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Preface 

This material attempts to put the development of geometry, algebra, and number theory into 

historical context. It cannot hope to be comprehensive, and therefore makes frequent references to 

classics that do give comprehensive coverage of the history of mathematics. It does not try to be linear: 

It treats topics for their interest, even if they are not links in a chain of development, and sometimes puts 

them out of chronological order. It is heavier on the math than on the history, reflecting thereby the 

author’s predilection. 

I will refer to this document as the “book.” The usage reflects my initial fantasy that it would be 

published to great acclaim. At some point, however, I decided that there are conventions of book writing 

I don’t want to adhere to, including proscriptions against speaking in the first person, using contractions, 

and ending clauses with prepositions. For that reason, the book will reside online. I figure that this 

medium will allow me freedom to express myself in my peculiar style, some of which may now be 

obvious to you. It will further allow me to keep the discussion conversational, very much like a class. 

There is one convention on mathematical style that I will follow: A word will appear in boldface to 

indicate that it is being defined, or that its definition is close by. To stress a word, I will put it in italics.  

You will find some paragraphs indented and bordered on the left, like this one. Those are the places 

where the algebra, arithmetic, or geometric argument gets detailed. [Also, you will find asides, 

editorials, and other tangential items that I think will interest you, set off in square brackets.] 

The decision to put the book online carries advantages for the reader, as well. The first is that the 

book is free. Second, it is widely available, especially now that mobile devices can access it from what 

seems like everywhere. More fundamentally, it now includes hyperlinks to outside sources and 

hyperlinked cross-references among different parts of the book. 

If your device can download the book, you should do so. Accessing it every time on City College’s 

website may be a slow process. In addition, if you access it there and click an external link, you may 

lose your place in the book. [It depends on your browser. If you are viewing this via the College and 

want to check on what I mean, click here, then hit the “Back” button.] 

None of the historical material here is original. Neither is the mathematics, although often the 

sequencing, treatment, or way of looking at topics is my idea. (I am happy to say that I managed to 

concoct many of the proofs without help.) I learned some things from books. When I can, I identify the 

source. Others I learned from my teachers. With few exceptions, I cannot specify who they were, even 

though I am proud to have been their student.  

I am not entirely confident in my knowledge of history. Accordingly, I make this offer: If you find 

an error or inaccuracy in the historical narrative and can provide correction, together with a published 

reference or reliable internet link arguing for the correction, then I will insert it into the book and name 

you as its source. For that matter, if you find a good reference in support of what I write, I will be happy 

to include it. I am confident about my mathematical knowledge, but will make a similar offer there, 

asking you to provide not a reference but a mathematical argument by way of justification. 

The material was put together for a History of Mathematics course taken by Master’s Degree 

candidates in Mathematics Education. For that reason, it sometimes addresses people who will teach 

high-school or middle-school math. Since it was not originally for math majors, it tries to confine itself 

to the mathematical level of high-school geometry, intermediate algebra, and trigonometry. I think it 

succeeds through the first six chapters. In that part, some material and (especially) exercises call for, or 

at least reward, knowledge of the calculus. Indication to that effect is given at those places. Of course, 

http://www.ccny.cuny.edu/
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eventually you have to get to the development of the calculus. There, you will find discussion of 

calculus-related (“analytical”) concepts in geometric and algebraic terms. The discussion avoids 

presupposing undergraduate training in the topics at hand. 

Notwithstanding the elementary nature of about half the material, the treatment displays and 

demands of the reader some mathematical sophistication. Mostly that means a feel for the nature of 

proof. The demand increases in the last third, as the underlying math becomes abstract. In the first two 

sections of Chapter IX, the thinking [even without requiring calculus] rises to the advanced 

undergraduate level. 

The format resembles an outline because it was originally put together as a course outline, without 

the intervening paragraphs of text. 

 

Alberto Guzman 

October 2010 to around June 2019 

I wasn’t in a hurry. 



 

iii 

  

Those who can, do; 

those who can’t, teach. 

 GB Shaw 

 

 

 

The ideal condition would be, I admit, 

that men should be right by instinct; 

but since we are all likely to go astray, the reasonable thing is 

to learn from those who can teach. 

 Sophocles 

 

 

 

My money’s on the Greek. 

 A Guzman 
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 Prehistoric Peoples Chapter I.
It is a signal event when we find evidence of how people lived and what they did before the advent 

of writing. Our evidence is mostly fragmentary: pieces of pottery, tools, weapons. The famous Lascaux 

paintings are an incredible large-scale souvenir. Still, there are types of mathematical thinking we can 

reasonably ascribe to early man. This chapter consists of such informed guessing. 

 Hunters Section I.A.
Early humans were nomadic hunters. Their lives would have been a constant struggle for survival. 

Their thinking would have been devoted to securing food and protecting the family. Life would not have 

allowed opportunity for a leisurely intellectual pursuit. What kind of mathematical thinking could they 

have done? 

1. Geometry 

Any creature needing to hunt for a living (including picking from the ground and out of trees) has to 

process some geometrical information. It must be able to judge and think in terms of spatial 

relationships: near and far, level and inclined, clear and wooded. If it has the power to communicate, it 

can profit from splitting a hunting party into a part going this side of the river, a part on the other side. It 

can worry that the kids, failing to listen, will go beyond the hill. (See Exercise 1.) 

One particular concept that must have resided in early minds is symmetry. Designs painted onto 

surviving prehistoric pottery reveal awareness of symmetric patterns. Separately, observe that many land 

creatures are left-right symmetric. (See Exercise 4.) Recognizing symmetry therefore helps distinguish 

between living forms, to be sought as prey or avoided as predators, and features of the landscape, like 

plants and rocks. 

2. Arithmetic 

Some forms of arithmetic (arithMETic, the adjective) thinking would have been accessible and 

profitable to primitive humans. 

At the most basic level is counting. If you can count, then for example you can tell whether 

everybody from your group is present without having to match people up with a mental list of names or 

faces. You can tell whether part of the group has been gone for an unusual number of days. You can 

think in terms of how many of these things, say fruit, you might trade for how many of those, say ropes. 

With counting, some sophistication is reachable. You can handily (no pun) count up to 10 on your 

fingers, and up to a few dozens with nuts or stones or such things. Counting big numbers, like the 

number of days between the first snowfall of this year and the first of next year, must have required use 

of a long stick or bone on which to make marks. This last suggests that people must quickly have 

adopted aggregates. You know how we mark 

 |, ||, |||, ||||, ||||, 

so that  

 |||| |||| |||| ||| 

is easily recognizable as 3  5 + 3 without counting 18 marks. If you let special marks, like deep or 

extra-long notches or especially big stones, represent fives or tens or a different meaningful aggregate, 

then you expand your counting reach. You can even do that with your fingers. If you let the fingers on 

one hand represent fives, then counting fives on that hand and ones on the other allows you to count to 

30 using just your hands. 
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At a higher level lie the operations. We naturally think of addition first, because it is what we learn 

first. But that sequencing is based on pedagogical considerations: Addition is conceptually easy. It might 

have been that early humans did something like division first, based on the need to separate a group of 

people or objects into equal or nearly equal subgroups. In any case, the ability to add would have 

become valuable, since it lets you decide whether putting together two collections having the same 

purpose renders the combined collection sufficient for some function neither one could serve alone. 

Algebra—in the sense of creating descriptions (for us, equations) from which information may be 

drawn—sounds like an area of thought unlikely to have occupied early humans. It is difficult to imagine 

ways such thinking could have been advantageous to hunter-gatherers. Indeed, we will see later that 

evidence of “algebraic thought” suggests that its origin had to wait for complex social structures. 

3. Astronomy 

The subject is not strictly mathematical, but astronomy played an important role in the development 

of mathematics. Early men would have profited from astronomical knowledge. Hunters gazing upon the 

night sky must have observed that the stars, whatever they might be, reside in patterns whose positions 

change in tune with the seasons. For example the constellation Scorpius (which actually does resemble a 

scorpion) is (in our era and location) as high as it gets in the South at sunset in early September. Over 

the next two months, its sunset position drifts westward. This seeming westward drift is due to Earth’s 

revolving about the Sun. As we orbit the Sun, it appears to us that the Sun is drifting eastward against 

the starry background. The drift causes the Scorpion to approach the sunset, so that before December the 

constellation becomes invisible in the twilight. In its prominent September position, Scorpius announces 

(for the northern temperate zone) the arrival of autumn. Humans aware of that signal would have been 

warned of the impending migrations of the animals, the changing of the trees, and the need to prepare 

for the season, three months away, of cold and darkness and death. 

Even more noticeable than the harmony between stars and seasons would have been the rhythm of 

the Moon. The Moon is visible most of the time, and it is reasonably regular. Its cycle, full Moon to full 

Moon, averages about 29½ days. (In truth, the actual length varies by hours over the course of multiple 

“lunations”, but the variation is difficult to spot without a timepiece.) The length, hereafter “the moon,” 

is not some modern scientific determination. One human could calculate the average by watching 100 

lunations. (How long would that take?) Suppose he has [like me] trouble telling the night of full Moon 

from the one or even two nights before or after. Counting the number of days between one full Moon 

and the one 100 cycles later would give him the average moon to within 4/100 days, or about 1 hour. For 

that matter, doing the same from one lunar eclipse to another 100 or so cycles later would give the moon 

to within hundredths of an hour. The regularity of the Moon allows its use as a device to time reasonable 

numbers of days, and even as a somewhat clumsy device to time the seasons. (Very clumsy: The number 

of days in the cycle of the seasons, hereafter “the year,” falls between multiples of 29½). 

 Exercises I.A.3

1. What other kinds of geometric or arithmetic thinking would hunter-gatherers have done? 

2. Do animals (other than man) do anything like geometric reasoning? like arithmetic 
reasoning? 

3. Why would it have been important for hunters to think in terms of near and far? Would their 
thinking have been quantitative, using measurements (“such and such is 50 rods away”)? 

4. a) Many terrestrial animals, humans among them, are (left-right) symmetric about a vertical 
plane perpendicular to their fronts, but not about any vertical plane parallel to their fronts, 
nor about any horizontal plane. Why is that?  
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b) What advantage accrues to an animal whose structure is symmetric? 
c) Is asymmetry ever advantageous? 

5. We are highly conscious of minutes, hours, days, weeks, months, and years. Which of 
these units of time would early man have been aware of and considered important? 

 Farmers Section I.B.
Somewhere between 10,000 and 20,000 years ago (estimates vary), humans realized that they could 

grow food. The discovery of agriculture ended man’s reliance on the unreliable and risky process of 

hunting, and substituted a source of nourishment that is at once more dependable and more amenable to 

storage. With people farming in one place, at least as long as the land was fertile, new areas of 

mathematical thought would have opened up. 

1. Geometry 

People staying in place would have built permanent shelter. Therefore they would have begun to 

learn principles of architecture. Those include, aside from the properties of materials, much geometric 

thinking. For example, people must have learned early on that doubling the dimensions of a surface, like 

a roof, quadruples its weight. In making supports, they must have learned that triangles are rigid, as say 

quadrilaterals are not. Form three sections of a folding carpenter’s meter into a triangle and hold, 

between one thumb and forefinger, the start of the first section against the end of the third. Pulling on 

the sides will show you that as long as the joints and the sides do not break, the triangle retains its shape. 

Then form four sections into a square and hold beginning to end. A pull on the corner diagonally 

opposite your hold deforms the square into a diamond. The triangular bracing we see on exposed steel 

skeletons, as on a bridge, must be one of the earliest geometric ideas put into architectural use. 

A second pursuit that would have rewarded geometric thinking is what we will begin to call 

surveying. The word “survey” has modern French origin, but the craft of land measurement is ancient.  

“Straight” is related to “stretch” and “line” to “linen,” and therefore to rope. Farmers would have 

fashioned and used ropes to lay out plots of land, set boundaries, and of course measure. The geometric 

principle that a circle surrounds the greatest area for a given length of boundary—or for rectangles, that 

the square has the same property—must have been a commonplace to experienced “rope stretchers.” 

One final area of geometric thought, for which we do have pieces of evidence, is art. Pieces of 

pottery that have come down to us demonstrate beyond doubt awareness of, among other concepts, 

congruence, similarity, symmetry, and recurring patterns that fill up an area (“tessellations”). 

2. Arithmetic 

As far as numeration, there is no obvious need farmers would have that their hunting forebears 

would not already have met. If you produce a quantity of grain, vegetables, or fruit, you would not 

normally have a reason to count them. You would, however, have reason to divide one quantity into 

multiple shares. That would have you thinking about fractions and about ways to compare them or to 

operate on them as you do with whole numbers. 

3. Astronomy 

We have already noted the importance of the stars as harbingers of the seasons. Their role is muted 

near the Equator. In much of the tropics, there are two seasons: either the times when the Sun is dead 

overhead (March and September) versus its northern and southern extremes (June and December); or 

else the rainy season versus the dry. In the temperate zones, though, the stars mark the times of planting, 

harvesting, and the other activities essential to agriculture.  
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 Civilization Section I.C.
At some point, people realized the advantages of cooperative production. Agreeing to grow large 

crops and divide the yield, or to grow a variety of crops and trade yields—not to mention to act in 

concert to defend against raiders—would have led to increasingly large farming communities. These 

would over time begin to merge, eventually (at least 8000 years ago) into cities. In such places, the 

majority of residents would be far from the sources of food. They would have acquired “jobs,” activities 

that produce goods or labor they can trade for necessities. [We could choose to define “civilization” as a 

plan of human organization in which people can fill their needs by tending to the needs of others.] 

Civilizations arose along four river valleys. (Name them.) Those places get flooded every year. 

(Why would people choose to live on land subject to flood?) Trying to make a life there demands 

harnessing the floods. Accordingly, people drained swamps, built levees and dams to control the flows, 

dug canals and other channels to provide more control plus irrigation and storage. All this civil 

engineering required large-scale central planning. The growing communities sprouted administrative 

centers, leading to governmental arrangements. What math would they have needed? 

1. Geometry 

The needs of surveyors and architects immediately leap to mind. Planning and laying out irrigation 

and drainage networks demand skill in measuring distances and angles and in dealing with similarity. 

Perhaps greater demands fell to architects, as the increasing concentration of people led to buildings of 

administration and governance. These began to be built at big and massive scale, to convey the 

importance of the places, and of course of the occupants. People also began to build ceremonial centers, 

in particular religious places. The temples that have survived indicate deep knowledge of geometric 

concepts like symmetry and properties of regular figures. 

The rise of religion implies the creation of groups liberated from physical labor, having therefore 

“leisure” time in which to acquire and develop specialized knowledge. This “priestly class” could have 

stored knowledge without regard to its application to the community’s life. 

2. Arithmetic 

Because the rise of cities demanded central administration, the administrators needed to master 

logistics, the art or craft of managing the flow of people, tools, goods, whatever goes into doing large-

scale projects. An immense number of things needed planning: managing the flood plain; how, where, 

and in what quantities to plant crops; how to create paths for the movement of humans and supplies; 

levying and allocating taxes to raise the payments the administration has to make; assembling and 

maintaining an army to defend the community. These things demanded, separate from some right-

brained (geometric) thinking, enormous capacity to calculate. Whatever their numbering system was, 

people must have valued computational skill, and no doubt computing devices. 

