SUPPLEMENTARY NOTE 5b FOR MATH 212
Conic Sections and Quadric Surfaces

CONIC SECTIONS

A conic section is the intersection of a right circular cone
and a plane.

THE GENERAL SECOND DEGREE EQUATION

The degree of a term of a polynomial in more than one
variable is the sum of the exponents of the variables in the
term. For example, the term 22°y2? has degree 3+ 1+ 2 = 6.
By the general second degree polynomial in two variables, we
mean all polynomials in two variables whose terms have degree
at most two and at least one term is of degree two. The general
second degree equation is the equation that a general second
degree polynomial equals zero, i.e., it is of the form

Az? + By’ + Cey+ Dz + Ey+ F =0.

We ask the question, seemingly unrelated to conic sections,
of what are all possible graphs of second degree polynomial
equations. To answer this question we rewrite the equation
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If both A # 0 and D # 0, then we can complete the square
and write

Az* + Dz + F = A(z — a)? + F'.

Similarly we can complete the square if B # 0 and E # 0
to get B(y—3)?+ F’. Since o and § are shifts, we can consider
only the case for which there is square term or a linear term
but not both, for both variables, and all possible graphs of the

general second degree equation are rotations and/or shifts of
equations of the form

{ Az? { By?
+ = F,
Ax By

where we pick just one term in each bracketed pair. If F # 0,
we divide both sides of the equation by F' to obtain the form

{ Ax? { By? { 1
+ —
Ax By 0

20 +0y* + 4z +y+6=2[z> —2z] +y +6
=2z —-1)*~1]+y+6
=2(z— 1)’ +y+(-2+6) =0

For example,

2 %y = l,then we Just shift one unit hor-
izontally to obtain the graph of the equation displayed above.

If we can graph — %x
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We make one last modification: If A > 0, then we may

write A in the form A = % (let a = 1/vA). If A < 0, write
A= —a%, where a = IA/|A| Similarly write B = +5, and

make this change of notation on the top lines above:

2 2

z Yy
+ = o1
a? + :tbz:{o

Ax By

We now examine each possibility with last forms written
above:

Case 1: The constant is 1.
(a) Both terms on the left are squares
(i) 2 pluses o
(i) 1 plus
(ii) both minuses
(b) There is only one square term.

(c) No square terms: then equation is linear, not second
degree.

Case 1(a)(i)

2 2
y _
2 + *E 1
We construct the graph.
. . . e *b’“\u\-:.
First we find the intercepts. , b
Set y = 0 to find the x % n
intercepts: 22 = a? and R B
r = t+a. Similarly y = +b.

We graph the portion of the

graph in the first quadrant, by solving for y. The first and
second derivatives are both negative, so the curve is decreasing
and concave down. Finally we see, by replacing first z and then
y by their negatives, that the graph has symmetry about both
the z— and y—axes. This graph is called an ellipse. When
a = b we get the circle of radius a as a special case.
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For use in our discussion of quadric surfaces, we need to

look at a slightly more general equation that that given for the
ellipse.

Example: For d = %, 1,4 graph the equation

22 g2
42 4
4+9

Solution: For d = 1 this is the ellipse with vertices (42, 0)
and (0,+3).

For d = 4, we write L6

562 2
2 ¥
4 9

2 y2

=1
4-4+4-9

5132 y2

Vi va sy

This an ellipse with parameters ¢ and b that are twice those of
the equation with d = 1.

1

Ford—§
x2 2 1
2 oy 1
4 9 2
72 yz
\'+1 :17
74 29

and the parameters here are \/g times the parameters with
d=1.

The conclusion is that the parameters for d are \/c_i times
the parameters when d = 1.
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Case l(aj(11)

CC2 y2
a—2~b—2:1 or

We graph the first equation,

beginning by finding the

intercepts. For z—intercepts,
2 2

x* = a*, so xr = *a, For T
y—intercepts —y? = a?. Since’

—y2 <0 and a? > 0, there are Vs \ 1
no y—intercepts. In the first /4 , \\_,\_K, ¢

quadrant y = by/(z%/a?)—1. For large values of z, the (-1)
term in the radical is very small compared to z?/a?, so y =
j:%:c are asymptotes. Since y' > 0 and y” < 0 in the first
quadrant, the curve is increasing and concave down. Again.
symmetry about both axes, allows us to finish the graph. This
graph 1s called a hyperbola.

For the second equation, there will be intercepts y = +b
and no z—intercepts, and the graph will open up and down.
instead of left and right.

Casel(a) (iii)

Since the left side is less than or equal to zero for all = and y,
the graph is empty.

