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Simple interest with a rate of r per year, means that on a loan
of P0 at time 0, after one year, interest of rP0 is paid and so
the total of P1 = P0 + rP0 is returned.

If this is re-invested then next year, the principal is
P2 = P1 + rP1 = P0 + rP0 + rP0 + r 2P0.

However, this is not the way to think of it. Consider the
following puzzle:

A store is offering a 10% discount and the state tax rate is
8%. Which way would you do better:

I Take the discount first and add the tax on the discounted
amount,
or

I Add the tax to the original price and then take the
discount on the original plus tax?



We usually think of taking the price P and subtracting the
discounted amount .1 · P , or, for the tax, computing the tax
.08 · P and then adding it to P .

Instead, think of the discount as starting with 100% of the
price and subtracting 10% to yield 90%. So the new price is
.90 · P . Similarly, for the tax the new cost is
100% + 8% = 108% which is 1.08 · P .

But 1.08 · .90 · P = .90 · 1.08 · P . So the two choices yield
the same result.



For one year of simple interest at rate r% per year, instead of
writing P + rP , we factor out P and write it as (1 + r) · P .
Thus, each year we multiply by (1 + r) and so after t years, we
have

Pt = (1 + r)t · P0.

If we compute the interest each month, then the interest is P
dollars times r% per year times 1/12 of a year. So we multiply
by (1 + r

12
) each month and so in a year we obtain

(1 + r
12

)12 · P .

In general, compounding n times per year for t years we have

Pt = (1 +
r

n
)nt · P0.



To take the limit as n→∞, we let h = r
n

so that

(1 + r
n

)nt = [(1 + h)1/h]rt

ln(1 + h)1/h =
ln(1 + h)

h
=

ln(1 + h)− ln(1)

h
.

So the limit as h→ 0 is the derivative of ln(x) at x = 1 which
is 1. So the limit of (1 + h)1/h is e1 = e.

Limn→∞ (1 +
r

n
)nt · P0 = ert · P0.



Alternatively, we can think of compounding continuously as
adding, in the tiny time interval from t to t + dt, the interest
Pt · r · dt. So the change in P , that is dP is rPdt. So we have
the differential equation

dP = rP dt, or
dP

dt
= rP .

This is exponential growth at rate r whose solution is given by
integrating dP

P
= rdt and then exponentiating to get

Pt = P0e
rt

as before. This approach becomes especially useful if the
interest rate varies with t instead of being constant.



Units

Numbers in science are rarely naked. They are usually
attached to units. These come in two varieties.

Counting units measure amounts like gallons, pounds,
centimeters, and seconds. These are usually additive.

Put a heap of 5 pounds together with a heap of 3 pounds. The
combined heap weighs 8 pounds. A trip of 5 miles following a
trip of 3 miles accounts for 8 miles on the odometer.



Ratio units compare amounts. You recognize these by the
word per, which is literally the Latin word for “through” and in
mathematical and scientific use means divide. Thus, the units
for speed, miles per hour, means miles divided by hours and so
is written mi/hr. The unit of price, dollars per pound, written
$/lb, means dollars divided by pounds. Finally, percent,
written %, means divide by one hundred.



When multiplied, units can be cancelled as in algebraic
expressions. Thus, when you buy 2 pounds of hamburger at $4
dollars per pound, you multiply 2 pounds × 4$

pound
to get a cost

of 8 $. Notice that what is added up at the checkout is the
total cost. The prices don’t add.



Suppose you want to convert 60 miles per hour to the units
feet per second. You cancel miles to get feet and cancel hours
to get seconds. You do this by multiplying by conversion
factors, version of the number 1, but with different units.

60miles

hour
· feet

miles
· hours

seconds
=

?? feet

second
.

60miles

hour
· 5280feet

1miles
· 1hours

3600seconds
=

88 feet

second
.



Suppose the prices of goods g1, g2, . . . are p1$/g1, p2$/g2, etc.
where p1$/g1 means p1 dollars exchanges for 1 unit (pounds,
gallons, etc) of good g1. When you purchase quantities
x1, x2, . . . of the goods, the total cost is

p1 · x1 + p2 · x2 + . . .

The interest rate describes the exchange rate between dollars
delivered at different dates. So 1$0 is worth (1 + r)t $t where
$0 is current dollars and $t is dollars delivered at time t. With
compounding n times per year the price is

(1 +
r

n
)−nt $0/$t .

and with continuous compounding the price is

e−rt $0/$t .



The present value of a bundle of dollars delivered at different
dates is just a special case for computing the cost.

Suppose that pt is the current price of $t . That is, the price is
pt$0/$t . In the above examples, pt = (1 + r

n
)−nt or = e−rt .

A bundle of assets and liabilities xt1 , xt2 , . . . describes
quantities of dollars delivered at different times. Each can be
positive or negative with a positive value an asset and a
negative value a liability. The present value is just

pt1 · xt1 + pt2 · xt2 + . . .



EXAMPLE: Suppose you now take out a loan of P0 dollars at
interest rate r and you are paying it off over T years with a
payment rate of x dollars per year. However, you are making
equally spaced payments n times a year so that each payment
is size x/n. Notice that you are paying at different dates. So
your first payment consists of x/n$1/n and the second consists
of x/n$2/n, etc. The present value is the stream of payments
is equal to the value of the loan. That is,

P0 =
nT∑
k=1

(1 +
r

n
)−k(x/n).