3. Astronomy 

The chief feature of astronomy in the coming of civilization must be that it became a viable job. If 

your knowledge of the sky lets you make predictions, especially of spectacular events—the coming of 

the floods and eclipses of the moon are two obvious candidates—then you can easily sell yourself as a 

reader of the future. Recall that we referred to a priestly class, having time for such activity as observing 

the heavens. They would have jealously guarded whatever knowledge they derived. It would have been 

valuable, enhancing their standing with the addition of “oracle” to their titles. 
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 Early Historical Peoples Chapter II.
Now we look at the mathematics of two civilizations from the early historical era, the time after the 

invention of writing. [That’s about 5000 years ago. In your mind, distinguish between pre-historic and 

pre-civilized. The latter, as we said, goes back 8000+ years.] The development of writing is an epic 

event in the life of our species. When, scores of thousands of years ago, humans evolved the ability to 

talk, we acquired the ability to profit from the knowledge and experience of others. With the advent of 

writing, it became possible for us to access the knowledge of people removed from us in time as well as 

place. [It became possible for teenagers to ignore predecessors beyond their parents.] 

 The Egyptians Section II.A.
The valley of the Nile was protected by desert, mountains, and distance from the sea. That stands in 

contrast to the Tigris-Euphrates, which was open to invasions from many sides. It is therefore not 

surprising that the civilization that colonized the Nile was stable from before 3000 BCE until 300 BCE. 

The desert climate is one of the reasons that we have many records from their time. Their favored 

writing medium was papyrus, and the dry climate was essential to its preservation.  

1. Geometry 

It is common to speak of geometry as originating with the need to reconstitute land markings washed 

away each year by the flooding of the Nile. We have seen that geometric knowledge considerably 

preceded the Egyptians. However, it reached an amazing level under them, and not just in surveying.  

Their colossal architecture bespeaks extensive geometric knowledge. One feature of their 

construction—the sides of the pyramids, for example, or of some temples—is extremely accurate right 

angles. Those angles suggest that they knew the Pythagorean theorem. Knowing the theorem (more 

accurately, knowing its converse; see Exercise 2) tells you that if you have a rope 12 units long, and you 

stretch and form it into a triangle with sides 3, 4, and 5 units long, then the two short sides meet at right 

angles. If the unit is long, like 100 feet, then the right angle is precise. 

The suggestion is not hard evidence, given that there are other ways to build right angles. You can 

instead use this principle: In an isosceles triangle, the median from the apex (the segment from 

where the equal sides meet, to the midpoint of the third side) is perpendicular to the base. Thus, 

imagine a long rod with a mark at its midpoint, then ropes of equal length stretched from the ends of 

the rod to a common meeting point, then a third rope from the meeting point to the midpoint of the 

rod. Either way, though, we end up with evidence that is credible, even if not on paper, of 

understanding and experience in geometry. 

Going further with surveying, the layout of tombs and temples suggests command of trigonometry. 

Another feature of the sides of the pyramids is extremely close alignment to the cardinal directions 

(north-south, east-west). Such alignment requires measurement of angles. Again we have only circum-

stantial evidence. If the Egyptians drew up trigonometric tables, they have not come down to us. 

Numerous geometric formulas have come down to us. Some of them are simplifications indicating 

that the Egyptians were happy to take approximations instead of exact determinations. One formula has 

a version that says a circle of diameter 9 has the area of a square of side 8. In our notation, it says 

 8
2
 =  (9/2)

2
. 

That amounts to taking the value of  as 256/81  3.16. They took the same kind of liberty with other 

area and volume formulas. 
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One thing does appear to be certain: Whatever geometry they knew, the Egyptians did not do any 

geometric proofs. It seems that they accepted what experience, symmetry, or practical considerations 

indicated as true. 

2. Numeration and Arithmetic 

The Egyptians used a system of numeration based on decimal aggregates. Thus, there was a symbol 

for 1, a symbol for 10, one for 100, .... Then 257 would be represented by two hundreds, five tens, and 

seven ones. Such a system has the same property as Roman numerals: It makes addition easy and 

multiplication hard. (Think about Roman numerals and you will see that they include symbols for the 

decimal aggregates, together with intervening symbols for five times those aggregates.) 

Still, with their civil engineering prowess, they must have possessed remarkable calculation skill. 

Their multiplication was dyadic: They used multiplication by 2, which is easy, and the property of the 

powers of 2 that any integer is the sum of distinct such powers. 

Consider the product 57  86. As a sum of powers of 2, 

 57 = 32 + 16 + 8 + 1. 

To produce that breakdown, observe that the biggest power of 2 that fits (does not exceed) 57 is 32. 

We have 57 – 32 = 25. Next, 16 fits 25, and 25 – 16 = 9. Next, 8 fits 9, and 9 – 8 = 1. Neither 4 nor 2 

fits 1. That gives us the sum of powers. 

Now to multiply, we write 86 and double repeatedly: 

 1 86 

 2 172 

 4 344 

 8 688 

 16 1376 

 32 2752. 

We then find the product by addition: 

 57  86 = 32  86 + 16  86 + 8  86 + 1  86 

   = 2752 + 1376  + 688 + 86 

   = 4902. 

Another feature of their numeration and arithmetic was the exclusive use of unit fractions, fractions 

with numerator 1 (except for 2/3). Thus, for 2/5, they would have written 1/3 + 1/15. (Check that they 

match.) What advantage accrued to this habit is difficult to see. Such decomposition is not unique: 2/5 

also equals 1/4 + 1/10 + 1/20. The only reasonably obvious algorithm to achieve the decomposition is 

the “biggest fit” process illustrated two paragraphs back. 

For 9/10, the biggest unit fraction that fits is 1/2; for 9/10 – 1/2 = 4/10, the biggest fit is 1/3; 

for 4/10 – 1/3 = 2/30, the biggest is 1/15; and we have 

 9/10 = 1/2 + 1/3 + 1/15. 

This method always works, because the numerators (in 9/10, then 4/10, then 2/30) necessarily 

decrease; see Exercise 6. 

3. Algebra 

The first evidence of what we would recognize as algebra is in the Rhind Papyrus, called also the 

Ahmes Papyrus. (Boyer identifies Ahmes as the author of the scroll around 1650 BCE, Rhind as a Scot 

who bought it in 1858.). It includes something like a workbook, in whose questions a quantity is to be 

determined based on information. One problem asks how to divide 100 loaves among five men so that 

the shares form an arithmetic progression and 1/7 the sum of largest three shares equals the sum of the 

http://www.archive.org/stream/AHistoryOfMathematics/Boyer-AHistoryOfMathematics#page/n28/mode/1up
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smallest two. In our thinking, the problem comes down to simultaneous linear equations. A quadratic 

one, listed by both Boyer and Struik, asks for the sides of two squares, the smaller having side 10 less 

than 2/3 the side of the bigger, whose areas sum to 1000. 

In the instruction that seems to have been the workbook’s intention, there was no attempt to develop 

general methods applying to broad classes of problems—nothing like, say, the quadratic formula. 

Instead, the treatment was case by case: If the problem looks like this, then make this calculation. For 

the loaves problem, the “method of false position” was used. You simply take a guess at the result, then 

scale it up or down as required; see Exercise 5. The same method works, but rather slowly, in the 

problem with the squares. 

4. Astronomy 

One indication of the Egyptians’ astronomical knowledge is their method for determining the 

coming of the flood. Recall our allusion to the Sun’s annual trip around the sky. Its eastward motion 

makes the evening stars disappear into the dusk. It then reveals them to Sun’s west, so that they become 

visible ahead of the dawn. The first day a star becomes visible in the pre-dawn sky is called the star’s 

“heliacal rising.” The heliacal rising of the most brilliant fixed star, Sirius (the “Dog Star”), was the 

harbinger of the Nile’s annual flooding. 

Notice that this Sirius connection implies the existence of a group with freedom to observe the sky, 

keep astronomical records, and draw conclusions from the information. 

Such a group must have determined the length of the solar cycle, but it is interesting that they did not 

prescribe a calendar based on that length. Instead, the Egyptians used two calendars. One was strictly 

lunar and was used to time religious observances. The other was solar, used for civil purposes. The latter 

consisted of 12 months of 30 days each, plus five days that did not count as part of any month. (Why 

choose 12 months?) If it seems odd to have two calendars, visit a Jewish temple. Somewhere there, you 

will see an indication that the first day of the Hebrew month Tishrei, marking the start of the year, falls 

on some civil date; for example, it was September 9 in 2018. 

A calendar covering 360 + 5 days is 1/4 day short of the year. If your calendar is short, then the 

seasons begin to move forward (later) within it. Imagine that your climate always makes the first 

snowfall happen on the first day of winter. If you call that date “Day 1” and your calendar is 1/4 day 

short, then four years later the first snow will fall Day 2; four years after that on Day 3; and so on. Over 

the course of a human life, the drift is barely noticeable—20 days if you manage 80 years. But over the 

culture’s life of more than 2700 years, the seasons would have drifted 700 days, all the way through the 

calendar and almost again. It does not seem to have bothered the Egyptians. 

 Exercises II.A.4

1. a) Answer this question from Boyer:  Which would have been more influential in the 
development of Egyptian geometry: surveying, or astronomy? 
b) Now consider: Would it have been the same for early humans? 
c) What would have been the first geometric figures to be studied systematically? 

2. State the Pythagorean theorem. Then state its converse. 

3. a) Find the product 394  53 by doing doublings (multiplications by only 2) and additions. 

b) Try Egyptian division: Calculate 95 16 (ending up with integers and unit fractions) by 
doubling and halving the 16. 
c) What would happen if the divisor were 15 instead of 16? Why does that happen? 

4. Use the biggest-fit algorithm to break 29/35 into unit fractions. 

http://www.archive.org/stream/AHistoryOfMathematics/Boyer-AHistoryOfMathematics#page/n63/mode/1up/search/squares
http://www.archive.org/stream/AHistoryOfMathematics/Boyer-AHistoryOfMathematics#page/n40/mode/1up
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5. Try something like false position on the problem of the loaves. Begin by assigning the five 
men shares consisting of 1, 2, 3, 4, and 5 loaves. Those shares are in arithmetic 
progression, but do not satisfy the other requirements. 
a) The sum of the lower two shares is 3, and 1/7 the sum of the upper three is 12/7. That is 
an error of 3 – 12/7 = 9/7. If you double the increment (the constant difference between 
consecutive terms), then the shares become 1, 3, 5, 7, 9, and the error drops to 4 – 3 = 7/7. 
Tripling the increment makes the shares 1, 4, 7, 10, 13 and the error 5 – 30/7 = 5/7. What 
multiple of the increment will eliminate the error? 
b) Use the increment found from (a) to write down the five shares for which the sum of the 
lower two matches 1/7 the sum of the upper three. These five numbers do not sum to 100. 
Scale them up (multiply all by the same factor) to make them sum to 100. 

6. a) Let m/n be a reduced non-unit fraction and 1/N the first unit fraction smaller than m/n. 
Prove that the fraction m/n – 1/N has numerator smaller than m. In symbols, assume 
 1/N < m/n < 1/(N – 1) 
(which precludes the possibility that m/n reduces to a unit fraction). Prove that  
 m/n – 1/N 
has numerator smaller than m. 
b) Argue why (a) proves that the biggest-fit method always produces a decomposition of a 
fraction into unit fractions. 

 The Babylonians Section II.B.
We noted that Mesopotamia (roughly modern Iraq) was always subject to invasion, so it is not 

surprising that numerous civilizations conquered the area and were in turn conquered. There have been 

important cities there for perhaps 8000 years. Babylon (roughly Baghdad) was one of them, and it was 

the capital for the civilization that dominated from around 1900 BCE to around 700 BCE. This group is 

our next interest. 

Their writing medium was clay. They incised wedge-shaped (“cuneiform”) characters into clay 

tablets, which were then baked. The result was basically writing in stone, records that were extremely 

durable and have come down to us in wonderful quantity. 

1. Geometry 

With the Babylonians, we have the expected achievements in surveying and architecture. Their 

signature constructions were sawed-off pyramids called “ziggurats.” These were tall (and massive) 

buildings, most likely restricted to the priestly class. 

They must have known the Pythagorean theorem, because they devised methods for producing 

integer-sided right triangles. A Pythagorean triple is a set of three natural numbers that make up the 

sides of a right triangle. In the language of algebra, a, b, and c (biggest) form a Pythagorean triple if 

 a
2
 + b

2
 = c

2
. 

One method is in Exercise 2a. Before we give the more complete one, let us discuss triples in general. 

If a, b, and c all have a common divisor, then the triple is an overgrown version of a smaller one. 

Thus, 30-40-50 is just a 3-4-5 on steroids. So we confine our attention to primitive triples, those in 

which the three numbers do not share a common divisor. [We will allow ourselves the imprecision of 

saying “no common divisor” without adding “except 1.” The mathematical convention is to say 

“no nontrivial common divisor.” However, the locution “no nontrivial” is so troublesome to students 

that I will choose to be incorrect rather than clumsy.] 
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In a primitive triple, a and b cannot both be even. That would make c
2
 even, which in turn would 

force c to be even (losing the primitivity); see Exercise 1a-b. But it turns out that they also cannot both 

be odd; see Exercise 1c. They have to have opposite parity; one even, one odd. Henceforth, when we 

write a primitive triple, we will assume that a is odd and b even. 

For the second method from the Babylonians, we state a theorem that we will prove later. 

Theorem 1. The numbers a, b, c form a primitive Pythagorean triple iff there are natural numbers 

u and v, having opposite parity and no common divisor, such that 

 a = u
2
 – v

2
, b = 2uv, c = u

2
 + v

2
. 

Notice that the pair u, v satisfying those equations is unique. The triple determines u and v: 

 u
2
 = (c + a)/2,  v

2
  = (c – a)/2. 

Consider these examples: 

 u v a = u
2
 – v

2
 b = 2uv c = u

2
 + v

2
 

 2 1 3  4  5 

 3 1 8  6  10 

 3 2 5  12  13 

 4 1 15  8  17 

 4 3 7  24  25 

The four shown in black are perhaps the most familiar to students. The one in red shows why u and v 

need opposite parity; if they have like parity, then all three numbers in the triple are even. 

Like Egyptian geometry, Babylonian geometry had no hint of proofs. There is no surviving evidence 

that they thought the Pythagorean theorem needed geometric proof or that the two methods for 

producing triples needed numerical/algebraic justification. 

 Exercises II.B.1

1. a) Show that the square of any even number is a multiple of 4. 
b) Show that the square of any odd number is 1 more than a multiple of four. 
c) Use (a) and (b) to show that two odd squares cannot add up to a square. 

2. Show that: 
a) If m > 1 is odd, then 
 m, (m2 – 1)/2, and (m2 + 1)/2 
form a Pythagorean triple. 
b) The triple in (a) is primitive. 
c) In this Babylonian way of constructing triples, m gives the shortest side. 
d) Not all primitive triples come from this method. 

3. Find two Pythagorean triples in which one of the sides is 37. (They will necessarily be 
primitive, because 37 is prime. Theorem 1 then says those are the only two, one from 37 as 
a difference of squares, the other as sum of squares. Does Exercise 2 provide a third one?) 

2. Arithmetic 

Babylonian numeration was a remarkable advance: It was the first to use a place-value system. 

Recall that our numeration uses the principle that every integer has a unique representation as “a 

polynomial in 10” with the digits 0-9 as coefficients. Thus, 

 2011  =  2  10
3
  +  0  10

2
  +  1  10

1
  +  1  10

0
. 

In this scheme, the base 10 is not essential. We could as well have used 5 or 20 or 2, any natural number 

but 1, with the digits corresponding to that base. 



 Chapter II. Early Historical Peoples 
Section II.B. The Babylonians  3. Algebra 

10 

The Babylonians chose sexagesimal, base 60, numeration. Thus, 

 (decimal) 20110  =  5  60
2
  +  35  60

1
  +  10  60

0
. 

