SUPPLEMENTARY NOTES FOR MATH 212
Integration

From first semester calculus, students are expected to
know three techniques (theorems) for evaluating integrals.

1 Linearity. Integration is linear viz., for a constant ¢ and
continuous functions f(z) and g(z

st / L
[ 1)+ 9w ds = / f(z) dv / o) dz

2 Substitution Theorem. For continuous function. f(z),

&Pere,ntmueeu( )s / f(u(z))u'(z) dz = / f(u) du. The meaning
of the right side of this equality is that if F' is an antiderivative

of f, then / f(u) du = F(u(z)).

3 The Fundamental Theorem of Calculus. If f(z) is a
differentiable function and a is a constant, then

[ rwa=1@ wd [T e - @),

(The Fundamental Theorem could be stated more gener-
ally, but this is is sufficient to produce entries in a table of
integrals in &he fewk: )

Example: Since g—zsinx = cosx, we have fcosxda: =

sinz + C.



L
Example: E’Vajluate/x(g;zv_-_zl)g de.

Solution 1: We rewrite the integral in a form for which
the substitution theorem apphes with f(z) = 2%, and u(z) =
2
r° — 4.

1
/:c(a:2 —4)° dz :/ 5223(:132 —~ 4% dr = %/ 2z (2% — 4)° da

1 S lulO (x2 . 4)10
2/“ “= 270 20

Solution 2 (whlch shows why the theorem is named the Sub-

d o
stitution Theorem) The symbol d—f means the derlvatlve of f
T

but we treat it as if it were a fraction.

2° 4 u=zx%—4
/ (.’IJ o ) du )
27 9y
1 dx
_ 9r~
—/u (2du) du =2z dz
10 1
_ 1u™ —du =z dx
2 10 2
(.’132 ___4)'.10 .
= C
20 +

For a definite integral, one must distinguish between limits for
z and limits for u. We illustrate with the function above inte-
grated from 2 to 3. As z ranges from 2 to 3, u(z) ranges from

u(2) =0 to u(3) = 5, so

3 5 10 510
/ :1:(:1:2—4)9da::/ wWdu=— |5 == or
z=2 u

3 2 10 \0
2 9 (z* — 4) - D
—4)° dz = 50
ulO 310 210
but NOT — |2 =
4 2 E 20
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Some elementary facts about integration are listed below.

b
1. For constants a, b and c, ] cdr = c¢(b— a).

b \ ,
2. / f(z) dz is equal to the total f
a S
area below the curve when it is q /f\:\ \ b Y
. . ¥
above the z-axis minus the total o \ﬁz/ Ay !
area above the curve where it is

below the z-axis. For example, for the function whose graph is
on the right, the value of the integral is A; + Az — (As + Ay).

3. Fora<bandf f dm—F(:z:)Jg,vwbece_F’:ﬁ'
[ 1@ dz = — [ [(x)da = P2}

Example Instead of

fsma:d:c = —cosz|% = —cosb— (—cosa) = cosa — cosb
one can write |

h.
[sinzdz = —cosz|% = cosz|? = cosa — cosb.
o
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4. A function f is called

even if f(—z) = f(z) for
all z in it’s domain; f(z) =z
is even. A function is even if and only
if it has symmetry about the y-axis.
If f is even,
ffaf(x) x—2f0 ) dz.
A function f is called i
odd if f(—z) = —f(z) for
all z in it’s domain; f(z) = z° is
odd. A function is odd if and only
if it has symmetry about the origin.
If fisodd, [* f(z)dz=0.
A product of two even or two odd
functions is even; a product of an even
and an odd function is odd. A polynomial
is even (odd) if and only if only even
(odd) power terms have nonzero coefficients:

2

f; sin(cz)dz = 0 and f; cos(cz)dz = 0 if the length b — a
of the interval of integration is an integral multiple of 27 /c.
We explain why. First, the period sin(cz) and cos(czx) is found
by setting cz = 2w, so the period is 2w /c. Now we illustrate
with an example.

Example: Show f” /8

graph. The period of sin 2:1:

is 27/2 = w. By looking at - - -
the graph, we see we could move 2
the portion of the graph from

27 to 177 /8 back to the origin to obain two loops of the graph
above the z-axis and two loops below the z-axis, and this cut
and paste from the end to the beginning works because the
entire graph is a whole number (namely 2) periods of the curve.

sin2zdx = 0 by looking at the




Change of Base

For integration (and differentiation) of exponential and
logarithmic functions, the following change of base formulas
can be useful:

loga ¢ b — af logab

1 —
%80 €= Jog. b

Use of the special case a = e occurs frequently:

Inc

- b — Cln
Inb ©

logy, ¢ =



Exponential Growth and Decay

Quantities y whose size can be described by the equation
y(t) = Ae**, where A and k are constants are said grow (if
k > 0) or decay (if k£ < 0) exponentially. Letting ¢t = 0 in this
equation shows y(0) = A. Often yg is used to denote y(0).

Using the change of base formula e = b*t1°8s ¢ we see
that the equation above can be described using any base. Fre-
quently, using base e is convenient, but there are times when
another base is convenient.

For two values, t; and t3, of ¢, if we know the values y; =

y(t;), and we let At =ty —.t1, then

kt
Y2 _ Yoo T _ kat

Y1 Yo ek

In (y—z) — kAL
Y1

k=""Tn| %
Atn(yl)

y(t) = yoelaz Bn/vllt — o (eln(yz/yl))t/’-\t

" t/ At
t) = 72 :
y(t) = Yo (yl)

and this form of expression of y(t) is also sometimes convenient.

