Limit Comparison Test

If f and g are continuous and non-negative for $x \ge a$ and $\lim_{x \to \infty} f(x)/g(x) = L$, where $0 < L < \infty$, then

$$\int_{a}^{\infty} f(x) dx \quad \text{and} \quad \int_{a}^{\infty} g(x) dx$$

both converge or both diverge.

Hereafter, $\lim_{x\to\infty}$.

Proof: (1) Choose F such that F' = f, and suppose $\int_a^\infty g \, dx$ is convergent.

(2) From the definition of a limit, $\lim \frac{f}{g} = L$ implies there exists a real number x_0 such that, for all $x \geq x_0$,

$$\left|\frac{f(x)}{g(x)} - L\right| < \frac{L}{2}.$$

(3) The inequality in (2) is equivalent to

$$\frac{L}{2}g(x) \le f(x) \le \frac{3L}{2}g(x).$$

(4) From the second inequality in (3), for $M \geq x_0$,

$$F(M) - F(x_0) = \int_{x_0}^{M} f(x) \, dx \le \frac{3L}{2} \int_{x_0}^{M} g(x) \, dx \le \frac{3L}{2} \int_{x_0}^{\infty} g(x) \, dx.$$

(5) Since $f \geq 0$, $F(M) - f(x_0)$, as a function of M, is increasing, and from (4), it is bounded by $\frac{3L}{2} \int_a^{\infty} g \, dx$. Thus, $F(\infty) = \lim F(M)$ exists and

$$F(\infty) - F(x_0) = \int_{x_0}^{\infty} f \, dx \le \frac{3L}{2} \int_{x_0}^{\infty} g \, dx < \infty.$$

(6) Thus $\int_a^\infty f \, dx$ is also convergent. Similarly, from $g \leq \frac{2}{L}f$, we see that the integral for g is convergent if the integral for f is convergent.

Theorem: If $f = U + \sum_{i=1}^{m} u_i$ and $g = V + \sum_{i=1}^{n} v_i$, where f(x), g(x), U(x) and V(x) are all continuous and positive for all $x \geq a$, a a real number, and $u_i \ll U$ and $v_i \ll V$ for all i, then

$$\int_{a}^{\infty} \frac{f(x)}{g(x)} dx \quad \text{and} \quad \int_{a}^{\infty} \frac{U(x)}{V(x)} dx$$

both converge or both diverge.

Proof:

$$\lim rac{f/g}{U/V} = \lim rac{fV}{gU} = \lim rac{[UV + \sum (u_iV)]/UV}{[UV + \sum_i (v_iU)]/UV}$$
 $= rac{1 + 0 + \cdots + 0}{1 + 0 + \cdots + 0} = 1,$

and the conclusion follows from the limit comparison test.

Example 1: $\int_{1}^{\infty} \frac{x^2 + 3 \ln x}{x^4 + \ln x} dx$ is convergent, since $\ln x << x^2 << x^4$ and $\int_{1}^{\infty} \frac{x^2}{x^4} dx$ is convergent. If we change x^4 to x^3 in this integral it is then divergent.

Example 2: $\int_{0}^{\infty} \frac{xe^{x} + x^{10} - x^{2}}{e^{2x} + 1} dx \text{ is convergent, since}$ $1 << x^{2} << x^{1}0 << \mathbf{x}e^{x} << e^{2x} \text{ and}$ $\int_{0}^{\infty} \frac{xe^{x}}{e^{2x}} = \int_{0}^{\infty} \frac{x}{e^{x}} dx$ $= x(-e^{-x})|_{0}^{\infty} - \int_{0}^{\infty} (-e^{-x}) dx = 0 - 0 - e^{-x}|_{0}^{\infty} = 1.$