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• There are two fixed points 

(“foci”) for which the two 

distances (“focal radii”) from 

any point of the curve add up 

to a fixed number. 

 

 

• The main axis is longer than 

the other: 
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2 = m2 + f 

2 
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• There are two fixed points 

(“foci”) for which the two 

distances (“focal radii”) from 

any point of the curve add up 

to a fixed number. 

 

 

• The ratio   = f/M  (the 

“eccentricity”) determines the 

shape of the ellipse.  
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M2 = m2 + f 
2  and  = f/M 

 

lead to 

 

m = M (1 – 2). 

 

• Earth: 

    = .02  m = M(.9998) 
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    = .09  m = M(.996) 
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• There are two fixed points 

(“foci”) for which the two 

distances (“focal radii”) from 

any point of the curve differ by 

a fixed number. 
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• There are two fixed points 

(“foci”) for which the two 

distances (“focal radii”) from 

any point of the curve differ by 

a fixed number. 
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