On the
Geometry
of
Orbits

The Possible Orbits

The Possible Orbits

circle

The Possible Orbits

ellipse

The Possible Orbits

parabola

The Possible Orbits

hyperbola

Speed and Distance

$\overline{4000} \mathrm{mi}$

17,600 mph 1.4 hr

Speed and Distance

Add 32\%
23,200 mph
10.4 hr

Speed and Distance

> Add 39\%
> $24,500 \mathrm{mph}$

Speed and Distance
 240,000 mi

?

Speed and Distance

240,000 mi

> Add 40\%
> $24,640 \mathrm{mph}$

Speed and Distance

"infinite
ellipse"

Add 41.4\%
24,900 mph

Speed and Distance

parabola
"escape speed"
24,900 mph

Speed and Distance

hyperbola
more than escape speed

Speed and Distance

parabola
terminal
velocity:
speed ≈ 0
"escape speed" 24,900 mph

Speed and Distance

hyperbola
terminal
velocity:
speed \approx excess
more than escape speed

The Conic Sections

Apollonius's
 Sections of One Cone

Apollonius's Epicycle Model

Geometry of the Shallow Section

Tangents from a Common Point

Geometry of the Shallow Section

Geometry of the Shallow Section

Add $P F_{1}$ and $P F_{2}$.
〉

Geometry of the Shallow Section

$P F_{1}+P F_{2}=$
distance between the bands

Definition of the Ellipse

- There are two fixed points ("foci") for which the two distances ("focal radii") from any point of the curve add up to a fixed number.

Definition of the Ellipse

There are two fixed points ("foci") for which the two distances ("focal radii") from any point of the curve add up to a fixed number.

$P F_{1}+P F_{2}=$ constant

Properties of the Ellipse

- There are two fixed points ("foci") for which the two distances ("focal radii") from any point of the curve add up to a fixed number.

- The ellipse is left-right and updown symmetric.

Properties of the Ellipse

- There are two fixed points ("foci") for which the two distances ("focal radii") from any point of the curve add up to a fixed number.
- The main axis (the one with the foci) is as long as the sum of the focal radii.

Properties of the Ellipse

- There are two fixed points ("foci") for which the two distances ("focal radii") from any point of the curve add up to a fixed number.
- The main axis is longer than the other:
$M^{2}=m^{2}+f^{2}$

Properties of the Ellipse

- There are two fixed points ("foci") for which the two distances ("focal radii") from any point of the curve add up to a fixed number.
- The ratio $\varepsilon=f / M$ (the "eccentricity") determines the shape of the ellipse.

Eccentricity and the Shape of the Ellipse

$$
\begin{gathered}
M^{2}=m^{2}+f^{2} \text { and } \varepsilon=f / M \\
\text { lead to }
\end{gathered}
$$

$$
m=M \sqrt{ }\left(1-\varepsilon^{2}\right)
$$

Eccentricity and the Shape of the Ellipse

$M^{2}=m^{2}+f^{2}$ and $\varepsilon=f / M$

lead to

$$
m=M \sqrt{ }\left(1-\varepsilon^{2}\right)
$$

- Earth:

$$
\varepsilon=.02 \quad \mathrm{~m}=\mathrm{M}(.9998)
$$

Eccentricity and the Shape of the Ellipse

$M^{2}=m^{2}+f^{2}$ and $\varepsilon=f / M$

lead to

$$
m=M \sqrt{ }\left(1-\varepsilon^{2}\right)
$$

- Earth:

$$
\varepsilon=.02 \quad \mathrm{~m}=\mathrm{M}(.9998)
$$

- Mars:

$$
\varepsilon=.09 \quad \mathrm{~m}=\mathrm{M}(.996)
$$

Eccentricity and the Shape of Two Familiar Orbits

Eccentricity and the Shape of Two Familiar Orbits

Definition of the Ellipse

$P F_{1}+P F_{2}=$ constant

Definition of the Hyperbola

$P F_{2}-P F_{1}=$ constant

Definition of the Hyperbola

- There are two fixed points ("foci") for which the two distances ("focal radi") from any point of the curve differ by a fixed number.

$$
P F_{2}-P F_{1}=\text { constant }
$$

Definition of the Hyperbola

- There are two fixed points ("foci") for which the two distances ("focal radii") from any point of the curve differ by a fixed number.

Seismography
 and the Hyperbola

Suppose San Francisco hears an earthquake at 12,

New York hears at 5,
Miami hears at 5:12.

Seismography and the Hyperbola

distance to New York

- distance to San Francisco

$$
=2,000 \mathrm{mi}
$$

Seismography
 and the Hyperbola

distance to New York

- distance to San Francisco

Seismography
 and the Hyperbola

distance to Miami

- distance to San Francisco

Seismography

and the Hyperbola

Location: Elko NV

More Geometry of the Sections

More Geometry of the Sections

More Geometry of the Sections

More Geometry of the Sections

More Geometry of the Sections

More Geometry of the Sections

More Geometry of the Sections

Alternate Description of the Ellipse

There is a line

Eccentricity in the Sections

Definition of the Parabola

Definition of the Parabola

Definition of the Parabola

Eccentricity in the Sections

Eccentricity in the Sections

$P F_{1} / P Q=$
 $\sin 80^{\circ} / \sin 65^{\circ}$

Eccentricity in the Sections

$P F_{1} / P Q=$ constant greater than 1

Geometry of the Steep Section

"Eccentricity"
 of the
 hyperbola
 exceeds 1.

Speed and Eccentricity

17,600 mph

Speed and Eccentricity

circle

> eccentricity
> $=\left(\mathrm{v} / \mathrm{v}_{0}\right)^{2}-1$
> $=1^{2}-1$
> $=0$

17,600 mph

Speed and Eccentricity

26,200 mi

Add 32\%
23,200 mph

Speed and Eccentricity

ellipse

> eccentricity
> $=\left(\mathrm{v} / \mathrm{v}_{0}\right)^{2}-1$
> $=1.32^{2}-1 \quad-$
> $\approx 0.74 \quad-\quad$

> Add 32\%
> $23,200 \mathrm{mph}$

Speed and Eccentricity

eccentricity

$=\left(\mathrm{v} / \mathrm{v}_{0}\right)^{2}-1^{120,000 \mathrm{mi}}$
$=1.39^{2}-1$
≈ 0.93
ellipse

Speed and Eccentricity

eccentricity

$=\left(\mathrm{v} / \mathrm{v}_{0}\right)^{2}-1$
$=1.414^{2}-1$

Speed and Eccentricity

parabola

eccentricity

$$
\begin{aligned}
& =\left(v / v_{0}\right)^{2}-1 \\
& =(\sqrt{ } 2)^{2}-1 \\
& =1
\end{aligned}
$$

Speed and Eccentricity

hyperbola
eccentricity
$=\left(\mathrm{v} / \mathrm{v}_{0}\right)^{2}-1$
$=1.5^{2}-1$
$=1.25$

> Add 50\% $26,400 \mathrm{mph}$

Elements of the Parabola

Elements of the Parabola

Extent of the Parabola

Elements of the Parabola

Extent of the Parabola

points in
all other
directions

Elements of the Hyperbola

Elements of the Hyperbola

Elements of the Hyperbola

Elements of the Hyperbola

Elements of the Hyperbola

Extent of the Hyperbola

Hyperbola is confined to the gray region.

Reflection Properties: the Ellipse

Reflection Properties: the Ellipse

Reflection Properties: the Ellipse

Reflection Properties: the Parabola

Reflection Properties: the Parabola

Reflection Properties: the Hyperbola

Telescopes and the Conics

Telescopes and the Conics

