Power Series Part 2:
Finding Series Representing a Function

Method 1: Find New Series from Known Series

We began our discussion of power series with the example
¥  z™. We recognized the series as a geometric series and

that the series defined the

found, from the formula S =
—r

. Sometimes we use the word represents instead

1

function
—

of defines: The series ¥.0° ,z™ represents the function . In

this example, we started with a series and found the functlon
it represents. Most of the time, we have a given function and
we want to find a power series representing that function.

We will discuss two methods for doing this. The first is to
find a power series for a function using another power series for
which we already know the function it represents. We illustrate
this method with an example.
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Example 1: Find a Maclaurin series representing the func-
x
tion f(x) = :
Solution: In our discussion on power series thus far, we

have described only one function which we have represented as
1

a power series, viz., = ¥ ,z". We can rewrite f(z) so
—z

, 1
that it “resembles” 2—: f(z) = T (—2?)

1

In the formula for —1—. we can substitute —z? wherever

1—z?
we see T to get

flo) =z = 2220 (~a?)" = Do (~1)" ™

— 7y — CL‘3 +.’IJ5 . 1157 + ... — E?:O(;l)nx2n+1
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Here is a slightly more intricate example of finding a series
by substitution and multiplication.

Example 2: Find a Maclaurin series representing f(z) =

23
r+2
Solution: Write
z3 1 > n
f@) =5 o mzy = g o=/
2

x3 fo'] (_l)n n (_1)n n+3

- —Z‘ano 2n r = gozo 2n+1 T
3 r 2 z3
2 ( 2 + 22 23 )
73 4 5 6

The following theorem is useful for finding power series.

Theorem: A power series can be differentiated or inte-
grated term by term.

Another way of phrasing this is: The derivative (integral)
of the sum is the sum of derivatives (integrals).
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Example 3: Find the Maclaurin series for the derivative
1

and integral of

11—z
Solution:
1 e} n 2 3
1_m:En=Ox =14+z4+z"+z°+...
d 1 oo n—1 2
\1 2 = Y, onx =0+1 +2x+3z"+...

1 n+1 2 3 4
/ dz = °°_x =+ —+—+—+...
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Example 4: Find the Maclaurin series for In(1 + z). Use
this to write In 2 as an infinite series.
Solution:

ln(l—I—x):/Iixda::/l—_—t_—x)dx

Substituting £ = 1 into our s'eries, we get

—1)"1nt —~1)" 1 1
=) ) =1--+-%...

n+1 =011 2 3

EOO

n—=0

At first you may think the altenating harmonic series is
complicated and In2 is your friend, something that you are
comfortable with. However, if you want to find a numerical
value for In2, really it is the series that is your friend. By
the error estimate for alternating series, the sum of the first 10
terms of the series yields an estimate of In 2 with an error not
more than 1/11 (the actual error only about 1/20).
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However the alternating series is not a very good friend.
To use it to estimate In2 with an error of less than 1/10000
(four decimal places), one must sum 10000 terms.

To obtain a better series to estimate of In 2, it convenient
to write the series with a starting value of n = 1 instead of
n = 0. To do this we repace n by n — 1 where ever it occurs in
our power series:

o Mo (1)rlani
=0 pp1  TPIE0 141
. o _4.n—1mn
==En:1( )
n

We will first calculate 1n(%) = In(1+ (—%))

In(1—=-) =%
n( 2) n=1 n
—(3)" 1
=¥ = Yl
n=1 n n_1n2n
1 1
ln2:—ln§:Eﬁ:1?+RN, where
Ry — 5% 1 <100 1 1 1

n:N+1;2—;{ —“pn=N+1 (N+1)2” — N+12N7

. . 1 1/2NH
since the geometric series 202 . | TR /2

Summing the first ten terms of this series estimates ln 2
with an error of less than 1/10000, a great savings over us-
ing the harmonic series. For a computer computation that
requires very many calculations like In 2, cutting the amount
of arithmetic by a factor of a thousand, can mean the difference
between finishing in a tenth of a second instead of almost two
minutes. The study of how to make a computation in fewer
steps is called numerical analysis.
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Example 5: Find the power series centered at zo = 1 for
1
the function f(z) = —
T
Solution:

1 1 oo n __ oo n n
S T = Sl ) = B (1) (e~ )
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Method 2: Find New Series as Taylor Series

Suppose a function f(z) can be represented by a power
series centered at zg.

f(z) =co +cl(x—xo)+c2(a:—xo)2—|—63(x—xo)3+c4(a:-—a:o)4—+—. .

