T2. Sylvester’s inequality states that if A and B are n x n matrices
with rank r4 and rg. respectively, then the rank 745 of AB satisfies

the inequality
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where min(r4, rg) denotes the smaller of r, and rp or their com-
mon value if the two ranks are the same. Use your technology
utility to confirm this result for some matrices of your choice.

ra+rg—n =<rsp = min(ry, rp)

4.9

Basic Matrix Transformations in R? and R?

There are many ways to transform the vector spaces R and R, some of the most
important of which can be accomplished by matrix transformations using the methods
introduced in Section 1.8. For example, rotations about the origin, reflections about
lines and planes through the origin, and projections onto lines and planes through the
origin can all be accomplished using a linear operator 74 in which A 15 an appropriate
2 x 2 0r 3 x 3 matrix.

Some of the most basic matrix operators on R* and R* are those that map each point into
its symmetric image about a fixed line or a fixed plane that contains the origin; these are
called reflection operators. Table 1 shows the standard matrices for the reflections about
the coordinate axes in R?, and Table 2 shows the standard matrices for the reflections
about the coordinate planes in R*. In each case the standard matrix was obtained using
the following procedure introduced in Section 1.8: Find the images of the standard basis
vectors, convert those images to column vectors, and then use those column vectors as
successive columns of the standard matrix.

Operator Iustration Images of e; and e Standard Matrix
5
g y )
Reflection about X
the x-axis i X Te)=7T1,00=0,0) 4:1 0i|
| T(e) =7(0,1) =(0,-1) 0 -1
T0r,9) = (2. —) T+ |
L, )
.1'.
Reflection about
h AT I s T(e) =T(1,0 = (~1,0) ~1 0
b T(e)) =T, 1) =(0,1) 0 1
Tx,y)=(=x,y) Tix) N | 2% ¥
] o
¥ V=X
Reflection about T(x) [l '\)4_
the line y = x ‘\_\ ;(e]) :;((1].(1)):«1)1(1)) [{1) (1)]
by €)= s = s
T(A', }) = (,“.~ )‘.) X i (x. Al') ¥ ( ,) ( d ) ( )
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Operator Ilustration Images of e, ez. e3 Standard Matrix
Reflection about e T(e)) =T(1,0,0) = (1,0,0) 1 0 0
the xy-plane # T(e;) =T(0.1.0)=(0,1,0) o 1 0
File, e T ) / | Te)=T0,00=0,0-1) | [0 o -
X T(M
{x. v -z)
AZ
i {x, —p 2} (x. 33)

Reflection about 0 e T(e) = T(1,0,0) = (1,0, 0) 1 0 0
the xz-plane T(x) X v T(e) =T(0,1,0) = (0,—1,0) o =1 @

————————————
Tix,y,2)=(x,—y,2) T(e;) =T7(0,0,1)=(0,0,1) 0 0 1

he

Reflection about T(e)=T7(1,0,0) = (—1,0,0) -1 0 0
the yz-plane T(e)=T7T(0,1,00 =(0,1,0) 01 0
T(x,y,2) = (—=x,¥,2) T(e;)=T(0,0,1)=(0,0.1) 0 0 1

Matrix operators on R? and R? that map each point into its orthogonal projection onto
a fixed line or plane through the origin are called projection operators (or more precisely,
orthogonal projection operators). Table 3 shows the standard matrices for the orthogonal
projections onto the coordinate axes in R?, and Table 4 shows the standard matrices for
the orthogonal projections onto the coordinate planes in R-.

