The Three Ancient Geometric Problems

The Three Problems

Constructions

- trisect the angle
- double the cube
- square the circle

The Three Problems

trisecting the angle

Given an angle,

The Three Problems

trisecting the angle

Given an angle,
 break it up into

three equal
angles.

The Three Problems

doubling the cube

Given a cube,

The Three Problems

doubling the cube

Given a cube,
construct one
with twice the volume.

The Three Problems

squaring the circle

Given a circle,

The Three Problems

squaring the circle

Given a circle,
construct a square of the same area.

Constructions

first encountered in the fifth century BCE

Constructions

first encountered in the fifth century BCE

the three problems:
Anaxagoras (~450)

Constructions

first encountered in the fifth century BCE

the three problems: Anaxagoras (~450)

straightedge and compass rule came two centuries later
(Apollonius)

Constructions

Originally:

Construct a geometric figure with stated properties.

Constructions

Construct a geometric figure with stated properties.

Construct a
regular octagon.

Constructions

Construct a geometric figure with stated properties.

Given a triangle,
 construct the circumcircle.

Constructions

Later:
Partition or enlarge.

Given an angle,
 bisect it.

Constructions

Partition.

Given a

 segment,trisect it.

method

Constructions

Partition.

Given an angle, trisect the angle.

Constructions

Enlarge.

Given a square,
 construct one twice as big.

Constructions

Enlarge.

Given a square, double two adjacent sides
 and their
 diagonal.

Constructions

Enlarge.

Given a square, join the ends.

Constructions

Enlarge.

Given a square, the red one is twice as wide
and twice as
tall.

Constructions

Enlarge.

Given a square, the red one has four times the

Constructions

Enlarge.

Given a square,
 the black one has twice the

Constructions

Enlarge.

Given a cube, double the
 cube.

Constructions

Finally:

Quadratures

Given a triangle, construct a square of the same area.

Constructions

Quadratures

Given a triangle,
 construct the parallel to the base through the top.

Constructions

Quadratures

Raise the
perpendiculars
to the parallel.

Constructions

Quadratures

Construct the perpendicular bisector of the base.

Constructions

Quadratures

Given a triangle,
 this rectangle has the same area.

Constructions

Quadratures

Given a rectangle,

construct a square of the same area.

page 17

Constructions

Quadratures

Given a circle,
 square the circle.

Constructions

Quadratures:

Lunes

region (blue) inside a circle, outside a bigger one

Constructions

Quadratures:

One Lune of Hippocrates

Start with a circle.

Constructions

Quadratures:

One Lune of Hippocrates

Construct
perpendicular
diameters.

Constructions

Quadratures:

One Lune of Hippocrates

Construct the circle centered at D reaching A and C .

Constructions

Quadratures:

One Lune of Hippocrates

The lune has the triangle $A B C$. same area as

page 18

Constructions

Quadratures:

One Lune of Hippocrates

The lune has the same area as D

diagonal BC.
the square with

Constructions

Impossibility:

Circumscribing a parallelogram that is not a rectangle

parallelogram

Constructions

Impossibility:

Circumscribing a parallelogram that is not a rectangle

parallelogram
inscribed
quadrilateral

Constructions

Impossibility:

Circumscribing a parallelogram that is not a rectangle

parallelogram

opposite angles
are equal
opposites are supplementary

Algebra

Algebra

developed from Al Khwarismi (ninth century CE)
wrote the book practical Al Jabr...

methodoriented

Algebra

developed from Al Khwarismi (ninth century CE)
wrote the book practical
Al Jabr...

methodoriented

"algorithmic"

Algebra

through Leonardo of Pisa ("Fibonacci," ~ 1180-1250)

wrote the book Liber Abaci

brought algebra into Latin
methods for quadratic, even some cubics

Algebra

through
Geronimo Cardano
(1501-1576)

wrote the book solutions of Ars Magna
 cubics and quartics

just solutions; no thought of practicality

Algebra

through
Geronimo Cardano
(1501-1576)

wrote the book Ars Magna

just solutions; no thought of practicality
suggested complex numbers

Algebra

through

François Viète
(1540-1603)
distinguished unknowns
(represented by vowels) from coefficients ("parameters")
not concerned with solution methods
sought relations between roots and coefficients example

Algebra

to

> Évariste Galois (1811-1832)
completely abstract treatment: "groups"
connected groups with polynomials
proved that no formula solves degree ≥ 5

Algebra

to

> Évariste Galois (1811-1832)
completely abstract treatment: "groups"
connected groups with polynomials
connected polynomials
with constructions

Galois Theory

Theorem: A number is constructible

 if and only ifit satisfies an integer polynomial and the degree of the minimal such polynomial is a power of 2 .

