct this triangle:

Theorem: A number is constructible if and only if it satisfies an integer polynomial and the degree of the minimal such polynomial is a power of 2.

You cannot construct this triangle:

Therefore you cannot trisect this angle:

60°

Theorem: A number is constructible if and only if it satisfies an integer polynomial and the degree of the minimal such polynomial is a power of 2.

π does not
 satisfy any
 polynomial with
 integer
 coefficients.

Therefore you cannot construct π .

extremely advanced

Theorem: A number is constructible if and only if it satisfies an integer polynomial and the degree of the minimal such polynomial is a power of 2.

You cannot construct π .

Therefore you cannot construct $\sqrt{\pi}$.

<u>proof</u>

Theorem: A number is constructible if and only if it satisfies an integer polynomial and the degree of the minimal such polynomial is a power of 2.

You cannot construct $\sqrt{\pi}$.

Therefore you cannot construct this square.

Theorem: A number is constructible if and only if it satisfies an integer polynomial and the degree of the minimal such polynomial is a power of 2.

You cannot construct this square.

 $\sqrt{\pi}$

Therefore you cannot square the unit circle.

Homework

- 1. Given an angle, construct its bisector.
- 2. Construct a regular octagon.
- Construct a regular pentagon.
 (Extremely hard. Go to pages 15-16 for some needed facts.)
- 4. Show that you cannot construct a regular nonagon.

 $x^3 - 2$ is minimal for $\sqrt[3]{2}$. (Likewise $8x^3 - 6x - 1$ is minimal for *cos* 20°)

- 1. If it is not minimal, then the minimal polynomial m(x) has to be a factor of it: $x^3 - 2 = m(x)q(x)$. Reason: advanced theorem
- If it factors that way,
 x³ 2 = m(x)q(x),
 then either m(x) or q(x) is a linear
 factor x r.
 Reason: The degrees of m(x) and q(x) have
 to add up to 3.

 $x^3 - 2$ is minimal for $\sqrt[3]{2}$. (Likewise $8x^3 - 6x - 1$ is minimal for *cos* 20°)

- If it factors that way,
 x³ 2 = m(x)q(x),
 then either m(x) or q(x) is a linear
 factor x r.
 Reason: The degrees of m(x) and q(x) have
 to add up to 3.
- 3. If x r is a factor, then r is a rational root, of x³ 2.
 (*Reason: <u>Factor Theorem</u>*)
- 4. That's impossible: x³ 2 does not have any rational roots.
 (*Reason: <u>Rational Roots Theorem</u>*)

$cos 20^{\circ}$ is a root of $8x^3 - 6x - 1$

1. This is a "triple-angle formula":

cos 3A

- = *cos* (2A + A)
- = cos 2A cos A sin 2A sin A (sum formula)
- = (2 cos² A 1) cos A 2 sin A cos A sin A (double-angle formulas)
- = (2 cos² A 1) cos A 2 sin² A cos A

(equations continue)

$cos 20^{\circ}$ is a root of $8x^3 - 6x - 1$

1. This is a "triple-angle formula":

cos 3A

- = (2 cos² A 1) cos A 2 sin² A cos A
- = $2 \cos^3 A \cos A 2 \sin^2 A \cos A$
- $= 2 \cos^3 A \cos A 2 (1 \cos^2 A) \cos A$
- $= 4 \cos^3 A 3 \cos A$

$cos 20^{\circ}$ is a root of $8x^3 - 6x - 1$

1. This is a "triple-angle formula":

cos 3A

- $= 4 \cos^3 A 3 \cos A.$
- 2. Substitute A = 20° : cos 60°
 - $= 4 \cos^3 20^\circ 3 \cos 20^\circ$.
- 3. $1/2 = 4 \cos^3 20^\circ 3 \cos 20^\circ$ rearranges to $0 = 8 \cos^3 20^\circ - 6 \cos 20^\circ - 1$.

You cannot construct $\sqrt{\pi}$ because you cannot construct π .

If you could construct $\sqrt{\pi}$

1. Double the length and construct the perpendicular bisector to length 1:

You cannot construct $\sqrt{\pi}$ because you cannot construct π .

If you could construct $\sqrt{\pi}$: $\sqrt{\pi}$

In the circumcircle: 3. extend the perpendicular by length x, to reach the circle. Χ The product of 4. the pieces of one $\sqrt{\pi}$ $\sqrt{\pi}$ chord equals the 1 product in the other: $x = \sqrt{\pi} \sqrt{\pi}$ $x = \pi;$

you would have constructed π .

back

Al Khwarismi's "Completing the Square"

To solve $x^2 + 8x = 65$:

1. Build x^2 .

 Add 1/4 of 8 (coefficient of x) to all the sides.

Al Khwarismi's "Completing the Square"

To solve $x^2 + 8x = 65$:

3. The area of this figure is $x^2 + 8x = 65$.

4. "Complete the square": $x^{2} + 8x + 4(4)$ = 65 + 4(4)

$$(x + 4)^2 = 81$$

 $x + 4 = 9$
 $x = 5$

Relations Between the Roots and Coefficients in a Quadratic

By the Quadratic Formula, the roots of
$$ax^2 + bx + c = 0$$

are

$$r = (-b + \sqrt{[b^2 - 4ac]})/2a$$

and

$$s = (-b - \sqrt{[b^2 - 4ac]})/2a.$$

1. Add them:
$$r + s = (-b + -b)/2a = -b/a$$
.

2. Multiply them:

$$rs = ([-b]^2 - [b^2 - 4ac])/4a^2 = c/a.$$