Operator MMustration Images of e; and e Standard Matrix
b7
Orthogonal projection P (v, )
onto the x-axis X | T(e)=T(.0)=(1.0) L0
| T(ex) =T(0.1) = (0,0) 0 0
T )= e 166, 0) X
Tix)
Orthogonal projection (0. 1) 1:_ =L Nn
onto the y-axis ' S T(e)=T(,00=(0,0 0 0
I X T(ex) =T(0,1)=(0, 1) 0 1
T(x,y) = (0,y) E * B ( (
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Operator lustration Images of 1, €2, e3 Standard Matrix
Orthogonal projection T o T(e)=T(0,0,00=(1,0,0) ‘71 0
onto the xy-plane | X S 5 T(e)) = T(0,1,0) = (0, 1, 0) 0 1
e 1 | Te)=T0.0D=0.00 | |0 o
/T(x} :
A (x. »0)
i
Orthogonal projection T T ETRE Tlei) = T,0,0)= (I, 0, O) 1 0
onto the xz-plane oo '?(, y | Tl =T 1.0) = (0,0 0 0
T(x,y,2) = (x,0,2) / = | i) — @0 1 = (0,10 1) 0 0
[U ¥z}

Orthogonal projection “ sz T(e;)=T(1,0,0)=(0,0,0) P 0
onto the yz-plane | T T(es) =T(0,1,0)=(0,1,0) 0 1
T@.y,2 =052 }/l T =T0.0D=0.01 | [0 o

X

Matrix operators on R? and R that move points along arcs of circles centered at the
origin are called rotation operators. Let us consider how to find the standard matrix for
the rotation operator T: R® — R? that moves points counterclockwise about the origin
through a positive angle 8. As illustrated in Figure 4.9.1, the images of the standard
basis vectors are

T{e))=T7T(1,0) = (cosB.sinf) and T(e:) = T(0.1) = (—sinb, cosf)

so it follows from Formula (14) of Section 1.8 that the standard matrix for 7 is

cosf —sind
cos#

A=[T(e) | T(ex)] = [

sind

{-sin 6. cos )

In keeping with common usage we will denote this operator by R; and call

Re — cosf —sinf R
Al sin @ cost )
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In the plane, counterclockwise
angles are positive and clock-
wise angles are negative. The
rotation matrix for a clockowise
rotation of —& radians can be
obtained by replacing # by —8
in(1). After simplification this

yields
cosf sinf
cos

R_, = !: .
—sind

X

General Vector Spaces

the rotation matrix for R>. If x = (x, y) is a vector in R?, and if w = (w, w») is its
image under the rotation, then the relationship w = Ryx can be written in component
form as

w; = xcosf — ysinf

2)

wy = xsiné 4+ ycos#

These are called the rotation equations for R*. These ideas are summarized in Table 3.

I Operator Iustration Rotation Equations Standard Matrix
Couqterclockwme ¥ (wy ws)
rotation about the Wi 2N g el e o
e, o= < — — SI
origin through an A LTI e e e )
angle . \ (%, ) w; = xsinf + y cosd sinf cos
| >

© A Rotation Operator
Find the image of x = (1. 1) under a rotation of 7 /6 radians (= 30°) about the origin.
1t follows from (1) with § = 7 /6 that

3

w3

1

7% 1 0 V".u..
St | heE

7

<.

Rn;’éx =

-2
&
A
- @
L L
gy
TSR

1= 3

or in comma-delimited notation, Ry (1, 1) = (0.37. 1.37).

A rotation of vectors in R’ is commonly described in relation to a line through the origin
called the axis of rotation and a unit vector u along that line (Figure 4.9.24). The unit
vector and what is called the right-hand rule can be used to establish a sign for the angle of
rotation by cupping the fingers of your right hand so they curl in the direction of rotation
and observing the direction of your thumb. If your thumb points in the direction of u,
then the angle of rotation is regarded to be positive relative to u, and if it points in the
direction opposite to u, then it is regarded to be negative relative to u (Figure 4.9.25),