Case 1(b) z%/a* + By = 1 or Az + y?/b* = 1 is clearly a
parabola opening up or down for the first equation and left or
right for the second case. - o

Case 2, the constant is 0, yields only two degenerate graphs
and a duplication of Case 1(b). Thus, the non-degenerate
graphs of all second degree equations coincide with the non-
degenerate conic sections.



Example 1: Graph 2 + 3y2 + 6y =0
Solution: Complete the square:
z? +3[y® +2y] = 0
2 +3[(y+1)* -1 =0
2 +3y+1)2-3=0
2?2+ 3(y+1)2=3
x? e
T T+ =1 LT
x N (y + 1) _ 1
(v/3)2 1
QUADRIC SURFACES

A quadric surface is a graph of the general second degree
polynomial equation

Az’ +By*+C2  + Dzy+Ezz+Fyz+Gz+Hy+Iz+.J = 0.

We first observe that if only two of the variables appear
in the second degree equation (i.e., both the square and linear
term of one variable have coefficient zero), then, as we observed
earlier, the graph is a cylinder. T

Example 2: %2—— —I—i%z =1 in R3.

Solution:

Example 3: Describe the graph of (z —1)(z—3) = 0 in R?
Solution: It is the two planes £ = 1 and r = 3 which are
perpendicular to the z—axis. In general the graph of a second
degree equation in just one variable is the empty set or one

or two planes perpendicular to the axis of the variable that
appears in the equation.
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We wish to catalogue quadric surfaces in a manner anal-

ogous to what we did for conic Sections. ‘Since our discussion
shows what is possible if only one or two of the variables appear
with nonzero coefficients, we assume all three variables appear
in the equation.

Two rotations (not requiring advanced mathematical tech-
niques, but intricate enough that it never would be included in
an elementary calculus book) will eliminate the cross product
terms by describing the graph in the rotated coordinate axes.

Also, as for conics, we can complete the squares and shift
to assume our equations are of the form

T Y z

+ — + = + — 1
a? + b2 + 62:{0

Ax By Cz

Case 1: The constant is 1.
(a) 3 terms on the left are squares
(1) 3 pluses
(ii) 2 pluses
(iii) 1 plus
(iv) no pluses: left side less than 0, so empty graph
(b) 2 terms on the left are squares” ~
(i) no pluses or 2 pluses
(ii) 1 plus
(c) 1 term on the left is a square
(d) No square terms: then equation is linear, not second
degree.
Case 2: The constant is 0.
(a) 3 terms on the left are squares
(i) 3 pluses or no pluses: graph is just the origin .
(i1) 1 or 2 pluses
(b) 2 terms on the left are squares:. same as.Case 1 (b)
(c) 1 term on the left is a square: same as Case 1(c)



Case 1(a)(i)
2 2 2

St =1 3
We think of how a clay pot
may be built in layers. Put a
frame up and build the layers
around that. For our “frame”
we look at the portion of
the graph that is in the
the plane of the screen,
the rz—plane from our perspective, that is, the portion of the
graph with y = 0:

2 22

2 a=h
which is an ellipse, as shown at the right. Then we build hori-
zontal strips at height z = 2z,

This is an ellipse with dimension shrunk in proportion by a
factor v/d. By symmetry the bottom half is symmetric with
the top half. This figure is called an ellipsoid.



Case 1(a)(ii)

a?

We chose the z term to be
the one “different” in the
sense that the x and y
terms both have a plus sign,

v
the z term does not. In all
our examples we will let z
be the one that is different.
Our “frame” in the zz— plane is
2 2 B
2 a2° b
which is a hyperbola with z—intercepts at £ = +a, shown

on the accompanying diagram. Again, we look at horizontal
“strips,” more formally referred to as traces (or cross-sections)
at various heights z = zg;

2 2 2
2

x J 25
a2+b +c2

This is referred to as a hyperboloid of one sheet, since the side
walls are hyperbola shaped, and the whole surface is one con-
nected piece.
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Case 1(a)(iii)

22y 22 B
2 Eta!
Again, for ~y = 0, we have
r? N 22 _q
a2 ¢z 7
a hyperbola with z—intercepts
z = *c, as shown in the
diagram. The horizontal cross-
sections at various heights
2 = Zg, 20 2 €,
2 2 2
z T
d==%—-1="5+ v
c a b2

are ellipses of increasing size. This is called a hyperboloid of
two sheets because the sides walls are hyperbola shaped and
the surface consists of two disconnected pieces.
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Case 1(b)(i) When both square terms are positive (the
first equation below), we can solve for z (the second equation).

We can make the shift z — 2z + % and absorb réT‘ into the

coefficents of z? and y? to obtain the form in the third equation
below.

72
— +
a
1
T e
2z =
When y = 0, -
we obtain
z = (1/a?)ax?,
a parabola, shown

in the diagram.
For a fixed value z = zg,

is an ellipse.