3!
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Exampley: Suppose a group of rabbits initially has 60 rab-
bits and the number of rabbits in the group doubles every 8
days.

(a) Find a formula for'thelappr(')x‘ir'n’étel number, N ('t), of
rabbits after ¢ days.
(b)Find the approximate number of rabbits after 44 days.

(c) Find the number (the answer is an integer) of rabbits
after 48 days.

Solution: (a) yo = 60, yg = 2(60), so

t/8
_ 98 _ t/8
(t) = v (y) - (60)2/®
(b)  y(44) =(60)2*"/® = (60)25*1/2 = (60)(32)V/2
=1920v/2 ~ 2715.

(c) y(48) = (60)26 = (60)(64) = 3840.

Note: Applying the change of base formula in (a) we get
y(t) = 60eln2)/8lt and in part (c), we would get y(48) =
60¢°' 2 which does simplify to (60)(64), but perhaps this is
less obvious.



Example i ‘A yeast culture origi-
nally has 29 g., and 30 minutes later has 37 g. How long does
it take to double.

Solution: y(t) = 29 (g—g)tlgo. Let t2 be the time to double
from 29 g to 58 g:

g7\ t2/30
y(ts) = 29 (%) — 58

g7 12/30

oo () <

L 301n 2
~ In(37/29)

Example3:. All temperatures are in degrees Fahrenheit.
An object is submerged in a liquid maintained at 60°. One hour
after being submerged the temperature of the object is 180°,
and after three hours, the temperature is 90°. Let T'(¢) be the
temperature of the object at time ¢ hours, and let (AT)(t) =
T(t) — 60 be the difference between the temperature of the
object and the temperature of the liquid. Assume that (AT')(t)
satisfies an exponential decay law.

(a) Find 7z the function T'(t).

(b) Find, to the nearest half degree without using a calcu-
lator or other electronic device, the temperature of the object
6 hours after being submerged.

(c) Find an exact expression for the time ¢ at which the
temperature of the object is 61°.

Solution: In tabular form the information given is.

t T(t) (AT)()

0o 7
1 180 120
3 90 30



'So

t/(3— 1)
(@) (A7)0 =(AT)o ( 135)

(AT, (i)t/@ U (am). (%)t

120 = (AT)(1) =(AT) (%)
(AT)o =240
1 i
T(t) =60 + (AT)(t) = 60 + 240 (5)

240 15

1\° |
b) T(6) = 60+240 | = = 60 — 60+ — =63.75
(b) T(6) = 60+ (2) 60+ 20— 60+

(c) 61 = T(t) =60+ (240) (%)t
1 =240 (%)t
(5) s

1 1
tln - =Iln —
"9 n240
1 In 24
t = —n—zﬂ _ In240 (~ 7.9 hours)

ln§  In2
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Rate of Growth of Functions

The material presented here is useful when applying the
Limit Comparison for improper integrals, and a discrete ana-
logue of this material will be essential for much of what is done
with infinite series.

By the phrase “f = o(g) at @” we mean lim,_,, gi(%l = 0.
Usually, we will be interested in a = oo and functions f and
g for which limg; .o f(z) = o0 and lim; o g(z) = co. Our
intuitive interpretation of f = o(g) is that the function g is
getting large faster than f as z — oo.

For now lim will mean lim,_, .

Examplet: If 0 < m < n, then 2™ = o(z"), i.e.,

) xm . 1
lim — = lim
xn xn~—-m

For a more specific example z? and 23 both get large as z
becomes large; 100% is ten thousand, quite large, but 1002 is a
million, much larger.

The notation used here,instead of f = o(g),is f << g.
This is done to call attention to the fact that the relation is
transitive: if f << g and g << h, then f << h. The proof is
simply that
/(z) = lim
h(z) g(z) h(z)

If f and g are non-negative functions, then lim(f/g) = 0 if and
only if lim(g/f) = oco.

lim



W
Example 2: By L’Hépital’s rule, lim % = lim-él; = 0.
. 2 . - . .
Now lim & = lim i—f = 0. In the same fashion if p(z) is any
polynomial, then p(z) << e®. If 0 < a < 1 and z > 1, then
z* <z, s0 2% << €*. For a > 1, continued iteration of
72 axa—l

lim — = lim = ...
e’ e’

leads to the conclusion that z® << €%, for all a > 0.

Example 3: For a > 0,

hmif = lim /:cl = lim — =0,
x? ar®— azr?

lLe. Inz << 2.

Reasoning as in Examples 1-3, we see that if:

log is logy x, b > 1;
p(z) is a polynomial, or a positive power of z; and
exp is an exponential a®, a > 1, ¢ > 0,

then log << p(z) << exp.
If U,V,u;,v;, for all 7, are non-negative functions and

f=U-+uy + -+ tym, where u; << U for all v;
g=V +vy+--+v,, where v; <<V for all +; and U <<V,

then, by dividing both numerator and denominator by V, we

sS€e

U
limZ = lim ¥ 5 .4 UV = hm —.
g 1+71+ e V
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Similarly, the same conclusion is valid of V << U or 0 <

11 v <
im — < o0.
vV
Example 4:
im = — =0.
26 + 622 +1 o i
Example 5:
T+t 41 et
lim = lim — = ¢