They would have represented that expression by marks and aggregates for (our) 5, 35, and 10. For our 

purposes, let us agree to use 

 #5 #35 #10 

to signify their expression. You can see the need to abbreviate the coefficients with aggregates; the 

alternative is to invent 60 symbols for the “digits” 0 to 59. On the other hand, a place-value system 

always makes both addition and multiplication receptive to the kinds of algorithms we learn for decimal 

numeration. Separately, the many divisors of 60 create shortcuts for some multiplications. 

Recall that the factoring 10 = 5  2 implies that you can replace multiplication by 5 with division 

by 2, which is easier, followed by multiplication by 10, which requires only moving the decimal 

point. Thus, you can do 187  5 by taking half of 187, or 93.5, then deciding where the decimal 

point goes. In the same way, 5  12 = 60 implies that 

 (#5 #35 #10)  (#12) =  #5/5  #35/5  #10/5 #0 

     =  #1 #7 #2 #0. 

(Check that 

 20110   12 =  1  60
3
  +  7  60

2
  +  2  60

1
  +  0  60

0
.) 

The numeration departed from strictly positional when it came to terminal zeroes. When a place was 

missing, as in decimal 2011, the Babylonians would use a mark or an empty space to indicate the 

missing power of 60. (Eventually, they did adopt a symbol for zero.) However, that last expression 

 #1 #7 #2 #0  might instead be written  #1 #7 #2. 

That would leave it to the reader to determine from the context whether 

 1  60
3
 + 7  60

2
 + 2  60

1
  or  1  60

2
 + 7  60

1
 + 2  60

0
 

(or even 1  60
1
 + 7  60

0
 + 2  60

-1
) were meant. 

3. Algebra 

The records of Babylonian algebra are like the Egyptian. There are what seem to be books intended 

to instruct students in the solution of problems. The problems tended to have such practical orientation 

as the division of collections of objects or bodies of land. Their solutions are case-by-case: Faced with 

this situation, you do this and that. Still, their ad hoc approaches must have pointed to patterns, and they 

managed with such approaches to solve (approximately) some kinds of quadratic, even cubic, equations. 

The Babylonians shared the Egyptian willingness to accept approximate answers. They did not, for 

example, have representations for square roots. A reference to 40 would have referred to a rational 

approximation. According to Boyer, they created this square-root algorithm: 

 Given a positive x, not necessarily integral, let y be any positive guess at x; then 

  x  (y + x/y)/2 

 is a refined guess. 

Let us approximate 40, which we know is around 6. 

Begin with the guess 10 (because it divides 40). The algorithm names only two steps: 

 Take 40/10 = 4, then average 10 and 4 to get 7. 

Notice that 10 and 4 are on opposite sides of the known value, their average is too high, and the 

average is closer than either of the two; see Exercise 5. More important, the algorithm is recursive; 

the result can be fed back to it to produce further refinement. Thus, 

 7 has the partner 40/7 (which is less than 6), and their average is 89/14. 

The new estimate is again greater than and closer to 40. (7
2
 = 49, [40/7]

2
  33, but [89/14]

2
  40.4.) 

http://www.archive.org/stream/AHistoryOfMathematics/Boyer-AHistoryOfMathematics#page/n47/mode/1up
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One feature of their algebra is a predilection for “geometric algebra,” pictorial renderings of 

relations we would consider algebraic. 

To us, 

 (x + y)
2
 = x

2
 + 2xy + y

2
 

is an algebraic identity. The Babylonians would, first off, not have thought of a “square” as the result 

of multiplying a number by itself. They would have imagined the quadrilateral. In the left half of the 

figure at right, we have a square of 

side x + y. The dashed lines clearly 

break it up into a square (blue) of 

side x, another (red) of side y, and 

two rectangles of sides x and y. 

The figure portrays the identity. 

In the same way, the right half of 

the figure illustrates 

 a
2
 – b

2
 = (a + b)(a – b). 

There, the L-shaped green area 

is a
2
 – b

2
, and it can be cut along the heavy dashed line into two pieces that fit back together to make 

a single rectangle of sides a – b and a + b. See also Exercise 6. 

 Exercises II.B.3

1. What is the etymological meaning of “Mesopotamia”? of “mathematics”? 

2. (Boyer) What does “geometry” mean etymologically? Is the use of the word justifiable, 
given the subject’s development? 

3. Name some Mesopotamian contributions to our mathematics. 

4. The areas of two squares sum to 895. The side of one square is 10 less than two-thirds the 
side of the other. Use the method of false position to approximate the sides of the two 
squares to within 0.01. You may use the arithmetic functions of a calculator. Keep track of 
how many calculations are needed, and how you can cut down on them. 

5. a) Apply the square-root algorithm to 3, beginning with the estimate 3  1 and going as 
far as three “new estimates.” 
b) Check that each new estimate and its partner straddle the exact root. Explain why that 
happens. 
c) Check that each new estimate is rational. Why is that always so? 
d) Check that each new estimate is too big. Show that this must happen. 
e) Show algebraically that each new estimate cuts the error by more than half (is less than 
half as far off as the previous estimate was. You can show it via calculus as well.) 

6. Draw a figure to illustrate the identity 
 (x – y)2 = x2 – 2xy + y2. 

4. Astronomy 

The Babylonian record in astronomy is remarkable, particularly in their tracking of the Sun. They 

used their observations to derive antiquity’s best estimate of the year. 

We have referred to the Sun’s apparent trip around the sky over the year. During that trip, the Sun 

traces out a path among the stars, a great circle called the “ecliptic.” No doubt viewing it as the path of 

life, the Babylonians organized the star groups along it into [poor] representations of living creatures. 

 x 

y a – b 

b 
a 

http://www.archive.org/stream/AHistoryOfMathematics/Boyer-AHistoryOfMathematics#page/n40/mode/1up
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The resulting constellations include such real beings as a pair of twins and a scorpion, and such mythical 

ones as a “sea goat.” [That menagerie of creatures was later named by the Greeks. Doubtless you know 

the name: “Zodiac,” from the Greek word for “life.” Think of “zoology.”] 

Because Earth’s rotation axis points about 66.6 off the plane of the ecliptic, the “Celestial Equator” 

(the great-circle projection of Earth’s equator into the sky) is at the complementary 23.4 angle to the 

ecliptic. The Celestial Equator and ecliptic meet at two points, called the “equinoxes” (from the Latin for 

“equal nights.” On the day the sun reaches an equinox, the daylight and night are [theoretically] equally 

long.) Around March 21, the Sun reaches the “vernal” (spring) equinox, in The Fishes. It is then headed 

northeast in the sky. Around June 21, the Sun reaches its northernmost point on the ecliptic, the 

“summer solstice,” near The Twins. That position gives the Sun high elevation in the daytime sky and 

longer visibility (the long days). The combination of increased elevation and time above the horizon 

accounts for our summer. Thereafter the Sun’s path starts east, then curves to southeast, to cross the 

Celestial Equator around September 21. That crossing is the “autumn equinox,” near The Virgin. After 

that, the Sun continues southeast. It arrives around December 21 at its most southerly point, the “winter 

solstice,” between The Scorpion and The Archer. That southerly location gives us short days with the 

Sun low in the sky, and therefore winter. 

[For all those dates and sky locations, you have to say “in our era.” They vary through a cycle of 

about 26,000 years, in a way and for a reason that we will discuss later.] 

The Babylonians measured the year by counting the days between spring equinoxes hundreds of 

years apart. By careful observation through viewing holes or tubes—or by measuring shadows—you can 

find the directions of extremes: the angles of elevation of summer’s highest sun (at the summer solstice) 

and winter’s lowest midday sun (winter solstice); or the directions of summer’s northernmost and 

winter’s southernmost sunsets; or the same for sunrises. (Many cultures built observatories—temples, 

really—oriented to, or holding markers indicating, the directions of those “solstitial” rises and sets. 

Stonehenge in England and the Sun Temple at Machu Picchu in Peru are two famous examples.) 

Halfway between the directions in any of those pairs lie the two equinoxes. If you track the equinoctial 

days over a span of 600 of them, even with an error of two days on each end, you measure the year to 

within 4/600 day (24/3600 day in sexagesimal, less than 10 minutes). 

Recall our observation that one human can record a hundred Full Moons. Obviously the same is 

impossible with hundreds of equinoxes. On the other hand, you can see how a society spanning more 

than a millennium managed to document them. 

For the Babylonians, the estimate of the span between consecutive spring equinoxes was 

 #6 #5 PT #14 #33 

days. Here we have invented PT to signify the “sexagesimal point.” Thus, the numeral above 

represents 

 6  60
1
  +  5  60

0
  +  14  60

-1
  +  33  60

-2
  =  decimal 365 + 873/3600. 

Notice that the number is less than 

 365¼   =  365  +  900/3600. 
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 The Greeks Chapter III.
The Greeks were a kind of counterpoint to the Babylonians. That statement should not surprise, 

because the Greeks and Babylonians were separated in time, space, and culture. The Babylonian time 

ended by 700 BCE, before the Greek began. Mesopotamia was largely landlocked east of Turkey and 

owed its existence to two rivers; Greece was a peninsula, daughter of the sea. Babylon was ruled by 

kings; Greece came to be dominated by a merchant class that invented democracy. For us students of 

math and science, the Greeks are the natural next interest. 

 Geometry Section III.A.

1. Thales 

The study of Greek math begins with Thales. He was a merchant from Miletus. (Miletus is on the 

western margin of Turkey. We could reasonably say “Aegeans” in place of “Greeks.” Greek civilization 

included modern Greece on the western coast of the Aegean, parts of Turkey on the eastern, and the 

islands in between.) Boyer mentions evidence that Thales lived 40 years either side of 600 BCE. 

With Thales, we have the first instance of mathematical knowledge ascribed to a specific person. 

The attribution is apocryphal; Boyer has a wonderful paragraph (“There is no document ...”) that 

illustrates how slippery history can be. What is sure is that Thales marks the beginning of 

“demonstrative geometry.” Nothing before Thales indicates that people thought it necessary or useful to 

“prove theorems.” Nobody before put forth arguments purporting to demonstrate that the truth of one 

statement follows from the truth of others (whose truth was perhaps demonstrated or accepted before). 

To see what we mean, look at an example. Among the theorems Thales is said to have proved are the 

equality of base angles of an isosceles triangle, equality of vertical angles, measure of an angle inscribed 

in a semicircle, and congruence of triangles based on AAS. Look at the following argument for the base-

angles statement. 

In the figure at right, we have triangle ABC with sides AC and BC 

congruent. [I was trained to say the sides are “equal.” I will try to adhere 

to the usage from after the Civil War; please forgive any occasional 

lapse.] We draw the median from C to the midpoint M of AB, creating 

the new triangles AMC and BMC. In those two, AC  BC by assumption, 

AM  BM by construction, and CM is identical to itself. By SSS, 

triangles AMC and BMC are congruent. Therefore their corresponding 

parts match, making angle A congruent to angle B. 

Notice that the argument says that the base-angles statement is true because the SSS principle is true. 

There is no record that SSS had been proved before, but it may have been accepted as supported by long 

experience.  The physical principle that the triangle is rigid is a manifestation of a geometric one, that if 

the sides of a triangle match up with those of a second, then the triangles have the same size and shape. 

2. The Pythagoreans 

Not much is known about Pythagoras, except that he died some fifty years after Thales (under whom 

he may have studied), around 500 BCE. By his time, though, it was possible to make a living by 

establishing a “school.” If you acquired a reputation for knowledge or wisdom, you could gather 

followers around you who would pay or otherwise support you, in exchange for getting to learn from 

your thinking. It is the disciples, the Pythagoreans, whom we focus on. 

 

A B 

C 

M 

http://www.archive.org/stream/AHistoryOfMathematics/Boyer-AHistoryOfMathematics#page/n66/mode/1up
http://www.archive.org/stream/AHistoryOfMathematics/Boyer-AHistoryOfMathematics#page/n67/mode/1up
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The Pythagoreans formed a secret, mystical society. They were given to all sorts of beliefs about the 

supernatural power of numbers. This focus on number will make us come back to them later. [Plato’s 

school was an actual, physical academy, whose gate was said to bear a sign to the effect of, “Let no one 

ignorant of mathematics enter here.” That sounds like a salute to the glory of mathematics. My colleague 

Ethan Akin points out that the Greek name for mathematics amounted to “geometry.” Accordingly, he 

says, the sign was actually a suggestion that the number-mad Pythagoreans might take their talents 

elsewhere.] Still, they were Greeks, and therefore well versed in geometry. 

a) figurate numbers 

Typical of the Pythagoreans was the idea of figurate numbers. 

In the left half of the figure at right, we have 1 gray ball, 

then 1 + 2, then 1 + 2 + 3, then 1 + 2 + 3 + 4, formed into triangles. 

Accordingly, the numbers 1, 3, 6, 10 ... are called triangular 

numbers. The Pythagoreans produced the equivalent of the formula 

 1 + 2 + ... + n  =  n(n + 1)/2. 

In the right side of the figure, which tries to show three dimensions, 

we form 1 (white) ball, then 1 + 4 (4 greens), then 1 + 4 + 9 (9 reds) into tetrahedra. We may call the 

resulting 1, 5, 14, ... pyramidal numbers. Naturally, the Pythagoreans knew 

 1 + 4 + 9 + ... + n
2
  =  n(n + 1)(2n + 1)/6. 

[We typically meet these formulas in the calculus introduction to integrals. They are worth memorizing.] 

b) proving the theorem 

From the Pythagoreans, we have the first proof of the theorem that bears their name. We will give a 

proof here that relies entirely on a picture. (Compare Exercise 2.) The proof is not remarkable; over the 

centuries, people would produce original proofs for the purpose of showing off their erudition. 

At right, we start with right triangle ABC (filled in red). It has 

AC of length b horizontal, BC = a vertical. We extend CB 

upward a length b to point D. At D, we draw the horizontal 

rightward, a length a to point E, then a further length b to 

point F. At F we draw the vertical downward, meeting the 

extension of CA at G. By construction, quadrilateral CGFD 

has four right angles. It has congruent adjacent sides CD 

and DF, both a + b long. Therefore it is a square. That means 

AG has to be a, and if we pick H to be distance a down 

from F, then necessarily HG = b. 

The green horizontal at B and vertical at E break up CGFD 

into the square on BC, the square on EF (the same size as that 

on AC), and two rectangles. (If we were talking algebra, we 

would say this merely reflects [a + b]
2
 = a

2
 + 2ab + b

2
.) Therefore the area of CGFD is the sum of 

the square on BC, the square on AC, and two rectangles. 

The dotted lines BE, EH, and HA create three corner triangles that are congruent to the original ABC 

(right triangles, legs a and b). That tells us that quadrilateral AHEB has four congruent sides, c long. 

It also tells us that angle HAG matches angle ABC. Since angles ABC and CAB add up to 90, it 

follows that angles HAG and CAB add up to 90. That leaves the same 90 for angle BAH. Hence 

AHEB is a rhombus with a right angle; it is the square on AB. It follows that the area of CGFD is the 

sum of the square on AB and four triangles. 
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We now know that 

 area CGFD = square on BC + square on AC + two rectangles 

   = square on AB    + four triangles. 

Clearly the two rectangles are congruent, and the rectangle at upper left is twice the size of the 

triangles. Therefore the two rectangles sum to the area of the four triangles. We conclude that the 

square on the hypotenuse is the sum of the squares on the other two sides. 

c) pentagons and the section 

Our final sample of Pythagorean geometry involves regular pentagons. Below we draw regular 

pentagon ABCDE, filled in red. We add the circumscribed circle, dashed. Then we add the diagonals 

AD, BD, and BE, which meets AD at P. The Pythagoreans discovered that 

 AD/PD = PD/AP. 

