DEPARTMENT OF MATHEMATICS, CCNY PRACTICE MIDTERM 2- MATH 201 FALL 2022

Student's Last Name, First Name: _

Instruction: You must write very clear and neat, and show all your work to receive credit. This midterm and your upcoming midterm 2 cover only chapter 3. Specifically on sections: 3,1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8 and 3.9

- 1. Let $f(x) = \frac{1}{\sqrt{x}}$. Find
 - (a) f'(x) use the limit definition of the derivative; then check your answer by direct differentiation.
 - (b) The equation of the tangent line to the curve y = f(x) at x = 4 using part (a).
- 2. Let f(x) = |x+2|. Is f continuous at x = -2? Is f differentiable at x = 2

3. Let
$$f(x) = \begin{cases} x^7 \sin(1/x) & ; \quad x \neq 0. \\ 0 & ; \quad x = 0 \end{cases}$$

Is f differentiable at x = 0? If so, find f'(0). Is f continuous at x = 0?

4. Let
$$f(x) = \begin{cases} 4x+1 & ; & x \ge 1 \\ x^2+2x+7 & ; & x < 1. \end{cases}$$

Is f differentiable at x = 0? If so, find f'(0). Is f continuous at x = 0?

- 5. Is there a value of α and β that make $f(x) = \begin{cases} x^2 + 2\alpha + \beta & ; & x < 0\\ 1 + 4\sin(\pi x/6) & ; & 0 \le x \le 1\\ 3\beta + \alpha\cos(\pi x) & ; & x > 1 \end{cases}$ continuous for all x?
- 6. Find the derivative of the following:

(a)
$$y = \frac{x^4 - 8x^9 + \sqrt[5]{x} - \pi}{x^{3/2}}$$
.
(b) $g(x) = (2x - 3)^4 (x^2 + x + 1)^5$
(c) $f(x) = \left(\frac{2\sqrt{x}}{2\sqrt{x} + 1}\right)$
(d) $y = \sin(4\tan(x^3 + x))$
(e) $e^{1+x+\sec(3x)}$
(f) $(2x - 3)^4 (x^2 + x + 1)^5$

(g)
$$y = \sqrt{\frac{s^2 + 1}{s^2 + 4}}$$

(h) $y = x \cos^{-1}(x) - \sqrt{1 - x^2}$
(i) $y = \sqrt[3]{\frac{2x - 5}{x + 7}}$
(j) $y = \sqrt{3t + \sqrt{2 + \sqrt{1 - t}}}$
(k) $y = \cos^4(\sec^2(3x))$

7. Find
$$\frac{dy}{dx}$$
 by implicit differentiation.
(a) $2x^3 + x^2y - xy^3 = 2$
(b) $y^5 + x^2y^3 = 1 + x^4y$
(c) $\cos(xy) = 1 + \sin(y)$
(d) $\tan(x/y) = x + y$

- 8. Find y'' by implicit differentiation.
 - (a) $9x^2 + y^2 = 9$ (b) $\sqrt{x} + \sqrt{y} = 1$ (c) $x^3 + y^3 = 1$ (d) $x^4 + y^4 = a^4$ where *a* is a constant
- 9. Find the derivative of the following; that is find $f^n(x)$.
 - (a) A formula for the n^{th} derivative of $f(x) = xe^x$.
 - (b) A formula for the n^{th} derivative of f(x) = 1/x. (c) $\frac{d^{13673}y}{dx^{13673}}$ [sin(3x)].
- 10. Find the points on the curves $y = x^4 6x^2 + 4$ where the tangent line is horizontal.
- 11. Let $s(t) = t^3 6t^2 + 9t$ meter be the portion of a body along the horizontal s-axis
 - (a) Find the body's acceleration , a(t), each time the velocity is zero.
 - (b) Find the body's speed each time the acceleration is zero.
 - (c) find the total distance traveled by the body from t = 0 to t = 2.
- 12. At time $t \ge 0$, the velocity of a body moving along the horizontal s-axis is $v(t) = t^2 4t + 3$.
 - (a) Find the body's acceleration each time the velocity is zero.
 - (b) When is the body moving forward? Backward?
 - (c) When is the body's velocity increasing? Decreasing?

13. Suppose that the functions f and g and their first derivatives f'(x) and g'(x) have the following values at x = 0 and x = 1.

x	f(x)	g(x)	f'(x)	g'(x)
0	1	1	-3	1/2
1	3	5	1/2	-4

Find the derivative of the following at the given value of x.

(a) $6f(x) - g(x), \quad x = 1$

(b)
$$\frac{f(x)}{g(x)+1}$$
, $x = 1$
(c) $\sqrt[3]{[x+f(x)]^2}$, $x = 0$

14. Find all points (x, y) on the graph of $y = f(x) = (x - 3)^2 + 2$ with tangent lines passing the point (6,10).