Positive Z
rotation

Negative
rotation

. Axis of rotation I

b

(«} Angle of rotation

(b} Right-hand rule

For rotations about the coordinate axes in R, we will take the unit vectors to be i, §,
and k, in which case an angle of rotation will be positive if it is counterclockwise looking
toward the origin along the positive coordinate axis and will be negative if it is clockwise.
Table 6 shows the standard matrices for the rotation operators on R® that rotate each
vector about one of the coordinate axes through an angle &. You will find it instructive
to compare these matrices to that in Table 5.
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Operator Ilustration Rotation Equations Standard Matrix
Counterclockwise
rotation about the |mi== 1 0 0
positive x-axis through _ S ow, = ycosh — zsind 0 cos@® —sin®
an angle ¢ WomiE w; = ysiné + zcosf 0 sing cosf
, &
X / i
i 2
Counterclockwise
rotation about the w, = xcos@ + zsinf cosf 0 sind
positive y-axis through wh = y 0 1 0
an angle ¢ wy; = —xsinf + zcosf —sin® 0 cos#
Counterclockwise
rotation about the w; = xcosd — ysing cosf —sin@ 0
positive z-axis through wy = xsinf + ycos@ sin@  cos6 0
an angle 6 w3 =2z 0 0 1

In aeronautics and astronautics, the orientation of an aircraft or
space shuttle relative to an xyz-coordinate system is often described
in terms of angles called yaw, pitch, and roll. If, for example, an
aircraft is flying along the y-axis and the xv-plane defines the hori-
zontal, then the aircraft’s angle of rotation about the z-axis is called
the yaw, its angle of rotation about the x-axis is called the pitch, and
its angle of rotation about the y-axis is called the rell. A combi-
nation of yaw, pitch, and roll can be achieved by a single rotation
about some axis through the origin. This is, in fact. how a space
shuttle makes attitude adjustments—it doesn’t perform each rota-
tion separately; it calculates one axis. and rotates about that axis
to get the correct orientation. Such rotation maneuvers are used to

align an antenna, point the nose toward a celestial object, or position
a payload bay for docking.

Pitch Roll

For completeness, we note that the standard matrix for a counterclockwise rotation
through an angle 6 about an axis in R*, which is determined by an arbitrary unir vector
u = (a, b, ¢) that has its initial point at the origin, is

a*(l —cos@) + cosd

ab(l —cosf) +csin@ b*(1 — cosB) + cosd

ab(l —cosf) —csin® ac(l —cos@) + bsiné
be(l —cosB) —asinf

3)

ac(l —cos@) —bsin® bc(l —cosB) +asind (1 —cosh) +cosd

The derivation can be found in the book Principles of Interactive Computer Graphics, by
W. M. Newman and R. F. Sproull (New York: McGraw-Hill, 1979). You may find it
instructive to derive the results in Table 6 as special cases of this more general result.
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If k is a nonnegative scalar, then the operator T(x) = kx on R” or R? has the effect of
increasing or decreasing the length of each vector by a factor of k. If 0 <k < 1 the
operator is called a comtracrion with factor k, and if k > 1 it is called a dilation with
factor k (Figure 4.9.3). Tables 7 and 8 illustrate these operators. If &k = 1, then T is the

identity operator.

X T(x) = kx
*X
T(x)=kx
(a) 0<k<1 (b) k>1
Hlustration Effect on the Standard
Operator T(x,y)=(kx, ky) Unit Square Matrix
; |
Contraction with 4 X2 (57 0. 1) jemey ©, 5.0 L
factor k in R? o ' : : L=
T(’f};u' (kx, ky) i ; —
OD=<k<l g X — - —
) (1.0) (k. ) l:k 0
i
. ! ; O | (0, &) Lo
Dilation with 2 7). = (kx.ky) | (0, 1)) tt
factor k in R* X 5 (g ; i |
(k> 1) x - L e
L R &, 0)
Ilustration Standard
Operator T(x,y,z) = (kx, ky, kz) Matrix
Contraction with X o (X 3 7)
factor k in R? T(x) 5% e, oy ez)
O<k<l o 4 kK 0 0
'V/ 0 k 0
5 0 0 %k
{kx, ky, kz)
i ) Tix)
Dilation with "
factor £ in R* X327 (x, v 2)
k> 1) Fal o
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In a dilation or contraction of R” or R?, all coordinates are multiplied by a nonnegative
factor k. If only one coordinate is multiplied by &, then, depending on the value of £,
the resulting operator is called a compression or expansion with factor k in the direction

of a coordinate axis. This is illustrated in Table 9 for R?. The extension to R is left as
an exercise.