In words, any two diagonals so intersect that for each, the whole is to the longer piece as the longer 

piece is to the shorter. (Prove it in Exercise 4a, based on the information below.) 

It is a geometric fact that every regular polygon can be inscribed 

in a circle. If you draw the perpendicular bisectors of adjacent 

sides, like AB and BC, the bisectors intersect at a point 

equidistant from A, B, and C. You can accept from symmetry, 

or prove with some effort, that the intersection is actually 

equidistant from all the polygon’s vertices. Accordingly, the 

circle centered there and reaching one vertex reaches them all. 

The circle is important because it gives us angle measures. First, 

each angle of the pentagon is inscribed in an arc 3/5 of the 

circle. That makes each angle measure 

 ½  3/5  360 = 108. 

(An even more familiar principle says that the exterior angles of 

a polygon share 360. It implies that the pentagon’s exterior 

angles are 72 apiece, leaving 108 for the interior angles.) Second, the angles of triangle ABD are 

all inscribed. They have to measure 36-72-72. In triangle DEP, the angles at D and E are inscribed. 

They have to be 36 and 72, respectively, leaving 72 for the angle at P. All the tall, narrow 

triangles, like BPA, have angles 36-72-72. By analogous reckoning, the short, wide triangles, like 

APE, have 108-36-36 angles. 

[Leaving out the other diagonals makes the proof in Exercise 4a easier. Add the remaining two 

diagonals. You will see the (sign of the) pentagram. Even if you never saw the original Wolf Man 

movie (Lon Chaney Jr., from Universal Studios), you can imagine the mystic properties the boys 

would have ascribed to this figure. Separately, you will see a smaller hexagon inside the original; go 

to Exercise 4b.] 

The relationship in which the whole bears to the bigger piece the same ratio that the bigger bears to 

the smaller is called the golden section (or golden mean or golden ratio.) The ratio has many 

properties, including one whose basis appears to be aesthetic. [In other words, I do not know a 

mathematical basis for it.] That property is the idea that the most pleasing proportion for a rectangle—

what we now call the “aspect ratio”—prevails when the width bears the golden ratio to the height. That 

is the same as saying that width + height bears the golden ratio to the width. 

We are going to do two things with the ratio: First we evaluate it, then we construct it. 
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Let us section a line segment of length L into pieces x and L – x, so that 

 L/x  =  x/(L – x). 

First, divide numerators and denominators by L, to make the proportion  

 1/(x/L)  =  (x/L)/(1 – x/L). 

If we substitute y for x/L, we see that the original length L is irrelevant; the proportion amounts to 

 1/y  =  y/(1 – y). 

The resulting quadratic is yours to solve. Its positive solution is 

 y  =  (5 – 1)/2    .62. 

This is informative; it says that in the section, the longer piece is about 0.6 of the whole. Remember, 

though, that it was L/x = 1/y we named “the ratio”: 

 1/y = 2/(5 – 1) 

  = (5 + 1)/2  (Prove that equality.) 

   1.62   (Is the “.62” a coincidence?) 

For the construction of the ratio, we show one way to “section” a segment. 

At right, start with segment AB (red), whose length we call 1. Along 

the perpendicular at A, lay off half the length to C. Then BC has length 

 (1
2
 + [½]

2
)  =  1¼  =  5/2. 

Draw the arc centered at C through A, meeting BC at D. That leaves 

 BD = 5/2 – 1/2. 

The black dotted arc, centered at B through D, sections AB at E. 

[Throughout the book, after a construction has been described in the text or an exercise, you may 

invoke it. Thus for example, you may say “Section this segment” without going through the description 

above of how to do it.] 

 Exercises III.A.2

1. (Boyer) Prove one of the theorems ascribed to Thales. Would he have reasoned the way 
you do? 

2. Prove by means of a picture that: 
a) 1 + 2 + ... + n = n(n + 1)/2. 
b) The sum of consecutive triangular numbers is a square (like 6 + 10 = 16). 

3. How many diagonals does a regular pentagon have? How many in an n-gon? 

4. a) Prove that the diagonals of a regular pentagon “section” each other. (Hint: The question 
asks you to prove a proportion. In geometry, there is just one concept related to 
proportionality.) 
b) The diagonals bound a little top-down pentagon, clearly regular, within the original one. 
Show that the sides of the original bear the square of the golden ratio to those of the inner. 
What happens if you draw the diagonals of the inner one? 

5. Describe the straightedge-and-compass construction of a regular pentagon: 
a) given one side. (Hint [from one of my students]: “Unsection” it. To start the sectioning 
above, you build a right triangle whose hypotenuse has the length of the pentagon’s 
diagonals. Build the diagonals to the given side and work from there.) 
b) or instead, given one diagonal. (Hint: Section it.) 
c) or instead, given the circumscribed circle (hereafter circumcircle). (Hint: Start to section 

the radius; establish that the right triangle has an 18 angle at the circle’s center.) 

x 
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3. Constructions 

The century from 500 to 400 BCE brought tremendous achievement in Greek geometry, but we will 

focus largely on constructions. 

a) constructions 

A “construction” is a drawing process that produces a model of a geometric figure. At the most 

elementary level, we can use a compass to construct parts of circles, and a straightedge—a ruler with no 

markings on it—to construct parts of lines. Exercise 1 lists some of the earliest constructions students 

encounter in the elementary geometry course. Exercise 2 has some other, harder elementary ones, and 

Exercise 3 gives comparatively advanced ones. 

The rule that you must do constructions armed with just straightedge and compass comes from later, 

but it was already in Euclid’s writing around 300 BCE. Even now people do not always agree on it, and 

you can make challenges under other rules; see Exercise 4. For that matter, there is not universal 

agreement on what makes a compass. To some, a compass is the familiar kind that holds its setting by 

friction or by a screw. To others, it is one of those classroom tools with a loose hinge, so that its arms 

flop together or apart if you hold just one of them. We will stick with the standard rule and instruments. 

Notice that we distinguish between “elementariness” and “difficulty.” A question is elementary if 

you can understand it. Otherwise, it is advanced. A question is difficult if you are unable to answer it; 

otherwise, it is easy. The question of constructing a regular pentagon, Exercise 5 in the previous section, 

is an example of an elementary but hard construction. Both ideas are evidently relative: What is 

elementary to a graduate student is advanced to a ninth-grader, and often a hard question comes to seem 

easy after you have seen it or a close relative answered. 

b) the three ancient problems 

In that fifth century, Anaxagoras popularized three wonderfully elementary constructions. One was 

the problem of squaring the circle. 

Problem 1. Given a circle, construct a square of equal area. 

Instead of addressing the problem, put it into perspective with the problem of squaring a rectangle. 

In the figure at right, we have rectangle ABCD in red, w wide 

by h tall. We extend the width AB by h to point E, then find the 

midpoint M of AE. We draw in green the circle centered at M of 

radius AM = ME. Then we build the blue perpendicular to AE 

at B. It meets the circle at F and G. We employ two properties of 

chords in circles. First, if a chord like FG is perpendicular to the 

diameter AE of a circle, then the diameter bisects the chord. That 

implies FB = BG. Second, if any two chords meet inside a circle, 

then the product of the (lengths of the) pieces of one equals the 

product of the pieces of the other. That makes 

 AB  BE = FB  BG, 

or 

 wh = (FB)
2
. 

In other words, FB is the side of a square of area wh. We then build the square (not shown) as per 

Exercise 1d, and we have squared the rectangle. 

The other famous problems were trisecting an angle and doubling a cube. 

Problem 2. Given an angle, construct the rays that partition it into three congruent angles. 
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Problem 3. Given a cube, construct (one edge of) a cube with twice the volume. 

Contrast Problem 2 with Exercise 3a, which implies that breaking a segment into three or more 

congruent pieces is advanced but doable. Similarly, contrast Problem 3 with Exercises 2a and 5b, which 

together imply that you can duplicate or triplicate or more any square. 

The contemporaries of Anaxagoras knew how to square any straight-sided figure (Exercise 5d). It 

was natural that they should turn to the most elementary curved figure. But squaring the circle turned out 

to be hard. Really hard; nobody could do it. Hundreds of years later, still nobody had broken the 

problem. It was enough to make geometers wonder whether the construction was impossible. 

Now that brings up a truly advanced question. What does it mean to say a task is impossible? 

Obviously you can prove that a construction is possible by doing it. How could you possibly prove 

impossibility? We will come back to the question. Meanwhile, it is worth reflecting on a numerical 

impossibility we already met: According to Exercise II.B.1:1c, you cannot find two odd numbers whose 

squares add up to 1,000,000 = 1000
2
. See also Exercise 6 here. 

The difficulty was especially intriguing because Hippocrates (not the medicine man, but like the 

physician, a native of the islands) managed to square one 

particular region with curved sides.  A lune is the region inside 

one circle and outside an overlapping, bigger circle. In the figure 

at right, we draw the circle centered at O, filled in red, with a 

radius that we set at 1 unit. AB and CD are perpendicular 

diameters of it. In front of that circle, we draw the second circle 

(yellow), centered at D and reaching A and B. The lune is the 

visible red part. Hippocrates squared that lune by showing that it 

has the same area as triangle ABC. 

Draw in blue the chords AC and BC in the first circle and 

AB, which we now view as a chord, in the second. The 

region bounded by a chord and the shorter arc of its circle is 

called a segment of the circle. It is clear that AC and BC span a quarter of the first circle. Therefore 

they bound congruent segments. Because angle ADB is a right angle (Why?), AB spans a quarter of 

the second circle. Consequently, the segment it bounds in the second circle is similar to those of AC 

and BC in the first. 

Here we are extending the concept of similarity to regions other than triangles, but the properties that 

go with the concept match what happens in triangles. When you have similar segments of circles, 

their corresponding linear elements are proportional, and those (line segment) elements are in the 

same ratio as the two radii. For example, you can see that the radius DB of the second circle is 2; 

the ratio of the radii is 2/1. For the chords, AB has length 2, AC has length 2 (Why?), for a ratio 

of 2/2 = 2. In the same way, the sagitta of AB—the perpendicular distance OS from the midpoint 

of the chord to the arc—is obviously 2 – 1. It is less obviously 1 – 2/2 for AC or BC. (Check that 

last measurement by drawing the radius that bisects angle AOC. Then check the ratio between 2 – 1 

and 1 – 2/2.) 

More important for similar circular segments, the ratio between their areas is the square of the ratio 

between the linear parts. It follows that the area of the segment bounded by AB is twice the area of 

the segment bounded by AC or BC. In other words, the AB segment has the area of the other two 

combined. (It was Hippocrates who first proved the statement about the ratio of the areas. The 

statement’s restriction to semicircles is itself important; it implies that the (ratios of) areas of circles 

are as the squares of the radii.) 
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Now see why the area of the lune is the area of right triangle ABC. The lune consists of the two 

smaller segments and the part of triangle ABC above the larger segment. Therefore 

 area of lune = areas of the smaller segments + area of the triangle – area of the larger segment. 

(You should consider that this relation depends on the fact that the larger circle does not stick out 

above the triangle. The reason is that AC and BC are tangent to the larger circle; explain why.) Since 

the smaller segments add up to the larger, the lune is the size of the triangle. If we build the square 

whose sides are OC and OB, then we complete the quadrature, the squaring, of this lune. 

. This is a titanic exercise set. It will profit you to read all the exercises. How-Exercises III.A.3
ever, discretion being the better part of valor, it will be wise to do only a selection of them. 

1. Describe the construction of: 
a) a copy of a line segment (a segment equal in length to a given one, or to the distance 
between two given points); 
b) the perpendicular bisector of a given segment; 
c) the perpendicular at a specified point of a given segment; 
d) a square having  a given segment as one side; 
e) the perpendicular to a given line from a given point off the line; 
f) the bisector of a given angle; 
g) a copy of a given angle, the copy having a given segment or ray as one side. 

2. Describe the construction of: 
a) a square twice as big as a given one (It is easy to make one twice as wide and twice as 
tall. But, a square being two-dimensional, the natural measure of size is area. This question 
wants a square with twice the area.); 
b) a square half as big as a given square; 
c) the circumcircle of a given triangle; 
d) the circumcircle of a given regular polygon. 

3. Describe the construction of: 
a) the points that divide a given segment into a specified number of congruent pieces; 
b) the two tangents to a given circle from a given point outside the circle. 

4. With only a compass, construct two circles that intersect at right angles (circles with 
perpendicular tangents at their two points of intersection). 

5. Describe how to: 
a) square a triangle. (Hint: First enclose the triangle in a rectangle.) 
b) construct a square whose area is the sum of two given squares. 
c) construct a square equal to the difference of two given squares. 
d) square a polygon. 

6. a) Prove that if a quadrilateral is inscribed in (has all four vertices on) a circle, then its 
opposite (nonadjacent) angles are supplementary. 
b) Prove that it is impossible to inscribe a parallelogram in a circle, except for a rectangle. 

4. Eudoxus 

The years around 400 BCE were eventful for Athens. The city fell to Sparta in 404, Socrates died 

in 399, and Eudoxus (aged maybe 21) moved there around 387. The works of Eudoxus are about as 

extensive and brilliant as those of Archimedes, who attributed many results (to which he brought 

original insights) to Eudoxus. We will get into discoveries about numbers later. Here we look at 

Eudoxus’s most famous study in geometry, the method of exhaustion. 
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a) the question 

Long before Eudoxus, the Greeks knew that you can approximate the area of the circle by resort to 

inscribed regular polygons, for which they could compute areas. The idea led to a formula. 

In the figure at right, we have a circle of radius r centered at O. 

We label three consecutive vertices A, B, C of the inscribed 

regular n-gon (green outline). Each of its sides has length s. The 

altitude OP (red) of triangle AOB is called the apothegm of the 

polygon, as is its length a. The area of triangle OAB is as/2. The 

total area of the polygon is therefore 

 n as/2  =  a(ns)/2  =  aP/2, 

with P being the perimeter of the polygon. 

Picture now a regular polygon of a million sides. You see that it so hugs the circumcircle that its 

perimeter is practically the circumference C, its apothegm practically the radius r, and its area 

practically the area A of the circle. From 

 A    area of polygon  =  aP/2    rC/2, 

we conclude that the area of the circle is given by 

 A = rC/2. 

To reconcile that formula with the familiar one, think in terms of Hippocrates’s discovery about 

corresponding parts. Given the million-gon we already have, suppose a second one is inscribed in a 

circle of radius r* and circumference C*. The constituent triangles of the two million-gons are 

similar, because each triangle is isosceles and has an apex angle of 360/10
6
. Therefore the second 

apothegm a*, side s*, and perimeter P* = 10
6
s* are in proportion to the radii: 

 a*/a = s*/s = P*/P = r*/r. 

To the extent that C* and C are indistinguishable from P* and P, the last equality gives 

 C*/C  =  r*/r. 

Rewrite that as 

 C*/r*  =  C/r. 

It says that in any two circles, the ratio between circumference and radius is the same. Write that 

constant as 2, even though the “” symbol came into use 2200 years after Eudoxus. Then we have 

 C = 2r and A  =  rC/2  =  r
2
. 

(Separately, without resort to : The areas of the similar million-gons are in proportion to the 

squares of the radii. It is reasonable to figure that this reasoning is how Hippocrates concluded that 

the areas of the circles are in the same proportion.)  

b)  the method of exhaustion 

What the method exhausts is the area of a circle. It is intuitively clear that you improve the 

approximation by applying polygons of more and more sides. The key to the method of exhaustion—

what made it conclusive—is that if you begin with one inscribed regular polygon and double the number 

of sides repeatedly, then the resulting polygons exhaust the area. That is, the area of the circle 

unoccupied by the polygons—what we will begin to call the error–gets closer and closer to zero. 

