SUPPLEMENTARY NOTE 5a FOR MATH 212

3-Dimensional Coordinate Systems

Basic Definitions

We will refer to the j}Ilea,ne as R? and aﬁ of 3-dimensional
space as R3.

Points in 3-dimensional space are described in a manner
analogous to points in the plane. We draw three mutually per-
pendicular lines, again called axes, each of which is considered
to be a copy of the real line. In the diagram above, the axes,
labelled z—, y— and z—axes, have their letter names written
on the positive side of the real line. The intersection of these
axes 1s called the origin. The planes that go through tws axes
are called coordinate planes. For example the horizontal plane
that goes through the z— and y—axis is called the xy—plane.
It is common practice to call the vertical axis the z-axis. The
coordinates of a point in three dimensions, (a,b,c), identify a
point by starting at the origin and travelling ¢ amount in the
z direction, then b amount in the y direction, and ¢ amount in
the z direction.

The left and middle diagrams above are the same, in the
sense that either one could be rotated about the z—axis to
look exactly like the other. On the other hand, the diagram
above on the right can not be rotated to look like the other
two. Every 3-dimensional coordinate system is either right-
handed or left-handed, but not both. We describe this on a
separate slide. WE WILL ALWAYS USE A RIGHT HANDED
COORDINATE SYSTEM. .
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The cédordina,te system shown is right-handed, because
curling the fingers of the right hand, thumb up, around the
positive z-axis has the fingers curling 90° from the positive
z-axis to the positive y-axis. If the positive direction of the Y-
axis is on the left, the right hand must have the thumb pointing
down to have the fingers curl only 90° to reach the positive y-
axis, and using the left hand, thumb up, the fingers would only
have to curl 90° from the positive z-axis to the positive y-axis.



In these notes we show the z-axis in the planeé of the paper,
blackboard or screen on which it is drawn, as in the graph above
on the left. This way, if we wish to look at the horizontal
ry—plane turned up as in the diagram above in the middle,
which shows a parabola drawn in the zy—plane, we only have to
visualize the zy—plane being rotated about the r—axis. From
the point of view of most texts, as shown above on the right,
the zy—plane has to be rotated first about the z—axis and then
about the r—axis.

Just like the coordinate axes in the plane divide the plane
into four quarters called quadrants, the coordinate planes di-
vide 3-dimensional space into eight octants. The octant con-
sisting of all points with all positive coordinates is called the
first octant. From our perspective, the first octant is in the
top right half of space, behind the screen. No other octant has
a standard name.

The graph of an equation in z, y, and z is the set of all
points (a, b, c) such that when all occurrences of z,y, z are re-
placed by a,b, c, respectively, the resulting statement is true.
For example, the graph of 2z =1 1s a horizontal plane one unit
above the zy—plane, and the graph of :1:2 + y + (z—-1)2 =0
is the single point {0,0,1). -
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Recall that, in an equation in z and y, replacing all oc-
curences of = (y) by z — a (y — b) shifts (also referred to as
translates) the graph of the equation horizontally by a (verti-
caly by b). Examples of these shifts are shown in the diagrams
above. Graphs in three dimensions are shifted in exactly the
same way.

REFLECTIONS AND SYMMETRY
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Recall that the reflection of the point (z,y) about the z-
axis [y-axis| is (z, —y) [(—z,y)]. That is, the variable we replace
by its negative is the opposite of the axis variable. Therefore,
the graph of an equation in z and y has symmetry about an
axis, replacing the opposite variable by its negative yields an
equivalent equation (i.e., one with the same graph). For exam-
ple for the graph of y = z?, the fact that y = (—z)? has the
same graph as the original equation shows that the graph of
y = z2 has symmetry about the y-axis. By looking at —y = z?,
we see the original graph does not have symmetry about the
r-axis. Similarly, inversion (or reflection) of (z,y) about the
origin is (—z, —y), so the test for an equation being symmetric
about the origin is to replace both z and y by their negatives.
The graph has symmetry about the origin if the new equation
is equivalent to the original: —y = (—z)? is not equivalent to
the original, the graph of y = 22 is not symmetric about the
origin.



These tests have analogues for graphs of equations in three
dimensions. In this setting we can talk about symmetry about
a coordinate plane, an axis, and the origin.

For example, to test for symmetry about the \ ¥

zy—plane: replace z by its negative; ‘ %

z-axis: replace z and y by their negatives;
. . . . . z

origin: replace all three variables by their negatives. * =x*y"

In each case we replace the variables not involved in de-
scribing the type of symmetry by their negatives. We will show
later that the graph of z = z2 + y2? is a bowl with parabolic
side walls and a circular top, as shown in the graph above. You
should check that it has symmetry about zz— and yz— planes
and about the z—axis only.



OTHER BASIC CONSIDERATIONS

DISTANCE FORMULA

The shadow of a point (z,y,2) when light traveling per-
pendicular to the zy—plane shines onto the point is called the
projection (more precisely the orthogonal projection) onto the
zy—plane. Sometimesgerefer to this informally as the shadow
of the point in the noon day sun. If we think of the point
moving vertically towards its shadow, only z is changing, so
coordinates of the projection are (z,y,0).