Galois Theory

Theorem: A number is constructible

Given length 1, construct any integer.

Galois Theory

Theorem: A number is constructible

Given length 1, construct any integer.

Galois Theory

Theorem: A number is constructible

Given length 1, construct any rational number.

Galois Theory

Theorem: A number is constructible

Given length 1, construct any rational number.

1

Galois Theory

Theorem: A number is constructible

Given length 1, construct any rational number.

1

Galois Theory

Theorem: A number is constructible

Given length 1, construct any rational number.

 1
back to triséction

Galois Theory

Theorem: A number is constructible

Given length 1, construct an irrational
 1 number.

Galois Theory

Theorem: A number is constructible

Given length $1, \quad$ construct $\sqrt{ } 2$.

1

Galois Theory

Theorem: A number is constructible

Given length $1, \quad$ construct $\sqrt{ } 2$.

1

Galois Theory

Theorem: A number is constructible

To trisect this
angle

Galois Theory

Theorem: A number is constructible

To trisect this is to construct angle $\cos 20^{\circ}$.

Galois Theory

Theorem: A number is constructible

To double this
cube

Galois Theory

Theorem: A number is constructible

To double this cube
 is to construct $\sqrt[3]{2}$.

Galois Theory

Theorem: A number is constructible

To square this

 circle

Galois Theory

Theorem: A number is constructible

To square this
 is to construct circle
 $\sqrt{ } \pi$.

Galois Theory

Theorem: A number is constructible if and only if

The following and no others. numbers are constructible,

Galois Theory

Theorem: A number is constructible if and only if
 it satisfies an integer polynomial

$\sqrt{ } 2$ satisfies

$$
x^{2}-2=0 .
$$

Galois Theory

Theorem: A number is constructible if and only if
 it satisfies an integer polynomial

5/6 satisfies
$6 x-5=0$.

Galois Theory

Theorem: A number is constructible if and only if
 it satisfies an integer polynomial

$\sqrt[3]{2}$ satisfies

$$
x^{3}-2=0 .
$$

Galois Theory

Theorem: A number is constructible if and only if
it satisfies an integer polynomial and the degree of the minimal such polynomial ...
$\sqrt{ } 2$ satisfies

$$
x^{2}-2=0 .
$$

Galois Theory

Theorem: A number is constructible if and only if
it satisfies an integer polynomial and the degree of the minimal such polynomial ...
$\sqrt{ } 2$ satisfies and

$$
\left(x^{2}-2\right)^{3}=0
$$

$$
x^{2}-2=0
$$

Galois Theory

Theorem: A number is constructible if and only if
it satisfies an integer polynomial and the degree of the minimal such polynomial ...
$\sqrt{ } 2$ satisfies
and
$\left(x^{2}-2\right)^{3}=0$
$x^{2}-2=0$,
and

$$
\left(x^{2}-2\right)\left(x^{15}+1\right)=0
$$

Galois Theory

Theorem: A number is constructible if and only if
it satisfies an integer polynomial and the degree of the minimal such polynomial ...
$\sqrt{ } 2$ satisfies
That is minimal.

$$
x^{2}-2=0
$$

Galois Theory

Theorem: A number is constructible if and only if
it satisfies an integer polynomial and the degree of the minimal such polynomial is a power of 2 .
$\sqrt{ } 2$ satisfies That is minimal.

$$
\begin{array}{ll}
x^{2}-2=0 . & \text { Therefore you } \\
& \text { can construct } \\
\sqrt{ } 2 .
\end{array}
$$

Galois Theory

Theorem: A number is constructible if and only if
it satisfies an integer polynomial and the degree of the minimal such polynomial is a power of 2 .