To prove that the approximation approaches the exact area, we start with a hexagon. The hexagon 

has the desirable property of being easy to construct. 
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In the figure at right, we visualize the constituent triangle AOB of 

the inscribed regular hexagon (green). The angle AOB is 360/6. 

Therefore the triangle is equilateral, and the side AB of the 

hexagon equals the radius. 

For that reason, the hexagon is the easiest polygon to inscribe. To 

do so, we draw the circle and keep the compass setting. Put the 

compass point at A and mark off B with the other leg. Then put 

the compass point at B, mark off the next vertex, and continue around back to A. You thereby 

determine the six vertices of the hexagon. 

Now add to the figure the apothegm OP (red), extending it to Q on the circle. Because OP is the 

altitude in an isosceles triangle, it bisects angle AOB. Necessarily, Q bisects arc AB. That means A, Q, 

and B are consecutive vertices of the inscribed regular dodecagon (12-sider). 

Next, at right we magnify the top part of the previous figure. We 

show the dodecagon (yellow) peeking out from behind the 

hexagon. It is clear that the dodecagon takes in some area of the 

circle that the hexagon missed; it gives a better approximation to 

the circle. To see how much better, draw at Q the tangent (blue), 

which is parallel to AB. (Why?) Add also the perpendiculars 

(dashed) from A and B to the tangent, meeting the tangent at R and S. From the top of the circle, the 

hexagon leaves out the (circle’s) segment bounded by AB. From that error, the dodecagon eats up 

the area of triangle ABQ. Triangle ABQ, like any triangle inscribed in a rectangle, has half the area 

of rectangle ABSR. The area of ABSR exceeds the area of the AB segment. Therefore the 

dodecagon recovers more than half of the area the hexagon leaves out. The dodecagon’s error is less 

than half the hexagon’s error. (Do Exercise 1 to illustrate the calculations that follow from this idea.) 

The above argument applies to any number of sides and its double. Each doubling of the number of 

sides reduces the error by more than half. We infer that the areas of the (32
n
)-gons approach the area of 

the circle. 

c) the need 

This more-than-half worry is a response to the demands of Zeno’s logic. Zeno was a philosopher 

living about 50 years before Eudoxus. He argued that mathematical thinkers were resorting to unreliable 

logic. He was especially wary of (what we call) infinite processes (like exhaustion) that indefinitely 

reduce quantities (like the method’s error). To make his point, he propounded “Zeno’s paradoxes.” A 

paradox is just a contradiction. Paradoxes are typically presented as seemingly sound arguments that 

lead to a conclusion contrary to experience or to another apparently sound line of reasoning. The most 

famous of his paradoxes, which has multiple versions, involves Achilles racing a tortoise. It has the 

near-immortal Achilles starting at point A, toward the same direction as a presumably slow tortoise 

starting at point B ahead of him. In his chase, Achilles first has to arrive at B. By then, the tortoise has 

advanced to B1, so Achilles must next get to B1. But by the time he gets to B1, the tortoise has advanced 

to B2. Achilles must then .... Consequently Achilles can never overtake the tortoise. 

We can resolve the paradox by applying some numbers. Imagine that Achilles runs at 1000 cm/sec. 

(Can a human, even one with super powers, run that fast?) Assume the tortoise cruises at 1 cm/sec, 

and the original head start is 3000 cm. It takes Achilles 3 sec to cover the 3000 cm, during which 

time the tortoise advances 3 cm. Achilles needs another 3/1000 sec to cover the 3 cm, during which 

the tortoise zooms ahead another 3/1000 cm. Achilles must run another (3/1000)/1000 = 3/1000
2
 sec, 

and so on. We now see what “never” amounts to. Achilles cannot overhaul the tortoise in 3 sec, nor 
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in 3 + 3/1000, nor in 3 + 3/1000 + 3/1000
2
, .... If the race clock does not reach  

 3 + 3/1000 + 3/1000
2
 + ... 

then Achilles does not reach the tortoise. But if the clock does make it to that mark (Exercise 3), then 

at that time Achilles catches up. 

The relevance to Eudoxus’s method is this: It does not suffice to note that doubling the number of 

sides reduces the area error. Imagine moving toward a chair that is initially 2 m ahead of you and has a 

wall 3 m beyond it. If in the first second you cover half the distance to the chair, the next second half the 

remaining distance, the next second half again, and so on, then it is true that you never reach the chair. 

You are getting closer to it: Your distance starts at 2 m, becomes 1 m, then ½ m, then ¼ m, .... You are 

also getting closer to the wall: Your distance from the wall starts at 5 m, becomes 4, then 3½, 3¼, and so 

on. The distinction is that your distance from the chair is decreasing toward zero. Distance from the wall 

is decreasing toward 3 m. In modern terms, we say that the areas of the polygons approach the area of 

the circle, meaning that the difference between the area of the circle and the areas of the polygons 

shrinks toward zero. For that, it is essential that the difference decrease by at least a fixed fraction (it 

does not have to be half) with each doubling of the number of sides. Mindful of Zeno’s warnings about 

infinite processes, Eudoxus would have said that the areas of the polygons (necessarily smaller than the 

area of the circle) become greater than any fixed number smaller than the area of the circle. 

 Exercises III.A.4

1. Try a little exhaustion: 
a) Sketch (roughly) a unit circle and its inscribed regular hexagon. Use the hexagon’s 
constituent triangles to compute its area exactly (in terms of radicals). Show that the result 
is approximately 2.60. 
(You may use a calculator. Of course Eudoxus could not, but he would have been able to 

do Exercise II.B.3:5 to approximate 3  97/56 and calculate from there.) 
b) Sketch the inscribed dodecagon. Use its constituent triangles to compute its area in 
terms of trigonometric functions, and evaluate via a scientific calculator. 
(Here it is essential to emphasize that Eudoxus would not have used our trigonometric 
functions. We will see later how the Greeks did trigonometry.) 
c) If your answer in (b) is 3, then it is right and it should surprise you. Now explain why it 
works out to a whole number. 
d) Confirm that the answer in (b) and (c) eliminates more than half the error from the 

hexagon’s approximation 2.60 to the circle’s area . 
e) Calculate the area as in (b) for the 24-gon, and do the error comparison as in (d). 

2. Since the circumference of the unit circle is 2, we could also approximate  by 
approximating half the circumference with half the polygon perimeters. 
a) What is the semiperimeter of the inscribed regular hexagon? 

b) Show that the semiperimeter of the dodecagon is 12 sin 15, and calculate that. 

c) (Calculus) For the regular n-gon, the semiperimeter will be n sin (360/2n). Find the limit 
of this expression as n tends to infinity. (Remember: The important limit relations for angles 
require the angles to be in radians.) 

3. a) Find the “sum” 
 3 + 3/1000 + 3/10002 + .... 
b) With Achilles trying to erase a 3000 cm gap at a closing speed of (1000 – 1) cm/sec, [I 
would have guessed that] it should take him 3000/999 sec. Does (a) agree? 
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5. Euclid 

In the latter half of the fourth century, Greece was transformed. Before his death in 323 BCE, 

Alexander conquered much of the known world. Greek culture, including Greek mathematics, came to 

influence lands as far away as India. 

Upon conquering Egypt around 330, Alexander established a new capital city in the Nile delta. (The 

Egyptians’ capitals, like Memphis and Thebes, had been considerably up—south along—the river.) It 

was Alexander’s habit to name his new cities “Alexandria.” He also habitually left one of his 

Macedonian generals in charge of conquered lands. In the Egyptian Alexandria, it was Ptolemy. The 

Ptolemies, a dynasty of enlightened rulers, ruled Egypt for almost three centuries. 

Ptolemy founded a center of the arts and sciences dedicated to the muses, called therefore the 

“Museum.” It attracted scholars from throughout the Mediterranean world, and turned Alexandria into 

an important cultural center. Then he or his successors hit upon the idea of establishing a port tax. Any 

ship entering the port had to surrender its books, maps, and other sources of information long enough for 

them to be copied. The originals went to a collection in the Museum; the locals returned the copies. Thus 

was born the ancient world’s most awe-inspiring institution: the Great Library. With this collection, 

Alexandria became the jewel of Mediterranean knowledge. 

Euclid, already well known, was invited to this place around 320. His writings are a compendium of 

practically all mathematics and science known at the time. We will focus on his most famous book, 

The Elements. (Many leaders of schools gave their books that title.) It covers his geometry plus other 

material, some of which we will return to. It is important to note, right at the outset, that Euclid did not 

create or discover geometry; he codified, or organized, it. 

a) geometry as a deductive system 

The specific organization he used began with Eudoxus: that of a deductive system. In a deductive 

system, you have a body of knowledge divided into two kinds of statements: “axioms,” which are 

assumed to be true; and “theorems,” whose truth may be inferred from a combination of axioms and 

earlier theorems. [I will not make Aristotle’s distinction between axioms and postulates; see Boyer for 

the ancient distinction.] 

Imagine that we consider these four statements to be facts: 

a) If the three sides of one triangle are congruent respectively to the three sides of a second, then the 

two triangles are congruent. 

b) In a triangle, the angles sum up to a straight angle. 

c) If two sides of one triangle are congruent, then the opposing angles are congruent. 

d) In an isosceles right triangle, the acute angles measure 45. 

We do not need to assume that each is true. According to our argument in section III.A.1, the truth of the 

first guarantees the truth of the third. We may put (a) into the assumption group, as a payment that buys 

us the truth of (c). Once (c) is known, then (b) and (c) together allow us to conclude that in an isosceles 

right triangle, the two acute angles share 180 – 90 equally. From that, we deduce (d). Thus, putting (a) 

and (b) among our axioms yields (c) and (d) by deduction. 

Once you identify some of your facts as theorems, they stay theorems. Not so with axioms. You 

examine your list of axioms. Suppose that on further investigation, you find that one of them follows 

from the others. Then you can move that one down to the top of the theorems list. You now have a 

shorter list of axioms, and all the theorems below follow from statements (axioms or theorems) above 

them. This process is clearly repeatable. You examine the shorter list of axioms, and if any of those 

follows from the rest, then you move it to the theorems list, and so on. The process cannot go on indef-

http://www.archive.org/stream/AHistoryOfMathematics/Boyer-AHistoryOfMathematics#page/n132/mode/1up
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initely, because presumably you begin with only a finite number of axioms. In fact, the process cannot 

even exhaust the axioms list, because you cannot draw information from no assumptions. (Actually, the 

trouble is that you can conclude everything from no assumptions, but that is a technical issue.) 

Clearly, then, the ideal basis for a deductive system is a set of axioms with three properties: 

a) All the facts in your body of knowledge follow from the set. 

b) None of the axioms follows from the others. 

c) No contradiction follows from the axioms. 

b) the view of Euclidean geometry 

We have already made use of knowledge and methods from Euclidean geometry, and we will use 

plenty more, so we need not exhibit axioms and theorems of The Elements right here. For now, it is 

worth making two remarks. 

One is that Euclid’s organization of geometry was held to be the model of deductive reasoning for 

more than two thousand years. Indeed, The Elements was studied as much to provide grounding in 

deductive thinking as to give a body of geometric knowledge. This was true even though there were 

objections, right from the beginning, that Euclid’s methods employed unstated assumptions. To illustrate 

what that means, consider this revisit to the base-angles theorem. 

Given triangle ABC (figure at right) with AC and BC congruent, draw the 

bisector (arrow in the figure) of angle C. Let it meet AB at D. Triangles 

ACD and BCD are congruent by SAS. Therefore angle A is congruent to 

angle B. 

The argument is convincing, but it relies on an assumption that does not 

have justification by resort to axioms and theorems in Euclidean geometry. 

The assumption is that the bisector of angle C meets the segment AB. 

Certainly the picture suggests that the bisector must escape the triangle, and 

has to do that by crossing the bottom. This is frequently the situation in which the “hidden assumptions” 

come up: a relationship that is evidenced by a diagram but not by strict reliance on the deductive system. 

It happens that Euclid’s axioms support the conclusion that the bisector must meet the line AB, but not 

that the meeting must be between A and B. Indeed, “between” is not a defined concept. 

The other remark is about the different approaches to geometry and algebra. By the time of Euclid, 

and perhaps back to the time of Thales, the Greeks focused on geometry as a deductive pursuit. Struik 

names this focus the “Greek tradition.” In what we can fairly call algebra, the Babylonians and 

Egyptians had a completely algorithmic (or problem-solving or methods-oriented) view. Struik refers to 

their way as the “Oriental tradition.”  The difference is not just of historical interest. We still maintain 

that separation in the way we teach algebra and geometry. We teach geometry as a deductive system, but 

algebra as a collection of methods. 

6. Archimedes 

Three giants led Greek mathematics during the fourth and third centuries BCE. We have already met 

Eudoxus, and will come back to him. We will soon get to know Apollonius. The greatest of them all was 

Archimedes the Syracusan. 

Archimedes (284-212) was beyond famous; he was legendary. The ingenuity of his methods and 

clarity of his exposition made some swear he could not be human. His fame was doubtless known to 

Marcellus even before Marcellus’s fleet had to contend with the inventions of Archimedes. When the 

Romans began to build an empire, they came into conflict with Carthage. (Where is Carthage?) During 

the second Carthaginian (“Punic”) war, they decided to take Carthage’s ally, the Greek city of Syracuse. 
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(Where is Syracuse?) Accordingly, Marcellus laid siege to the city in 214. His force encountered a 

bewildering array of defenses. They included road sections that sank or rose beneath marching units, 

cranes that reached out to lift and overturn boats, even (legend has it) an arc of men holding polished 

shields into the form of a concave mirror to focus solar light onto ships and set them on fire, all created 

by Archimedes. Marcellus gave strict orders that the engineer—back then, an “engine” was a weapon—

was to be brought to him unharmed. The story goes that when the siege succeeded, one of the victorious 

Romans encountered the geometer doodling in the sand. Some say the old guy told the soldier to get out 

of his light, some that he simply failed to obey the soldier’s order. Either way, in 212 the greatest mind 

of antiquity was stilled. 

His inventions included the water screw, a helical device that could lift water to height limited only 

by the height of the screw. His exposition included the first explanation of the principle of the lever 

(equal products of force and lever arm) and, of course, of the hydrostatic principle that bears his name. 

Archimedes’s principle states that a liquid exerts on an object a buoyant force equal to the weight 

of that liquid that has been displaced by the submerged part of the object. Set a 60 lb boat onto still 

water. It will settle down to where the submerged part of the boat, which includes a lot of air, takes 

the place of 60 lb of water. (How much volume would that be?) If you step into the boat, then to 

hold you and the boat afloat, the buoyant force has to increase by your weight. That is, the boat must 

settle further down to increase the displacement by whatever volume of water has your weight. Have 

eleven of your friends join you in the boat, and even with the entire boat under water, the buoyant 

force will not be sufficient to keep the dozen partiers dry. 

a) Quadrature of the Parabola 

In the book of that title, his geometric work included the second squaring of a region with curved 

boundary. 

(i) the area 

The figure at right shows part of a parabola (black curve) 

having vertical axis and opening upward. We pick two points 

A and B on the parabola; they are shown, but need not be, on 

opposite sides of the axis. We refer to line segment AB as a 

chord of the parabola, and the region (red) bounded by the 

chord and the (intercepted) arc between A and B as a 

segment of the parabola. 