This surface is called a elliptical paraboloid because the
side wall is parabola shaped and the horizontal traces are el-
lipses.

If both square terms are negative, then

22y
T (— " ﬁ) ,
and the bowl shaped figure opens downwards instead of up-
wards.
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Case 1(b)(ii) When one square term is positive, say the z
term is positive, then, as in Case 1(b)(i), it suffices to consider
the second equation below.

2 2
Z Y
a_2_35+cz:1

Y L [N ; 5, R
x
2= ( — — ?_J_) .
a2 b2
We assume that the “+” is plus. The situation when“+” is
minus is analogous. The trace in the zz-plane, the plane of the

screen from our perspective, is a parabola unfolding upwards
from the origin. For a fixed z = z, > 0,

—-——~=zo:d.

This is a hyperbola with vertices (++/da, 0, 2o) as shown below.
To see the whole surface, we must also look at the trace
in the yz-plane, the vertical plane through the z—axis which
comes in and out of the screen. There we have a parabola
unfolding downwards, and for z = 2y < 0, hyperbolas

Yy,

a2 2

2 2

T Yy
—a T =8 =d

These are hyperbolas unfolding in and out of the screen. The
surface looks somewhat like a saddle and is called a hyperbolic
paraboloid, because the “frame” consists of two parabolas and
the cross-sections are hyperbolas.
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Case 1(c) One square term: z—z + By + Cz = 1. Graphing
this surface requires a rotating the r and y axes about the
z—axis. Graphs requiring rotations are not part of the syllabus.
For the sake of completeness we show an example.

Example 4: The graph of 22 = 2+ y is shown. The z—axis
drawn rotated 45° behind the screen, and z’-axis is in the plane
of the board. In terms of a rotated system using (z’,y’, z) co-
ordinates the graph has equatmn z? = 2’| a parabolic cylinder

unfolding along the positive z’axis. ﬁ\’
1z
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Case %(a)(il) If we multiply the second eguetien: below
(with 1 positive term) we obtain the first equation (with two
positive terms).

2 y2 2
a—2+‘i)§—c—2:0 or
2 2 2
T y4
-4 o

The trace on the zz-plane of the first equation above has equa-
tion

H,_

N

C
&’

a pair of straight lines. The cross-sections are ellipses:

/1%S i
/
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Quadric Surfaces
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Example 5: (a) Graph and label the center and z-intercepts:
y? — 22 4+222-824+7=0

(b) Sketch the graph of the trace of the surface in the zy—
and yz—planes.

Solution: (a) Write in standard form:

y? —x2,+2z2‘—82+7‘—‘—.0h_| )
y? —2? +2[2* —42]+7=0
y? —22 4+ 2[(2-2)°>-4+7=0

y? — 2% +2(2—-2)2-84+7=0
2 2, (2—2)°
Yy’ -zt o=y =
(1/v2)?
=

(b) Set %= 0, then = = 0:

2 4 (2“2)2

y ——
(UJY
2 ‘tfﬂ.(&'"‘“
1y, L+ Bl {9r'p(anc L2
CQ =l

e IR R




16

Example 6: (a) Graph and label the vertices:

$2

Solution: Write in standard form:

x2 y2 22

9

%9 9! ' 'u//iﬂ

Example 7: Graph and label the vertices:
r? +y? —422+8:-3=0
Solution: Write in standard form:

:c2+y2—422+82—3:()
22 +y? 4z -22]-3=0
e+ y? —4[(z-1)2-1-3=0

2?4+ —4(z-1)>4+4-3=0
m2+y2—4(z—1)2:—1 ‘
—z? -yt 4z -1 = 1 {
(z — 1)2_1
(127




Example 8: Graph and label all vertices, if there are any
22 + 422 4+ 16y + 82 — 12 =0

Solution: Write in standard form:

2 +422 + 16y +82—12=0

a:2+4
2 +4

22 +22) + 16y — 12 = 0
[

:c2+4(
(

(z4+1)2 —1] + 16y — 12 =0
<

+1)2—4+16y—12=0

* +4(z+1 )2—16_—16y

2 (z+1)2 |
S T

16 g Y

z? (z+1)
— | — ~ 7 1 =

[16 L ]+ Yo

Example 9: Graph and label all vertices, if there are any:
222 +y?2 — 22 —62—-9=0

Solution: Write in standard form:

xrz — trace:

2 2 .2 o, 0_
20 +y* — 2" —-62—9=0 2% — (24 3)2 =0

202 +y? — (22 +62] —9=0
20 +y? —[(¢4+3)2 -9 -9=0
222 + y% — (2 + )2+9 9=0
2% +y% — (24 3)% =