Illustration Effect on the Standard
Operator T(x,y) =(kx,y) Unit Square Matrix
.
Compression in the 1";;,-_\4_ V) 4 (0. 1) Lo (0, 1) Loy
x-direction Togss AP N L
with factor & in R* t X e
< 3 |
0<k<l y i oy 0 .
O=k<l f (1.0) (k,0) E 0
0 1
}‘
Expansion in the (x.v) (kx,» (0, I}_E_ 0. D _|_‘
x-direction ¥ 2w : ~
with factor k in R? 4 T(x) —
o X = . — i
(k>1) | (1,0) ' %, 0)
Illustration Effect on the Standard
Operator T(x,y) = (x,ky) Unit Square Matrix
i b
Compression in the ©, 1) | 11
y-direction A (. 3) (0.4
with factor k in R* Y x k) E
A X - L 6 SR P
O=k< T (1.0 (.0 10
J e - —yy i
Expansion in the (=) (0, 1) ! (©, %), 1
y-direction x) A : :
with factor k in R? -
X H s il S
e =1 (1,0 L e

A matrix operator of the form T(x, y) = (x + ky, ¥) translates a point (x, y) in the
xy-plane parallel to the x-axis by an amount £y that is proportional to the y-coordinate
of the point. This operator leaves the points on the x-axis fixed (since y = 0), but
as we progress away from the x-axis, the translation distance increases. We call this
operator the shear in the x-direction by a factor k. Similarly. a matrix operator of the
form T'(x. ¥} = (x, y + kx) is called the shear in the y-direction by a factor k. Table 10,
which illustrates the basic information about shears in R>, shows that a shear is in the
positive direction if & > 0 and the negative direction if k < 0.
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Operator Effect on the Unit Square Standard Matrix
ko1 i, 1
Shear in the ©. ) ( : 2 { )..___
x-direction by a = I 1 k
factor k in R? - - L e _“'— g ‘:0 1]
T(_X.y) :(.x+kyy) (1.0) (1,M (1,0)
(k>0) (k<0)
Shear in the ©.1)! (. }J.?. ‘ ‘
y-direction by a { i ; 0
factor k in R? . 1 _; [k 1:|
Tx,y)=(x,y+kx) (1,0)
(k=>0)

(a

Nt

- Effect of Matrix Operators on the Unit Square
In each part, describe the matrix operator whose standard matrix is shown, and show
its effect on the unit square.

Ailfl b'{_l—z ‘4_20 d4—20
3—01} ()zzfo | (L)A3—02 ()14—01

By comparing the forms of these matrices to those in Tables 7. 9, and 10, we
see that the matrix A, corresponds to a shear in the x-direction by a factor 2, the matrix
As corresponds to a shear in the x-direction by a factor —2, the matrix A; corresponds
to a dilation with factor 2, and the matrix A, corresponds to an expansion in the x-
direction with factor 2. The effects of these operators on the unit square are shown in
Figure 494, =

1 1 — ] LERIS
X | o X X
1 1 ] 1 ¥ | 3 1 |
T s 2 19 P o 1Ty 3 gtz 2
A 15 Ax Ay

In Table 3 we listed the standard matrices for the orthogonal projections onto the coordi-
nate axes in R*. Thesc are special cases of the more general matrix operator Ty: B2 — R?
that maps each point into its orthogonal projection onto a line L through the origin that
makes an angle 6 with the positive x-axis (Figure 4.9.5). In Example 4 of Section 3.3
we used Formula (10) of that section to find the orthogonal projections of the standard
basis vectors for R* onto that line. Expressed in matrix form, we found those projections

to be
sin g cos &
and T(e)=| _,
sin” 6

cos= 6

T(e)) = ]:

Thus, the standard matrix for 7, is

sinf cos @

cos™ 0

cos” 8 siné cosd 2
sinf | | 1sin20

7 T(ey)] = %sinEE)
= e | el = sinf cos® sin” 6