5/6 satisfies That is minimal.
$6 x-5=0$

> Therefore you can construct $5 / 6$.

Galois Theory

Theorem: A number is constructible if and only if
it satisfies an integer polynomial and the degree of the minimal such polynomial is a power of 2 .

$\sqrt[3]{2}$ satisfies

That is minimal. evidence

$$
\begin{array}{ll}
x^{3}-2=0 . & \text { Therefore you } \\
& \text { CANNOT } \\
& \text { construct } \sqrt[3]{2} .
\end{array}
$$

Galois Theory

Theorem: A number is constructible

 if and only if it satisfies an integer polynomial and the degree of the minimal such polynomial is a power of 2 .You cannot construct $\sqrt[3]{2}$.

Therefore you cannot construct this cube.

Galois Theory

Theorem: A number is constructible

 if and only if it satisfies an integer polynomial and the degree of the minimal such polynomial is a power of 2 .
You cannot construct this

 cube.

Therefore you cannot double this one.

Galois Theory

Theorem: A number is constructible

 if and only if it satisfies an integer polynomial and the degree of the minimal such polynomial is a power of 2.$\cos 20^{\circ}$ satisfies
That is minimal.
evidence
$8 x^{3}-6 x-1=0$.
proof

Therefore you CANNOT
construct $\cos 20^{\circ}$.

Galois Theory

Theorem: A number is constructible if and only if it satisfies an integer polynomial and the degree of the minimal such polynomial is a power of 2 .

You cannot construct $\cos 20^{\circ}$.

Therefore you cannot construct this triangle:

Galois Theory

Theorem: A number is constructible

 if and only if it satisfies an integer polynomial and the degree of the minimal such polynomial is a power of 2.You cannot construct this triangle:

Therefore you cannot trisect this angle:

Galois Theory

Theorem: A number is constructible if and only if it satisfies an integer polynomial and the degree of the minimal such polynomial is a power of 2.

π does not satisfy any polynomial with construct π. integer coefficients.

Galois Theory

Theorem: A number is constructible

 if and only ifit satisfies an integer polynomial and the degree of the minimal such polynomial is a power of 2.

You cannot construct π.

Therefore you cannot
construct $\sqrt{ } \pi$.

proof

Galois Theory

Theorem: A number is constructible

 if and only if it satisfies an integer polynomial and the degree of the minimal such polynomial is a power of 2.
You cannot

 construct $\sqrt{ } \pi$. cannot construct this square.$\sqrt{ } \pi$

Galois Theory

Theorem: A number is constructible

 if and only if it satisfies an integer polynomial and the degree of the minimal such polynomial is a power of 2 .You cannot construct this square.

Therefore you cannot square the unit circle.

Homework

1. Given an angle, construct its

 bisector.2. Construct a regular octagon.
3. Construct a regular pentagon. (Extremely hard. Go to pages 15-16 for some needed facts.)
4. Show that you cannot construct a regular nonagon.

$x^{3}-2$ is minimal for $\sqrt[3]{2}$
 (Likewise $8 x^{3}-6 x-1$ is minimal for $\cos 20^{\circ}$)

1. If it is not minimal, then the minimal polynomial $m(x)$ has to be a factor of it: $x^{3}-2=m(x) q(x)$.
Reason: advanced theorem
2. If it factors that way,

$$
x^{3}-2=m(x) q(x),
$$

then either $m(x)$ or $q(x)$ is a linear
factor $x-r$.
Reason: The degrees of $m(x)$ and $q(x)$ have to add up to 3 .