The sum of the geometric series
1 + a + a2 + ... + aN =

∑N
k=0 ak is equal to 1−aN+1

1−a . So

a + a2 + ... + aN =
∑N

k=1 ak is equal to a · 1−aN
1−a (by factoring

out the a).



For us a = (1 + r
n

)−1 and N = nT .

(∗) P0 = (x/n)(1+
r

n
)−1

1− (1 + r
n

)−nT

1− (1 + r
n

)−1
= (x/r)[1−(1+

r

n
)−nT ].

Consider the Vacuum Cleaner Problem.



In this case P0 is the price of the vacuum cleaner which is
$100. There are n = 12 payments over the course of T = 1
year. So x = 108 with x/n = 9.

100 = 9 · [1− (1 +
r

12
)−12]/(r/12)

One can solve this graphically for r or check with a calculator
that r = .14 yields an approximate equality.



There is an indirect but useful way of obtaining the equation
(*). When we move from one time unit to the next, the
amount still owed changes by the following equation:

Pt+1 = (1 +
r

n
)Pt −

x

n

That is, there is an increase due to interest and a decrease due
to the payment. We can rewrite this equation as

Pt+1 = Pt − (
x

n
− r

n
Pt)

This says that at time t the payment x
n

consists of a piece r
n
Pt

which is the current interest on the loan and the rest,
x
n
− r

n
Pt is the amount by which the principal is reduced. In

the beginning, a large part of the fixed payment consists of the
interest, but as time goes on, Pt gets smaller and so the
interest part decreases.



The above equation Pt+1 = (1 + r
n

)Pt − x
n

is equivalent to

(Pt+1 −
x

r
) = (1 +

r

n
) · (Pt −

x

r
)

or Xt+1 = aXt with Xt = Pt − x
r

and a = (1 + r
n

).

X1 = aX0, X2 = aX1 = a2X0, X3 = aX2 = a3X0, . . . ,Xk = akX0.

So

PnT −
x

r
= (1 +

r

n
)nT (P0 −

x

r
).



PnT −
x

r
= (1 +

r

n
)nT (P0 −

x

r
).

Because PnT = 0 we have

−x

r
= (1 +

r

n
)nT (P0 −

x

r
).

or

−(1 +
r

n
)−nT (

x

r
) + (

x

r
) = P0.

and this is equation (*).



This is clearer when we use compounding continuously. In a
little fraction dt of a year, the change in the amount owed dP
is given by

dP = rPdt − xdt, or
dP

dt
= rP − x .

Again the increase is due to interest and the decrease is due to
the payment.

Notice that x
r

has to be larger than P0, otherwise the amount
owed will not decrease.

With Xt = Pt − x
r
, this equation says dX

dt
= rX .

This is exponential growth with solution Xt = X0 · ert and so



Pt =
x

r
+ (P0 −

x

r
)ert .

Since PT = 0 we have

(∗∗) P0 =
x

r
(1− e−rT ).

or

P0

xT
= Z (rT ), with Z (u) =

1− e−u

u
.



The function Z satisfies

I Limu→0 Z (u) = −Limu→0
e−u − e0

u
= 1.

I Limu→∞ Z (u) = 0.

I Z ′(u) = ue−u−(1−e−u)
u2

= − e−u

u2
· (eu − 1− u) and this is

negative for u > 0.

Thus, P0 is always smaller than xT and using the function Z
we can solve for r .



We can also obtain equation (**) by directly computing the
present value of all the payments.

At time t, in the interval from t to t + dt there is a payment
of x dt $t . The value in $0 dollars is therefore x e−rtdt.

Summing these, in the limit as dt → 0, we have the integral

P0 =

∫ T

0

x · e−rt dt = x · 1− e−rT

r
.

This is equation (**).



Inflation

Suppose that p $0/g0 is the current price of a bundle of goods
g .

If there is no inflation up to time 1 then the price at time 1 is
p $1/g1.

If the interest rate is r then (1 + r)−1 $0/$1 is the current
price of a dollar delivered in a year. It then follows that
(1 + r)−1 g0/g1 is the exchange rate between current goods
and goods at time 1. That is, the real rate of interest is equal
to the nominal rate which is the rate on money.

Now suppose that the inflation rate is i . This means that the
price of goods has gone up to (1 + i)p $1/g1. Then we have:



p−1 g0/$0 · (1 + r)−1 $0/$1 · (1 + i)p $1/g1 =
1 + i

1 + r
g0/g1.

The rate 1+i
1+r

g0/g1 means that 1+r
1+i

units of g1 exchanges for 1
unit of g0.

That is the real interest rate ri satisfies:

1 + ri =
1 + r

1 + i
or ri =

r − i

1 + i
.

This is approximately r − i and so the real rate is obtained by
subtracting the inflation rate from the nominal interest rate.



Thus, if you invest $1000 for a year at a simple interest rate or
effective rate of r , then at the end of the year you have
(1 + r) · $1000. However, it only buys 1+r

1+i
· $1000÷ p units of

goods instead of (1 + r) · $1000÷ p.

I haven’t mentioned the effective rate before. It is the rate
which yields the same amount at simple interest as the current
investment.

Thus, if the investment is compounded n times per year, then
1 $0 yields (1 + r

n
)n $1 at the end of the year. So the effective

rate re is given by

1 + re = (1 +
r

n
)n.



If the investment is compounded continuously, then re is given
by

1 + re = er , or re = r +
r 2

2
+

r 3

3!
+ . . . .