Then f(:l:o) :Co+0+0+0+0+ = CQ.
We will calculate f'(z) and f'(zo); then f”(z) and f"(z0);
and so forth

F'(z) = c1 + 2¢a(z — zo) + 3ea(z — 20)? + deq(z —70)° + .1
fi(zo) =c1=1¢y or c¢1 = ]1(:1:0)/(1)
f'(z) = 2¢ca + 3+ 2ca(r —x0) +4-3(z —z0)* + ...
f(x0) =2ca or ca= f"(z0)/(1-2)
f"(x) =3-2c3+4-3-2¢c4(z —z0) + ...
" (x0) =3-2c3 or c3= f"(z0)/(1-2-3)

We see that the pattern is ¢, = f(™)(z0)/n!, where f(*)
is the n-th derivative of f for n > 1 and f° means f (taking
0 derivatives). Recall 0! = 1, so the formula holds for n = 0
also. I refer to f(n)(zo)/n! as the n-th power Taylor coefficient.
Substituting these values back into the original expression for
f(z) we see that

00 f(n) (SUO)

n=0 ?’L' (CE o xo)n

is the Taylor series for f(z). If f(z) is a closed form function
(the only type we will consider), then its Taylor series is the
power series representing f.

We showed that if [ has a power series centered at zg, it
has to be the Taylor series. Functions that are not closed form
function may have a Taylor series that does not represent the
function,



Example 6: By calculating its derivatives at 0 as the limit
of the difference quotient, it can be seen that for the function
f(z) = e ¥% for z # 0 and f(0) =0, ¢, = O for all n. Thus
the Taylor series represents the 0 function, not f.

We give examples showing how to find the power series
representation of a function by calculating the Taylor series.

Example 7: Find the Maclaurin series for f(z) = ¢®.
Solution: Make a table

n ([ () i ¢n = FM (z0)/n!

0| & 1707 =1

1 |e 1/1! =1

2 |ef /2!

3 le* 1/3!

So
x™ r?

e” :ZSLO:O——'zl—Q—x—F—-—I—...

n! 2!

Example 8: Find the Maclaurin series for f(z) = sinz.

Solution:

n | [ (2) |en =0 (zo)/n!

0 | sinz 0/0! =0

1 | cosz /11 =1

2 | —sinz 0/2! =0

3 | —cosz -1/3! = -1/3!

4 | sinz 0/4! =0

So

' SIZ3 .’125 .’137 - (_l)nx2n+1
SN = T g T T T T Heme T gy,
As an exercise, show, as above, that
1132 1134 1136 . (_l)ann
cose=1-or T T e T T Pe=0 (o))

Notice that sinz (cosz) is an odd (even) function and its
Maclaurin series has only odd (even) powers of z.
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‘ You should remember the power series for the four func-
tions ﬁ, e”, sin z and cos z and be able to use the substitution
method with any of them.

Example 9: Find the Maclaurin series for e™

Solution:
e—a:2 — o (___m2)n R wle'e ( l)nx2n
— =0 0 T Tn=0 n!
=1-2%+ x_"‘_ — f +
2! 3!

Example 10: Find the Maclaurin series for sin(2z).

Solution:
sin(2z) = X2 ()"(22) o (m1)reintietnt
T =0 op 1)t 0 )]
23 3 5 5
P

3! 5!
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Power Series Part 3:
Application of Power Series

There are no new ideas in this section. We apply the
material from this section to make numerical estimates.

Exampleql: (a) Write the sum of the first four nonzero
2

terms of the Maclaurin series for f(z) = e~z .
(b) Use this to estimate fol f(z) dz, with an error of at

most .01 . | o .
(c) Show why the answer your answer to (b) has the re-

quired accuracy.

Solution: (a)

2 (_l)ann
n=0" onpy|

r? z? z®

1_211!+222!_2E‘»3!i“'

I

1 ) 1 2 4 6
e 2 dzx 1—§x— r _ 2 4+ ...dz
0 0 2 222! 233!

- 23 .\ 5 27 Lo
AT Tozas 233 O
R S L,
T3 T ozal5 23317
Ll

T 6 40

(c) By the alternating series error bound

1 1
| Rs| < F233,7I = 335 < 1/100 = .01
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Examplei2: (a) Find the Maclaurin series for g(z) = 1755

(b) Let f(z) = £, (_lz)sflnﬂ . Find the Maclaurin series
for the derivative f'(z).

(¢) Compare (a) and (b) to see that f'(z) = {7z

(d) Use (c) to show f(z) =tan™!z.