$x^{3}-2$ is minimal for $\sqrt[3]{2}$
 (Likewise $8 x^{3}-6 x-1$ is minimal for $\cos 20^{\circ}$)

2. If it factors that way,

$$
x^{3}-2=m(x) q(x),
$$

then either $m(x)$ or $q(x)$ is a linear
factor $x-r$.
Reason: The degrees of $m(x)$ and $q(x)$ have to add up to 3 .
3. If $x-r$ is a factor, then r is a rational root, of $x^{3}-2$. (Reason: Factor Theorem)
4. That's impossible: $x^{3}-2$ does not have any rational roots.
(Reason: Rational Roots Theorem)
back

$$
\begin{gathered}
\cos 20^{\circ} \text { is a root of } \\
8 x^{3}-6 x-1
\end{gathered}
$$

1. This is a "triple-angle formula":
$\cos 3 \mathrm{~A}$
$=\cos (2 \mathrm{~A}+\mathrm{A})$
$=\cos 2 \mathrm{~A} \cos \mathrm{~A}-\sin 2 \mathrm{~A} \sin \mathrm{~A}$
(sum formula)
$=\left(2 \cos ^{2} A-1\right) \cos A-2 \sin A \cos A \sin A$
(double-angle formulas)
$=\left(2 \cos ^{2} A-1\right) \cos A-2 \sin ^{2} A \cos A$
(equations continue)

$\cos 20^{\circ}$ is a root of $8 x^{3}-6 x-1$

1. This is a "triple-angle formula":
$\cos 3 \mathrm{~A}$
$=\left(2 \cos ^{2} A-1\right) \cos A-2 \sin ^{2} A \cos A$
$=2 \cos ^{3} \mathrm{~A}-\cos \mathrm{A}-2 \sin ^{2} \mathrm{~A} \cos \mathrm{~A}$
$=2 \cos ^{3} \mathrm{~A}-\cos \mathrm{A}-2\left(1-\cos ^{2} \mathrm{~A}\right) \cos \mathrm{A}$
$=4 \cos ^{3} \mathrm{~A}-3 \cos \mathrm{~A}$

$\cos 20^{\circ}$ is a root of $8 x^{3}-6 x-1$

1. This is a "triple-angle formula":
$\cos 3 \mathrm{~A}$
$=4 \cos ^{3} \mathrm{~A}-3 \cos \mathrm{~A}$.
2. Substitute $\mathrm{A}=20^{\circ}$: $\cos 60^{\circ}$
$=4 \cos ^{3} 20^{\circ}-3 \cos 20^{\circ}$.
3. $1 / 2=4 \cos ^{3} 20^{\circ}-3 \cos 20^{\circ}$ rearranges to

$$
0=8 \cos ^{3} 20^{\circ}-6 \cos 20^{\circ}-1 .
$$

You cannot construct $\sqrt{ } \pi$

 because you cannot construct π.If you could construct $\sqrt{ } \pi$ $\sqrt{ } \pi$

1. Double the length and construct the perpendicular bisector to length 1 :

2. Construgt the circumcircle:

You cannot construct $\sqrt{ } \pi$

 because you cannot construct π.If you could construct $\sqrt{ } \pi$:
$\sqrt{ } \pi$
3. In the circumcircle: extend the perpendicular by length x, to reach the circle.
4. The product of the pieces of one chord equals the product in the other:

$$
\begin{aligned}
x 1 & =\sqrt{ } \pi \sqrt{ } \pi \\
x & =\pi ;
\end{aligned}
$$

you would have constructed π.
back

Al Khwarismi's

"Completing the Square"

To solve $x^{2}+8 x=65$:

1. Build x^{2}.

2. Add $1 / 4$ of 8

Al Khwarismi's

"Completing the Square"

To solve $x^{2}+8 x=65$:
3. The area of this figure is $x^{2}+8 x=65$.

4. "Complete the square":
$x^{2}+8 x+4(4)$
$=65+4(4)$
$(x+4)^{2}=81$

$$
x+4=9
$$

$$
x=5
$$

back

Relations Between the Roots and Coefficients in a Quadratic

By the Quadratic Formula, the roots of

$$
a x^{2}+b x+c=0
$$

are

$$
r=\left(-b+\sqrt{ }\left[b^{2}-4 a c\right]\right) / 2 a
$$

and

$$
s=\left(-b-\sqrt{ }\left[b^{2}-4 a c\right]\right) / 2 a
$$

1. Add them:

$$
r+s=(-b+-b) / 2 a=-b / a .
$$

2. Multiply them:

$$
r s=\left([-b]^{2}-\left[b^{2}-4 a c\right]\right) / 4 a^{2}=c / a .
$$

back