Hold a ruler along AB, then slide the ruler downward 

without changing its inclination—in other words, so that its 

edge is always parallel to AB. As it slides through positions like the dashed green line, the edge 

continues to intersect the parabola at two points, but the points get closer together. It is intuitively clear 

that eventually, the two intersections will coalesce into one point P*. At that point, the edge traces the 

tangent (blue line) to the parabola, and the tangent is parallel to the chord. 

Since all the points save P* of the parabola are above the tangent, triangle AP*B is the tallest one 

having AB as one side and the remaining vertex on the intercepted arc. Consequently AP*B has the 

greatest area of all such triangles. We distinguish it by naming it the inscribed triangle. 

Archimedes squared the segment of the parabola with the following result. 

Theorem 1. The area of the segment is 4/3 the area of the inscribed triangle. 
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(ii) the method of The Method 

That “intuitively clear” four paragraphs back was not a guess at how the Syracusan thought. It was 

typical of Archimedes to discover mathematical truths informally. In the last figure, notice the vertical 

line segments (dashed black) from A and B to the tangent. They are opposite sides of a parallelogram 

that necessarily has twice the area of the inscribed triangle. (Why?) Archimedes used—of all things—a 

weighing argument. In effect, the explainer of the lever balanced the verticals within the (parabola’s) 

segment against those within the parallelogram on a lever with arms 3/2 as long on the segment side. 

(Observe the imprecise treatment of parallelogram and segment as the sum of a bunch of verticals.) He 

thus convinced himself that the segment has 2/3 the weight, meaning area, of the parallelogram. 

We know he operated that way from his own testimony. In the short book titled The Method, he 

wrote that he always used analogy, heuristics, even physical comparisons, to discover relationships. 

Later, of course, he resorted to geometry to deliver proof. We will do likewise next. 

(It was believed that The Method, like so much of Greek writing, had disappeared from the face of 

the Earth. The world only knew about it from second-hand references to it. Instead, a copy turned up in 

1906, two millennia after its author was gone. It was in a manuscript, itself a thousand years old, 

carrying some of his other results.) 

(iii) the method of Eudoxus 

Now forget the intuition and work the geometry. 

Start in the picture at right with the parabola and the chord 

AB. Add the midpoint M of AB and the (dashed) vertical line 

L through M. That line cuts the parabola at a point P. 

Archimedes invoked a theorem of Apollonius. The 

theorem, which we [meaning you] will prove in the 

Apollonius section (Exercise III.A.7c:2a), says that all the 

chords parallel to AB have their midpoints along a single line 

parallel to the axis of the parabola. That line has to be L. 

Now add to the picture the (blue) line T through P parallel 

to AB. That line cannot have any other point of the parabola. If it did, P and the other point would bound 

a chord parallel to AB but with a misplaced midpoint. Accordingly, T is the tangent to the parabola at P. 

We have established that the tangent is parallel to the chord—showing us the inscribed triangle—at the 

point horizontally halfway between A and B. (Compare Exercise 6a.) 

Let us nickname our segment the “level-0 segment” and ABP the “level-0 triangle.” In the figure at 

left, we bring back the verticals from A and B to the tangent T 

and draw in green the (“level-1”) triangles inscribed in the two 

(“level-1”) segments of the parabola outside the level-0 

triangle. We noted that the level-0 triangle has half the area of 

the enclosing parallelogram. The parallelogram has greater 

area than the level-0 segment. Therefore the level-0 triangle 

covers more than half the area of the segment. For the same 

reason, each level-1 triangle covers more than half of its 

level-1 segment. At the next level, the four level-2 triangles 

cover more than half their level-2 segments. In approximation terms, each additional level eats away 

more than half the error in the area of the original segment. We conclude that the family of inscribed 

triangles exhausts the area of the original segment. (Compare Eudoxus’s exhaustion of the circle.) 
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(iv) measuring and adding the pieces 

Finally, we measure the triangles by looking at the transition from one level to the next. 

Focus on one level-1 segment. Recall what is true of every segment: The vertical (the parallel to the 

axis, dash-dot blue in the figure at right) through the midpoint N of 

the spanning chord AP is halfway between the verticals at A and P; 

and it crosses the parabola at the third vertex Q of that segment’s 

inscribed triangle. Extend PQ to meet the vertical through A at C. 

Let D be where that vertical meets the tangent parallel to AB. 

a) Q is the midpoint of CP. The reason is that equally-spaced 

parallel lines (the three verticals) cut any transversals into 

equal pieces. (See Exercise 3.) 

b) The level-1 triangle AQP has half the area of ACP. That is 

because AQ is the median to side CP, and any median cuts 

its triangle into two triangles of equal areas (Exercise 4). 

c) Triangle ACP has half the area of ADP. The reason is another contribution from Apollonius: C 

is the midpoint of AD (Exercise III.A.7c:2b). That means PC is the median to AD. 

d) Triangle ADP has the same area as APM. In fact, those two are congruent; they are halves of 

parallelogram ADPM. 

e) Triangle APM has half the area of the level-0 triangle APB, because PM is the median to AB. 

Multiply the fractions to conclude that each level-1 triangle has 1/8 the area of the level-0 triangle. 

If now we let T represent the area of APB, then the 2
1
 level-1 triangles add 

 2
1
T/8

1
  =  T/4 

to the accumulating area. In the same way, each level-2 triangle has 

 1/8 the area of the adjacent level-1 triangle  =  1/64 the area of APB. 

Hence the 2
2
 level-2 triangles together eat away another 

 2
2
T/8

2
  =  T/4

2
 

from the segment’s area. You see the pattern: The 2
n
 inscribed triangles of level-n  together cover 

 2
n
T/8

n
  =  T/4

n
 

more area. Comfortable as we are with infinite processes, we conclude that the area of the segment is 

 A  =  T + T/4 + T/4
2
 + … 

     =  T (1/[1 – 1/4])  =  4T/3. 

It became Archimedes’s habit to avoid Zeno’s censure by using finite processes to bracket the value 

under investigation. 

On one side, remember that the triangles of levels 0 through n  do not completely cover the original 

segment; their areas add up to the underestimate 

 en  =  T + T/4 + T/4
2
 + … + T/4

n
 

      =  T (1 – 1/4
n + 1

)/(1 – 1/4)  (geometric sum formula, or factor the numerator) 

      =  T (4/3 – [1/3]/4
n
). 

If you name any number smaller than 4T/3—no matter how close—a big enough m will squeeze em 

between the number and 4T/3. [Try an example: How big does m have to be to make 

 (4/3 – [1/3]/4
m 

) [no need for T]  exceed  1.333 333 333  =  4/3 – [1/3]/10
9
?] 

Since every em is less than A, Archimedes concluded that every number smaller than 4T/3 is also 

smaller than A. That means A < 4T/3 is not possible. 
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On the other side, recall that the parallelograms enclosing the level-n triangles more than enclose the 

segments left uncovered by the triangles of levels 0 to n – 1, and have twice the areas of the level-n 

triangles. Accordingly, if we add the triangle areas of levels 0 to n – 1 and the parallelogram areas of 

level n, we get the overestimate 

 En  =  T + T/4 + T/4
2
 + … + T/4

n-1
 + 2 T/4

n
 

       =  en + T/4
n
 

       =  T (4/3 + [2/3]/4
n
). 

For the mirror-image argument, pick any number bigger than 4T/3. Then any big enough k will 

squeeze Ek between 4T/3 and the number. With every Ek exceeding A, Archimedes inferred that any 

number exceeding 4T/3 also exceeds A. That renders A > 4T/3 impossible. 

Only one possibility remains: The area of the segment has to be 4T/3.   

a Exercises III.A.6

1. To complete squaring the segment of the parabola: How would you construct a square with 
area 4/3 the area of a given triangle? 

2. Given a parabola and one of its chords, how would you construct the tangent parallel to the 
chord? (Hint: You don’t know where the axis is—not even whether it is vertical--but you do 
know that the place of tangency is on the “line of midpoints.”) 

3. Show that parallel lines cut transversals into proportional pieces. In 
detail: In the figure at right, the black lines are parallels, not 
necessarily equally spaced. The blue lines are transversals that 
may or may not intersect. One transversal cuts the parallels at P, 
Q, R; the other cuts at S, T, U. Show that 
 PQ/ST  =  QR/TU  =  PR/SU. 

4. Show that a median cuts its triangle into two triangles of equal areas. 

5. At right, the parabola has vertical axis; chord AB has 
midpoint M and bounds the segment in red; the parallel 
tangent (blue) touches at P. Add a horizontal line (red) 
under the segment. The verticals (dashed) at A and B 
meet this line at T and U. The midpoint of TU is S. Show 
that the “area under the parabola”  (the area A* of the 
region filled in green) is given by 
 A*  =  (1/6 AT + 4/6 PS + 1/6 BU) TU. 
(Hint: The region consists of trapezoid ATUB minus the 
segment; the latter is 2/3 the (“enclosing”) parallelogram 
determined by AB and the tangent; and M, P, and S have 
to be on one vertical, with MS being the average of AT and BU.) 
[Assume the parallelogram is entirely above the line, as shown. The formula still happens 
to be valid if the assumption is false. It likewise prevails if the parabola opens downward, 
even though in that case, the region is a trapezoid plus the segment.) 
[View the formula as a statement that the area under the parabola is 

 A*  =  (average height)  width. 
There, “average height” refers to the weighted average that counts the height PS in the 
middle four times as much as the heights AT and BU at the two sides. The formula 
underlies Simpson’s rule. The rule uses arcs of parabolas to approximate curves, and 
provides therewith a method for approximating integrals.] 
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6.  (Calculus) In the Cartesian plane, consider the parabola given by y = x2. 
(You can answer this question for the general case y = ax2 + bx + c, but the extra details 
are unnecessary. We will see later that the simpler form can be fitted to any parabola.) 
a) Let A(a, a2) and B(b, b2) be two points on the graph. Show using the calculus that the 
point P(p, p2), where the tangent to the parabola is parallel to AB, is halfway left-to-right 
between A and B; in other words, show that p = (a + b)/2. 
b) Assume a < b. Integrate to find the area under the arc of the parabola from A to B. 

c) The (average height)  (width) formula in Exercise 5 would read 
 A = (1/6 a2 + 4/6 ([a + b]/2)2 + 1/6 b2) (b – a). 
(Remember: Each y-value is the square of its x-value.) Does that match the answer in (b)?  

b) Measurement of the Circle 

That title graced another book, the best-known work of Archimedes. In it, he brought two brilliant 

innovations to the method of exhaustion and its approximation of . 

(i) the overestimates 

The first new idea was to use circumscribed polygons to produce overestimates bracketing . 

Start with the hexagons. At right, we have side AB of an 

inscribed regular hexagon (dashed outline, hereafter inhexagon) in 

the unit circle centered at O. You can build the circumscribed 

regular hexagon (hereafter circumhexagon) by constructing the 

tangents to the circle at the six vertices of the inhexagon. (How do 

you construct those tangents?) The tangents at A and B (dark green 

outline) meet at R. Each of RA and RB is half of a side of the cir-

cumhexagon (filled in light green). The line segment OR (dashed 

red) crosses the circle at Q and AB at P. 

AR and BR are congruent, because they are tangents from a common point. Hence triangles OBR 

and OAR are congruent by SSS, and OR bisects angle AOB. OR is therefore perpendicular to AB. 

Triangle OPA is a 30-60-90 triangle with hypotenuse OA = 1. It follows that its area is 3/8, and 

the inhexagon has area 12(3/8) = 33/2. (Compare Exercise III.A.4:1a.). Triangle OAR is similar, 

but with longer leg OA =1. Hence its other leg is 1/3, it has area 1(1/3)/2, and the circumhexagon 

has area 12/(23) = 23. We bracket  between the two areas: 

 (3/2)3 <  < 23. 

Having an overestimate to go with the underestimate is valuable, because we draw from them an 

indication of their accuracy. Write 3  97/56 (Exercise II.B.3:5a). Our bounds become 

 291/112 <  < 388/112. 

Those two differ by 97/112. Therefore their average is necessarily within 97/224  0.43 of ; as it 

happens, the average is 679/224  3.03. 

Observe now that just as the inscribed (32
n 

)-gons exhaust the area of the circle, so the circum-

scribed ones squeeze the area. The circumdodecagon is tangent to the circle at the six vertices of the 

circumhexagon and at the midpoints of the vertices’ arcs. At right, we 

magnify the top of the previous figure and add the tangent (red) at Q, 

meeting RA at U and RB at V. Here UV is one side, UA and VB half-

sides, of the dodecagon (red outline). You can see that the circumhexagon 

overstates the area of the circle by six copies of the arrowhead shape 
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(filled green) bounded by RA, the arc from A to B, and BR. The dodecagon overstates by twelve copies 

of the smaller arrowhead bounded by UA, arc AQ, and QU. It is also clear that the dodecagon reduces 

the hexagon’s overstatement by twelve copies of triangle UQR. Thereby the dodecagon cuts the 

hexagon’s error by more than half. 

To explain: First, UV is closer to AB than to R. The reason is that UA = UQ, because they are 

tangents from the same point, whereas UQ < UR, because UR is the hypotenuse of right triangle 

UQR. The inequality UA < UR tells us that U is less than halfway up AR. Since UV is parallel to 

AB (Why?), we conclude that UV is less far above AB than it is below R. 

Now compare the shares (halves) of the errors leftward of RQ. The dodecagon’s share (one of the 

smaller arrowheads) is smaller than triangle AQU. Triangle AQU, having the same base UQ as 

triangle UQR but smaller altitude (because UQ is closer to AB than to R), is smaller than triangle 

UQR. Those statements imply that the dodecagon’s share constitutes less than half the hexagon’s 

share. We conclude that the dodecagon’s error is less than half the hexagon’s. Compare Exercise 1. 

The same reasoning applies to every doubling of the number of sides. We infer that the areas of the 

circumscribed (32
n 

)-gons approach  from above. 

(ii) a subtlety 

We wrote 

 291/112 <  < 388/112 

after taking 3  97/56. There is a caution we have to put in. 

The estimate for 3 comes from Exercise II.B.3:5 on the square-root algorithm. The algorithm 

always yields overestimates. That means 388/112 overestimates 23, which is the exact area of the 

circumhexagon, which overstates . In other words, 

  < area of circumhexagon = 23 < 388/112. 

Therefore the last is a legitimate overestimate for . On the other side, we have 

 33/2 = area of inhexagon < . 

We may not immediately conclude 

 291/112 < , 

because 291/112 exceeds 33/2. 

We are about to produce arithmetic formulas—expressions using the four operations plus square 

roots—representing exact values for over- and underestimates of . For those symbolic overestimates, 

we (without calculators) may apply the square-root algorithm to give slightly excessive numerical 

values. To give slightly low numerical values to the symbolic underestimates, we need to do extra work, 

as Archimedes must have done. For illustration, do Exercise 2. 

(iii) the calculations 

It would be one thing to determine geometrically the inscribed and circumscribed values separately. 

The second innovation of Archimedes was to interweave them, turning the geometric question into one 

of sheer arithmetic. 

We will modify the method of Archimedes. His calculations estimated perimeters, not areas. Thus, 

he would have found the inhexagon’s perimeter to be 6 and the circumhexagon’s to be 12(1/3), giving 

 6 < 2 < 43. 

Perimeters offered him an advantage that will become obvious when we describe Greek trigonometry. 

Similarly seeking advantage, we will work in terms of our trigonometry. However, we continue to work 

with areas, since we have proof that the polygon areas approach the area of the circle. (See Exercise 5 

for the perimeter computations corresponding to our area work.) 