(e) Use (d) to find an estimate of 7 accuracte to .001

Solution: (a) Change the form for writing g¢:

g(z) = 1_(+z2‘. Substitute (—z?) for z in the geometric series:

9(z) = T2 o(—a?)" = B2 o (1) = 1 — a2 4ot
d
(b—c I =
d (oo UM™Y (C1)* (20t 1)
dz n=0" on 11 —Tn=0 2n + 1
1
N0 n_2n __
(d) = [ f'(z) d:c—f1+2d:c—tan 1y
(e) _11-—7r/4 SO
m=4tan 11
1 nx2n+1
427& O( ) ‘:z::l
2n + 1
1 1 1 4
=41l - =4+ -+ ---L... +
( 3 * 5 2n — 1) 2n +1

We can use the alternating series error bound to obtain the
required accuracy: |+ 2n+1| = 2n+1 < .001. = 1/1000. Clear
fractions to obtain 4000 £ 2n + 1 or 2n + 1 > 4000. So for
n > 2000 > (4000 — 1)/2, summing the alternating series to

one less than n will have the desired accuracy:

4(—1) 4 4
ynleee L /4 ... .
n=09n 11 3+ 3999
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Example 13: Let f(z) be the function represented by the
(1)

series Z (n n 1)2 )

n=0
(a) Find the sum of the first four nonzero term of the

Maclaurin series for f'(z).
1
(b) Approximate f’ (—1-6) with an error at most .001

(c) Show that the approximation has the required accu-

racy.
, r 2z 22 ot
Solution: (a) f(z) =1 — 2T + ) +
1 2z 3z% 423
’ —_— .
fa)=0-mtm gty s
1 1 2 3 4
b) fl(=)=->+——
(b) / (10) 4 T 90 1600 i 25000
T 4 45 1600
4 1
(c) |Rs| < = —— < .001 (but we can only be sure

25000 6250
3 2 1

Rq| < d > >
B2 = T600° ™™ 1600 = 1600 ~ 1000

).
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The fact that the Taylor series is the only power series
representing a function f at a given center has an important
consequence. From the fact that )  c,z™ = ) d,z"™ implies
¢n = dp for all n, i.e, one can equate coefficients, and the fact
that 040z +0z% +... obviously represents the function which

is 0 for all z, we see that )_ c,z™ = 0 for all = implies ¢,, = 0
for all n.

An application of this is that, if we assume a function f
has a series representation ) c¢,z", and we want to solve the

differential equation f 4+ f’ = 0, then by equating coefficients
for

cO

[o,0]
E cnmn+2 neg ™!
n=—0

n=0 - fepialg n b:} ntl

we can obtain a sequence of equations we can solve for all ¢,

in terms of cq: for all n, ¢, + (n + 1)cp41 = 0.

Examplet: Let f(z) = e 2% for o # 0 and let f(0) =
0. Using the definition of the derivative as the limit of.the
difference quotient, one obtains f{™(0) = 0 for all n. Thus the
Taylor series converges to 0 for all z.
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Suppose f(z) = ) c,z™ with radius of convergence R so
the series converges at least in (—R, R).

Then [ Y cpz™ = Y 91‘5%, and this sum has radius of
convergence R and the equality holds at least in the open inter-
val (—R, R), but at the endpoints R, neither the equality or
the convergence of the sum for the integral can be guaranteed.
Similar comments hold for f'(z).

In Example 4, we found

1 — (—1)rznt?
ln(1+x):/1+xdazzz Tl

n—=0

The radius of convergence of 1/(1 + z) is 1. So when we sub-
stituted = = 1 into this power series, there was no assurance
that the series would be convergent, and if it were convergent,
that the sum would equal In2. In fact, when we subsituted
r = 1 into the power series for In(1 + ), we got the alternat-
ing harmonic series which we know converges. It happens that
the alternating harmonic series does converge to ln2 but this
‘requlres a Separate proof | | | '

On the other hand, when we substituted z = —1/2, which
is in (—1,1), into the series represenation In(1 + z), the theo-
rem on integrating series term by term assures us that In2 =
ZSLOZI né" )

Using this series to estimate the numerical value of 1n 2
1s not possible, based on our upper bound tests: The series is
not alternating, so our alternating series bound is not possible,
and, although the conditions for the integral test upper bound
are met, the required integral is not a closed form function.

However, there are three standard upper bound theorems
(one involving the function, one the integral of the function,
and one the derivative of the functlon) for estimating the error
for power seriesy * ' ‘