The formula for the distance between
two points (z1,¥y1,21) and
(z2,y2,22) is a natural analogue
of the two dimensional version:
d=/(A2)? + (Ay)2.
The diagram at the right contains two
right triangles. One is the triangle
in the zy—plane with sides
+Az, Ay and £Ad.
The distance formula in the plane comes from applying the
Pythagorean theorm to this triangle. The second triangle in
the diagram is the one that rises vertically and has sides D,
d and +Az. Using the Pythagorean theorem again, we obtain
D? = d*+(Az2)? = (Ax)?+(Ay)?2+(Az)?2, yielding the natural

analogue to the two dimensional distance formula.

MIDPOINT FORMULA

From the fact that corresponding sides of similar triangles
are in proportion, we can obtain another natural analogue: The

midpoint of the line segment with endpoints (z1,y1,21) and

($2,y2722) is (21:{‘):3:2 s yl;yQ 'ZI-;ZQ)‘




EQUATION FOR A SPHERE

We use the distance formula to find an equation whose
graph is a sphere with radius r centered at (h, k,l). By defini-
tion of a sphere, any point (z,y, z) on the sphere has distance
rto (h,k,0): (z—h)2+(y—k)2+ (2—1)% = r2, and this is the

standard form of the equation for a sphere.

Example 1: Show graph of the following equation is a
sphere, and find its center and radius:

2 +y? 4+ 22 +3x—42+1=0

Solution: We complete the squares to put the equation in
standard form.

(x+§)2—1+y2+(z—2)2—4+1=0
e —22="44-1=2=
(3 +y + (-2 =+ 1

27

so the center is (—2,0,2) and the radius is y/ 2l = @



CYLINDERS (AND CONES)

We recall the general definition of a cylinder. Given some
curve in a plane in space and a direction, which now will be
represented by a line, the cylinder consists of all lines through
each point an the curve in the given direction, i.e., parallel to
the line representing the direction. Another way to phrase this
is to sweep the curve parallel to the line in the given direction
indefinitely far either way to get a surface. See the example
on the left below. The term cylinder may also be used for the
portion of the cylinder as defined above which is between two
parallel planes, with the distance between those planes called

the height of the cylinder.

iy
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Given a curve in some plane in space and a point V not in
the plane of the curve, the cone consists of all lines through V
and a point on the curve. See the diagram below on the right.
The portion of the cone between the vertex to the curve is a
also referred to as a cone.
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Our interest now is in the cylinders that arise from graphs

of equations in two of the variables z, y and z that are graphed
in three dimensions.

Example 2: Graph z2? + y%2 =4 in RS3.

“Solution: If we look at points in the zy—plane of R2,
namely points of form (z,y,0), then the portion of the graph
in the zy—plane is the circle of radius 2 centered at the ori-
gin. If we take a point and move it vertically, the z— and y—
coordinates won’t change. Thus, if we take any point on the
circle and move it vertically, the moved point will still satisfy
% +y% = 4, s0 any point vertically above or below the circle in
the plane will also be part of the graph. IL.e., the cylinder swept
out by moving the circle straight up and down is the graph. A
cylinder which is obtained by sweeping a curve in a direction
perpendicular to the plane of the curve is called a right cylin-
der. In particular, since the curve here is a circle that is being
swept perpendicular to its plane, we call this a right circular
cylinder.

For any equation in two variables graphed in R®, we graph
the figure in the two dimensions of the variables in the equation
and sweep that curve perpendicularly in the direction of the
missing variable. Below is the cylinder of Example 2 and the

cylinder z = y%, whose graph could be viewed as a trough,
indgﬁniéely wide and indeﬁnitely tall. |
- T
t — Z |
) .
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INTERCEPTS

For the graph of an equation in the plane, we find its z—
ly—]intercepts by setting the opposite variable y [z] equal to
zero. In three dimensions, one can look for, in addition to
r—, y— and z—axis intercepts, where a graph intersects the
zy—, vz— and yz—planes. These intercepts can be found in a
manner that generalizes the “set the opposite variable equal to
zero” method in R?. Here is how we find some intercepts:
z—intercepts: set y =0, 2z =0
ry—intercepts: set z =0

That is, set all variables not involved in describing the
intercept equal to zero.

Example 3: Describe the intercepts of the equation
(r—2)2+y2+22 =1

Solution: z—intercepts: (z —2)* =1; 2 = 1,3
y—intecepts: (—2)? 4+ y* = 1; y®> = —3; no y—intercepts
similarly no z—intercepts |

ry—intercepts: (z—2)2+y% =1 a circle centered at (2,0)
xrz—intercepts: similarly a circle in the zz—plane
yz—intercepts: (—2)% +y% + 22 = 1; y® + 22 = —3; none

The set of points at which a surface and a plane intersect
is called the trace (or cross-section) of the surface on the plane.

Thus, the set of zy-intercepts would usually be referred to as
the trace on the zy-plane.