 Chapter III. The Greeks 
Section III.A. Geometry  6. Archimedes 

31 

Revisit at right the earlier figure with the hexagons, but use trigonometry. In the 

inhexagon, the apothegm OP has length 1(cos 30) and the half-side AP 

has 1(sin 30). Therefore triangle OPA has area (cos 30 sin 30)/2, and the 

inhexagon has 12 times that area, 

 A6i = 6 sin 30 cos 30. 

In the circumhexagon, triangle OAR has one leg OA of length 1, the other AR 

of length 1(tan 30). Triangle ORA has area (tan 30)/2, the circumhexagon

 A6c = 6 tan 30. 

Precisely the same reasoning applies to the dodecagon, with the number of sides doubled and the 30 

angle cut in half. Thus, 

 A12i = 12 sin 15 cos 15 and  A12c = 12 tan 15. 

(See Exercise 3. What would the formula be for 24 sides, 48, ...?)  

Now observe that 

 A6i A6c = 36 sin
2
 30    (Justify!) 

  = (A12i)
2
. 

That allows us to write 

 A12i = (A6i A6c). 

It allows us to calculate A12i in terms of radicals, as both A6i and A6c are: We know 

 A6i = 33/2 and A6c = 23. 

In other words, it gets us from A6i and A6c to A12i via arithmetic. 

Separately, with a similarly desirable result but a lot more work, we find 

 1/2 (1/A6c + 1/A12i) = 1/(12 tan 30) + 1/(24 sin 15 cos 15) 

  = (cos 30 + 1)/(24 sin 15 cos 15) 

  = cos 15/(12 sin 15) 

  = 1/A12c .   (Justify all four equalities.) 

We get from A6c and A12i to A12c arithmetically. 

Note that the key to the method is halving the central angle. Consequently the method is recursive; it 

reapplies every time you double the number of sides. Thus, 

 A24i = (A12i A12c)  and  A24c = 1/[1/2 (1/A12c + 1/A24i)], ….  

Archimedes carried out the perimeter/circumference approximations up to the 96-gon. His estimates 

are rendered most simply as 

 3 + 10/71  <    <  3 + 10/70. 

(See Struik, page 53, for elaboration.) Note that the two numbers differ by 10/4970  .002. Necessarily 

one of their estimates of  is accurate to three decimal places. (It happens that 3+10/71 is closer. Its error 

is actually only about .0008, less than 1/2
4
 times the error or the hexagon. See also Exercise 4.) 

The expression 1/2 (1/A12c + 1/A24i) and its reciprocal did not materialize out of thin air. Given 

positive numbers u and v, the expression 1/[1/2 (1/u + 1/v)] is called their harmonic mean. (Render it in 

words: It is the reciprocal of their average reciprocal.) It is one of many averages the Greeks studied, and 

the name reflects its origin in their study of music. The square root (uv) of their product is another 

average, called the geometric mean (or mean proportional) of u and v. That name reflects the fact that 

u, (uv), and v are in geometric progression; see Exercise 6. 
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b Exercises III.A.6

1. We saw that the unit circle’s circumhexagon has area 23 and the circumdodecagon has 

area 12 tan 15 (from 3c below). Show that the latter’s error is less than half the former’s. 

2. a) Describe a method to find a rational underestimate for 3. 

b) Execute the method, then check that your approximation really is just under 3. 

3. a) Show that the area of the indodecagon of a unit circle is 12 sin 15 cos 15. 

b) Write the exact values of sine and cosine of 15 (in terms of radicals), then calculate the 
answer to (a). (Compare Exercise III.A.4:1b and c.) 

c) Show that the area of the circumdodecagon is 12 tan 15. 

d) Show that in general, the circumscribed regular n-gon has area (n tan [360/2n]). 
e) (Calculus) Find the limit of the expression in (d) as n tends to infinity. 

4. Use a spreadsheet or programmable calculator to determine which fractions are closer to  
than 22/7 is, of the fractions between 3 and 4 that have denominator from 2 to 100. 

(You have to look at fractions 3+i/j, where 2  j  100. You need not avoid duplication; you 

can look at both 3+1/10 and 3+2/20. But since you know that  < 3+15/100, save time by 
limiting i to 1 through 15, or better, to 1 through j/6. The results will show you why we use 
22/7 for hand calculation. You will also find that 3+14/100 is not on the list.) 

5. a) Show that the perimeter P6c of the circumhexagon to a unit circle is 12 tan 30. 

b) The perimeter P6i of the inscribed hexagon is P6i = 6 = 12 sin 30. Show that the 
circumscribed and inscribed dodecagons have 
 P12c = 1/(1/2 [1/P6c + 1/P6i])  (the harmonic mean), 

 P12i = (P6i P12c)   (the geometric mean). 
Notice that with perimeters, you calculate the circumscribed before the inscribed. 

c) Show that in general, the perimeter of the circumscribed n-gon is 2n tan (360/2n). 

d) (Calculus) Find the limit of (c) as n tends to infinity. Why is it not ? 

6. Given positive numbers u and v, let g = (uv) be their geometric mean, h = 2uv/(u + v) their 
(simplified) harmonic mean, a = (u + v)/2 their arithmetic mean. Show that: 
a) u, g, and v are in geometric progression. As a result, g is between u and v. 

b) g  a. That explains Exercise II.B.3:5d. 
c) g is the geometric mean of h and a. That implies h, g, and a are in geometric 

progression, and forces h  g  a. 
d) g is the same fraction of u that v is of g. 
e) h is fractionally below u as far as it is fractionally above v ; that is,  
 (u – h)/u = (h – v)/v. 

c) foreshadowing the calculus 

At the introduction of integrals, our calculus courses say that in squeezing the circle between 

inscribed and circumscribed polygons, Archimedes anticipated the methods of integral calculus. In fact, 

he more directly anticipated methods in both differential and integral calculus, in studying the question 

of tangent to a curve other than a circle and the technique we now call summation of parts. 

(i) tangent to a curve 

The Greeks had two ways to describe curves. One was as the intersection of surfaces, the other as the 

trace of a moving point. We can describe the parabola, for example, either way: It is the intersection of a 

certain cone and plane, and it is the path traced by a point so moving as to remain equidistant from a 
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certain point and line. The spiral of Archimedes is traced by a point starting at the end of a half-line 

and moving uniformly away from the end while the half-line, its end fixed, rotates at a uniform rate. 

In the figure at right, the red line starts at the horizontal 

position (dashed black line) and rotates counterclockwise 

with its endpoint O fixed. As it rotates, the point P moves 

outward along the line. Thus P traces out the spiral indicated 

by the heavy black curve. Archimedes described its tangent 

in these terms. 

Let us say the rotation rate is 0.5 radian/sec and P moves 

out at 3 cm/sec. (Half a radian is about 28; the line goes all the way around in about 13 sec.) If we 

set r = OP and denote the angle between the line and the horizontal by , then we see that 

 r = 3t and  = 0.5t. 

In the language of polar coordinates, the spiral has the familiar equation r = 6. 

The figure captures the instant t = /3  1.05 sec, when  = 30 and r  3.14 cm. At that time, P is 

moving to the right and upward. If we specify its precise direction, we arrive at the direction of the 

tangent to the spiral. 

Archimedes specified it by thinking of P as having a radial (outward) motion along the line and a 

tangential (circling) motion perpendicular to the line. The radial motion—what the language of 

physics calls the radial component of velocity—is indicated by the blue arrow. It has constant 

speed, the length of the arrow, of 3 cm/sec. The tangential motion, tangent to the circle (dashed 

black arc) centered at the origin and reaching P, is indicated by the green arrow. It does not have 

constant speed. Remember that 0.5(radian)/sec is an angular speed, the rate at which  grows. The 

tangential linear speed, the rate at which distance is covered perpendicular to OP, is this angular 

speed multiplied by r ; it grows as P moves out. At our particular instant, the green arrow has length 

(.5/sec)(3.14 cm)  1.57 cm/sec. 

The combination of the two motions—the resultant, physics says—is the diagonal of the rectangle 

they determine, the rectangle completed by the dashed violet lines. That diagonal is the dashed violet 

arrow. Its length comes easily from the Pythagorean theorem. The length is the speed of P, which 

interests us no more than it did Archimedes. What we want is its direction. The rectangle makes 

clear that the angle between the violet arrow and the blue has (trigonometric) tangent 1.57/3  0.52. 

Therefore at our instant, the direction of the tangent to the spiral is at angle (30 + arctan 0.52)  58 

above the horizontal. In general, its direction at time t is 

  + arctan (tangential speed/radial speed) = 0.5t + arctan(1.5t/3) 

counterclockwise around from horizontal. 

[This idea of analyzing motion in terms of how it covers distance in each of two perpendicular 

directions is a routine part of modern mechanics. As far as I know, it was not picked up until Galileo’s 

studies of falling objects, more than 1800 years after Archimedes.] 

The spiral of Archimedes, assuming you could construct it, would answer the problem of trisecting 

an angle. In our figure, segment OP is at 30 above horizontal. Trisect the segment, putting point Q one-

third from O to P. Draw the circle centered at O and reaching Q. It intersects the spiral at a point R 

where r = /3 and  = r/6 = /18. Therefore OR trisects the original 30 angle. 
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(ii) volume by summation 

Archimedes used the technique of summation of parts, which underlies the development of integral 

calculus, to derive a number of volumes and areas. We will first illustrate with the formula for the 

volume of a cone. Archimedes attributed the formula to Democritus and said that Eudoxus had given a 

proof, presumably a geometric one. 

In the figure at right, we see a right circular cone with vertical axis, 

height 15, radius 8. We cut through it with a large number, say 999, of 

uniformly spaced horizontal planes. These cut the cone into 1000 slices, 

all of them T = 15/1000 thick. 

Imagine that the solid slice filled in red is #23 down from the vertex. 

All its horizontal cross-sections are circles. Its top face, at depth d 

below the vertex, has radius r. The top is the 22
nd

 cut, so it has 

 d = 22T. 

From similar triangles, we have 

 r/d  =  8/15, 

wherefore 

 r  =  (8/15)d  =  (8/15) 22T. 

That is the minimum radius for any horizontal cross-section in this slice; the circular sections expand 

as you go lower. Consequently the volume V23 of the slice exceeds the volume of a right circular 

cylinder of that radius and thickness. In symbols, 

 V23  >   [radius]
2 

(thickness)  =   [(8/15) 22T ]
2
 T. 

At the same time, the bottom face of the slice is the biggest horizontal cross-section of the slice. Its 

depth from the vertex is 23T, making its radius (8/15) 23T. The volume of the slice must be less than 

the volume of a cylinder with this radius and thickness T. That makes 

 V23  <   [(8/15) 23T ]
2
 T. 

The same reasoning applies to all the slices. Their volumes are bracketed by 

  [(8/15) 0T ]
2
 T < V1 <  [(8/15) 1T ]

2
 T, 

 ..., 

  [(8/15) 22T ]
2
 T < V23 <  [(8/15) 23T ]

2
 T, 

 ..., 

  [(8/15) 999T ]
2
 T  < V1000 <  [(8/15) 1000T ]

2
 T. 

(To check: Notice that 1000T = 15, which is how far the bottom of the last slice is from the vertex.) 

Summing the parts, we bracket the volume V of the cone. We can add those numbers because they 

have a pattern. Rewrite 

  [(8/15) 22T ]
2
 T =  8

2
/15

2
 22

2
  (15/1000)

3
 = 22

2
  8

2
 (15) /1000

3
. 

The  and all the factors that follow are common to all the numbers. Factor them out, and the 

numbers in the last line add up to 

 (0
2
 + 1

2
 + ... + 998

2
 + 999

2
)  8

2
 (15) /1000

3
. 

We know what those squares add up to (Would Archimedes have known?): 

 0
2
 + 1

2
 + ... + 998

2
 + 999

2
 = (999)(1000)(1999)/6. 

We conclude 

 (.999)(1.999)/6 [ 8
2
] (15) < V. 

In the same way, adding up the numbers on the right leaves us with 

 V < (1.001)(2.001)/6 [ 8
2
] (15). 
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You can see that if we had made it a million slices, then the factors in bold would have been 

 (.999999)(1.999999)  and  (1.000001)(2.000001). 

Archimedes concluded that if you name any number below 

 (1)(2)/6 [ 8
2
] (15) , 

then V exceeds that number. Similarly, if you name any number beyond (1)(2)/6 [ 8
2
] (15), we can 

by slicing the cone into sufficiently many pieces show that the volume is smaller than that number. 

Only one conclusion is possible: 

 V = 2/6 [ 8
2
] (15) = 1/3 [area of the base] (height). 

This (literal) analysis has an interesting consequence. Imagine any cone that has a height of 15 and 

base area (8)
2
, even if that base is some blob (or a polygon, as with a pyramid). Similarity would still 

make the linear dimensions of the faces (top and bottom) of the slices proportional to depth. That would 

make the areas of the faces proportional to (depth)
2
. Those slices would then have the same volumes as 

the slices of the right circular cone. We would have the same parts to sum, and we would conclude that 

the blob-based cone has the same volume as our right circular cone. The Greeks must have known the 

principle: If two solids of the same altitude have cross-sections of equal area at each horizontal level, 

then they must have equal volumes. Yet it was not until 1635 CE that Buonaventura Cavalieri, a student 

of Galileo, explicitly stated this “Cavalieri’s principle.” 

The same kind of analysis gives us the volume of a sphere. 

The figure at right shows about a third of the outline (dark green) of 

the sphere of radius R. We use 1999 equally spaced horizontal planes to 

cut the sphere into slices T = 2R/2000 thick. 

Say the solid slice illustrated (red) is #23 upward from the equator. 

Its top face is a circle, at height 

 h = 23T 

above the equator. The face has radius 

 r = (R
2
 – h

2
). 

It is the slice’s smallest cross-section. Consequently the volume V23 of the slice has 

 V23 >  r
2 

T =  (R
2
 – 23

2 
T

 2
) T. 

Similarly, the bottom face has radius (R
2
 – 22

2 
T

 2
). The slice’s volume has 

 V23 <    (R
2
 – 22

2 
T

 2
) T. 

Reasoning likewise for the other slices above the equator, we write 

  (R
2
 – 1

2 
T

 2
) T < V1  <  (R

2
 – 0

2 
T

 2
) T, 

 …, 

  (R
2
 – 1000

2 
T

 2
) T < V1000 <  (R

2
 – 999

2 
T

 2
) T. 

Summing the volumes, evaluating the sums of the squares, and substituting T = R/1000, we find 

(Exercise 3) that the volume V of the upper hemisphere satisfies 

  (R
3
 – 1.001[2.001]/6 R

3
) < V <  (R

3
 – .999[1.999]/6 R

3
). 

As with the cone, we are led to conclude that the hemisphere encloses a volume 

 V =  (R
3
 – 2/6 R

3
)  = 2/3 R

3
. 

(iii) surface area by summation 

We can apply the same technique to determine the area of the curved part of the right circular cone. 
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Look at the edge of our slice #23 from the 815 cone, magnified at 

right. Denote by  the angle between the element of the cone—the 

(green) line along the cone through the vertex—and the vertical. 

(The angle is not an independent quantity;  is given by 

 tan  = 8/15.) 

The curved surface of the slice is a ribbon of uniform width 

 w = T/cos .  (Why are w and T related that way?) 

However, the ribbon has unequally long top and bottom edges. The 

top edge has length, meaning circumference, 

 2r  =  2 (22T 8/15). 

The bottom edge has circumference 

 2 (23T 8/15). 

Therefore the ribbon’s area S23 satisfies 

 2 (22T 8/15) T/cos   < S23 < 2 (23T 8/15) T/cos . 

Summing the 1000 areas and remembering that 

 T = 15/1000,  cos  = 15/(8
2
 + 15

2
), 

we find (Exercise 4a) the curved area of the cone to be 

 S =  8 (8
2
 + 15

2
). 

It is worthwhile to attach interpretation to the formula. The length 

 H = (8
2
 + 15

2
) 

is called the slant height of the cone. Our formula reads 

 S =  (radius) (slant height). 

Think of the cone as a squeezed cylinder, with circumference 2(8) at the bottom, reduced to zero at the 

top. That gives it average circumference 

 (0 + 28)/2 = 8. 

Multiply average circumference by the “height” H of the “cylinder,” and you get the cone’s surface area. 

We can give the same interpretation to the surface area of a certain frustum. A frustum of a right 

circular cone is the solid below any plane cutting the cone parallel to 

the base. 

At right, the cutting plane’s circular section (red) has radius r and 

leaves slant height h above. We know the curved area above the 

plane is rh. That makes the curved area of the frustum 

 S* = 8H –rh. 

The section has circumference 2r. Therefore the average 

circumference of the frustum is 

 (2r + 28)/2 =  (r + 8). 

The product of this average circumference and the lower slant 

height H – h matches S* (Exercise 4b). 

c Exercises III.A.6

1. Archimedes is sometimes described as the inventor of integral calculus. What parts of his 
work justify such description? 

2.  (“The Pirate Problem”) A Coast Guard boat is stopped in a deep fog. For a second, the fog 
lifts, and the boat spots the pirate vessel it is looking for. The boat gets a precise fix on the 
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2R 

R 

h 

pirate’s location, but immediately the fog comes back down. The Guard knows that the 
pirate, having seen the Coast Guard boat, will flee in a straight line at 20 knots, but not in 
what direction. The Guard boat can do 25 knots. Describe a path the Guard can follow to 
guarantee that it encounters the pirate vessel. (Hint: It is a spiral.) 

3. Show that 

  (R2 – 12[R/1000]2) [R/1000] + … +  (R2 – 10002[R/1000]2) [R/1000] 

  =  (R3 – 1.001[2.001]/6 R3). 

4. a) With T = 15/1000 and cos  = 15/(82 + 152), show that 

 2 (1T 8/15) T/cos  +… + 2 (1000T 8/15) T/cos  = 1.001  8 (82 + 152), 

 2 (0T 8/15) T/cos  +… + 2 (999T 8/15) T/cos  = 0.999  8 (82 + 152). 
b) In the figure of the frustum, show that the known surface area 

 S* = 8H – r h 
matches the product 

  (r + 8) (H – h) 

of average circumference and (lower) slant height. (Hint: Bring in .) 

d) surface area of the sphere 

Archimedes used an imaginative comparison to find the area of the sphere. 

Fit the sphere into an equally tall, equally wide right circular cylinder, as in 

the figure at right. We will say that the sphere is inscribed in the cylinder, the 

cylinder “circumscribed” about the sphere. Then cut through cylinder and 

sphere with two horizontal planes (green outlines) an tiny distance h apart. 

From the cylinder (heavy black edge in the figure at 

left), the two planes cut a smaller cylinder. Around this 

smaller cylinder, the curved part is a ribbon (bordered by 

green) of uniform width h and constant circumference 

2R at every horizontal level. Consequently its area is 

simply 2Rh. [Fold a rectangular piece of paper into a 

right circular cylinder, to see that a horizontal band from it unfolds into a 

rectangle of dimensions circumference  height.] 

In the same figure, the two planes cut a band (bordered by orange) from the sphere. In the plane of 

the page, the band has point A at the top, B at the bottom. Imagine that h is so small that the arc AB is 

indistinguishable from line segment AB, as suggested at right, where we 

magnify arc and segment (violet). Now the band is indistinguishable from the 

curved surface of a frustum. Make M the midpoint of AB. If the radius OM of 

the sphere makes an angle  with the horizontal, then M is on a horizontal 

circle of radius (R cos ). That circle’s circumference is the average for the 

frustum. By the previous subsection (iii), the frustum has (curved) surface area 

 (average circumference) (slant height) = 2(R cos ) AB.  

Because OM has to be perpendicular to segment AB, the latter makes an 

angle  with the vertical. Hence 

 h/AB = cos , 

and the area of the frustum is 

 (2 R cos ) h/cos  = 2Rh. 

The frustum—the band intercepted on the sphere—has the area of the band on the cylinder. 
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That is a surprising result. It implies that the surface area of the part of the sphere between two 

parallel cutting planes is proportional to the distance between them. For example, the region between the 

equator and latitude (same as ) 30—on Earth, that would span from the Galapagos Islands to New 

Orleans—which is half as tall as the northern hemisphere, has one-quarter the area of the sphere. It 

implies as well, of course, that the area of the sphere equals the (curved) area of the cylinder. 

[They say that this discovery was the favorite of Archimedes, so much so that he requested the 

picture of the sphere in the cylinder be carved into his tombstone. Somebody complied, though the 

marker is long gone. My fond dream is that it was Marcellus.] 

d Exercises III.A.6

1. Archimedes described the volume within the sphere as two-thirds the volume within the 
circumscribed cylinder. Does that reflect our calculation in III.A.6c(ii)? 

2. What is the ratio between the volume within the sphere and the volume enclosed by the 
right circular cone whose vertex is the north pole and whose base, tangent to the sphere at 
the south pole, has the radius of the sphere? (Hint: Draw the picture.) 

3. Archimedes described the area of the sphere as four great circles. Does that agree with our 
statement that the sphere has the area of the circumscribed cylinder? 

7. Apollonius 

Apollonius was born in Perga, in modern-day Turkey. His birth and death followed those of Archi-

medes by about twenty years; their lives overlapped for fifty. He made extraordinary studies of curves. 

We will give an indication of the extent of his work by spending a long section on a miniscule part of it, 

in particular on the familiar curve called the ellipse. 

a) conic sections 

Apollonius was the first to describe what we call conics in terms of 

sections of just one cone. In the figure at right, we see part of both halves 

(“naps”) of a right circular cone (edged by the two black lines) with 

vertical axis. The cone is “right circular” because its section (intersection) 

by a horizontal plane is a circle (pink plane, red circle). If we incline the 

plane at a shallow angle, the section (green plane, blue section) becomes 

elongated left-to-right more than front-to-back. The resulting oval is an 

ellipse. The steeper the angle, the more oblong is the ellipse, until the 

plane’s inclination matches that of the side of the cone. At that stage, the 

nature of the section changes suddenly (nowadays: “catastrophically”). 

The part of the curve on the near side of the cone (solid purple curve) 

diverges from the far part (dashed purple); the curve never closes. That 

section is a parabola. Beyond that inclination (not illustrated), the section remains an open curve, called 

a hyperbola. At first look, there is only one obvious difference between the hyperbola and parabola: 

The hyperbola has two separate branches, because the steep plane necessarily cuts the bottom half of 

the cone as well as the top. We will characterize the ellipse, then relate it to the parabola and hyperbola 

and see one difference in nature between the last two.  
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b) the ellipse 

In the next figure, we add some objects to the image of the shallow section. Imagine resting a small 

spherical balloon (pink) on the inside of the cone’s surface, 

below the shallow plane. Inflate it until it grows just big enough 

to touch the plane at a point F1. The balloon, then, is tangent to 

the plane at F1 and tangent to the cone along a circle of latitude 

(red) below the balloon’s equator. Next, rest a giant light-orange 

spherical balloon on the inside of the cone, above the plane. 

Deflate that one until it sinks just low enough to touch the plane 

at F2. This sphere is tangent to the plane at F2 and tangent to the 

cone along the orange circle. We pick an arbitrary point P of the 

ellipse. The figure shows the segments (dashed black) PF1 and 

PF2. Finally the figure has part of the element of the cone, the 

line joining P and the vertex of the cone. That part (dotted black) 

meets the orange circle at A and the red one at B. We will use all of those to show that what is special 

about the ellipse is that the distances from any P to F1 and F2 have a constant sum. 

(i) the distance characterization 

Each of F1 and F2 is a focus of the ellipse. The segments PF1 and PF2 are the focal radii from P. 

Because the cutting plane and the cone are tangent to the upper sphere, PA and PF2 are tangent to 

that sphere. In plane geometry, the two tangents to a circle from a given point outside the circle have 

to be equally long. Likewise in three dimensions: Any of the infinity of tangents to a sphere from 

one point outside the sphere are equal. Thus, 

 PF2 = PA. 

Similarly, because PB and PF1 are tangent to the lower sphere, 

 PF1 = PB. 

Therefore 

 PF1 + PF2 = PB + PA = AB. 

Now consider: No matter where on the ellipse P is, the length AB is the same. It is the distance along 

the cone between the horizontal plane that contains the orange circle and the one that holds the red 

circle. This is the tangent principle at work again. Let V be the cone’s vertex, located below the 

figure. The tangents from V to the orange sphere form the cone. No matter where on the orange 

circle A is, the length VA is the same. Similarly, VB has a fixed length independent of where B is on 

the red circle. Therefore AB = VA – VB has constant length. 

We have found that for the points on the ellipse, the sum of the focal radii is constant. The ellipse is 

the plane locus of points whose distances from two certain fixed points add up to a certain fixed number. 

[We will begin to identify curves as loci (plural of locus, Latin for “place”). View Exercise 4.] 

Keeping that characterization in mind, forget the cone for a bit and look 

face-on at the ellipse. In this figure, we have the foci F1 and F2, plus the 

typical point P and its focal radii (grayed). We draw the line (red) joining 

the foci, meeting the ellipse at R and T. The ellipse is symmetric about that 

line, because each point in the upper half has the same (length) focal radii 

as the point below it in the lower half. Then we draw the perpendicular 

bisector (green) of F1F2, meeting the ellipse at S and U. The ellipse is 

symmetric about that line as well, because a point in the left half has the 

same focal radii, but in opposite order, as its brother in the right. We call 
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each line an axis of symmetry of the ellipse. Their intersection C is the center of symmetry, or simply 

center. The figure also has the focal radii from U, and is faithful to the appearance of the ellipse. 

Write 2s for the constant sum of the focal radii, 2m for the height US, and f for the focal distance 

F1C = CF2. Since R and U are on the ellipse, each one’s focal radii must sum to 2s. For R, we have 

 RF1 + RF2  =  2s. 

By symmetry, RF2 = F1T. Therefore 

 2s = RF1 + RF2 

  = RF1 + F1T 

  = RT. 

In words, the width of the ellipse is the constant sum of the focal radii. For U, we have 

 UF1 + UF2 = 2s. 

But UF1 and UF2 are equal, because US is the perpendicular bisector. Therefore 

 UF1 = UF2 = s. 

We now see that UCF1 is a right triangle with legs UC = m and CF1 = f, hypotenuse s. Consequently 

 m
2
 + f

 2
  =  s

2
. 

Necessarily s > m; the axis with the foci is longer than the other one. Hence we call RT the major 

axis, R and T the major vertices, US the minor axis, U and S the minor vertices, of the ellipse. 

(ii) the focus-directrix characterization 

Now we go back to the ellipse on the cone.  

The figure here loses everything related to the upper balloon, 

puts back the sectioning plane (green), and adds the horizontal 

plane of the red circle (pink). That plane is entirely below the 

ellipse; any P is as far above the plane, along its element of the 

cone, as it is far from F1. The red plane and the sectioning plane 

intersect along the solid blue line. For simplicity, give the 

inclination of the (element of the) cone a specific value, 65, and 

the inclination of the cutting plane 25. 

Draw the perpendicular (dotted green) from P to this line, meeting the line at C. PC then has the 

inclination of the cutting plane, which we have set at 25. Add the vertical through P, intersecting the 

horizontal plane at D. Notice that triangle PDC is in a plane parallel to (and in front of) the plane of the 

drawing. On the other hand, B (along the element of the cone through P) is behind the plane of PDC 

(owing to the tapering of the cone), so that PDB’s plane points into the plane of the drawing. The picture 

will give us a second characterization of the ellipse. 

In the plane that has P, D, and C, right triangle PDC has a 25 angle at C. Therefore 

 PD/PC = sin 25. 

In the plane of P, D, and B, triangle PDB is a right triangle with a 65 angle at B (because PB is 

along an element of the cone). Therefore 

 PD/PB = sin 65. 

The tangent principle gave us PB = PF1, so we may substitute 

 PD/PF1 = sin 65. 

Consequently 

 PF1/PC  = (PD/PC)/(PD/PF1) = sin 25/sin 65. 
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We now have for the ellipse a characterization of a different character: The ellipse is the locus of 

points in a plane for which the ratio 

 (distance to a certain fixed point)/(distance to a certain fixed line) 

is a certain  constant less than 1. The line is called a directrix of the ellipse. [Kline (p. 96) writes that in 

the eight books that constitute his Conics, Apollonius never does talk in terms of foci or directrices.] 

(iii) eccentricity 

Now dance back to the figure (right) of the ellipse in its plane. 

Add to it the directrix L (solid black). We put it, as the figure in (ii) 

suggests, leftward of major vertex R. We made it vertical because it 

has to be parallel to the minor axis US: Since UF1 = SF1 and 

 UF1/(distance U to L)  =  SF1/(distance S to L), 

we know U and S are equidistant from L. Where exactly is L ? 

(Symmetry tells us there must be a second directrix M to the 

right of T, and that the ratio 

 distance to F2/distance to M 

must be the same constant. We need not analyze that one separately.) 

Let us evaluate that constant distance ratio. Write d for the distance from R to L. Then R is s – f from 

the focus F1 and d from the directrix. For T, the distances are s + f and 2s + d. The two distance 

ratios have to match: 

 (s – f )/d  =  (s + f )/(2s + d). 

We can solve this equation for d. [In different words, you can solve this equation for d (Exercise 2).] 

Instead, let us use this fact: When two ratios are equal, the sum or difference of the numerators bears 

the same ratio to the sum or difference, respectively, of the denominators. For example, 

 3/5 = 18/30 

allows us to conclude 

 3/5 = 18/30 = (3 – 18)/(5 – 30) (as well as = [3 – 18]/[5 – 30] = [3 + 18]/[5 + 30]). 

Using the differences, we conclude that the distance ratio is 

 (s + f )/(2s + d) = (s – f )/d = 2f /2s. 

[I understood that the sum of the numerators in a proportion bears the same ratio to the sum of the 

denominators when Jesse Douglas used the principle to give an elegant answer to a calculus problem. 

Prof. Douglas graduated from City College in 1916. He became world famous in the study of surfaces. 

In 1936, he and Lars Ahlfors received a special prize from the International Congress of Mathematicians 

in Oslo. That prize later acquired the name “Fields Medal,” despite the objections of its creator. (John 

Fields was Canadian, and intended the award to help heal the rifts in the international mathematical 

community resulting from World War I.) It became the highest international award in mathematics. If 

you saw Good Will Hunting, you heard Robin Williams describe it as akin to a Nobel Prize in math, 

except that it is granted only every four years to two, three, or four young mathematicians.] 

The constant ratio of distance from focus to distance from directrix is that fraction f /s. The fraction 

is called the eccentricity of the ellipse. [We will use  (epsilon) to denote it.] The name is appropriate, 

since f /s measures “off-centeredness.” It measures how far either focus is removed from the center, as 

compared with the unreachable maximum distance of s. What’s more, the eccentricity of an ellipse 

determines its shape. It is not just that small eccentricity means nearly circular shape, large eccentricity 

(close to 1) means elongation. Ellipses with equal eccentricity are similar: Their corresponding linear 

parts, like axes, focal lengths, chords joining vertices, or chords perpendicular to the major axis at the 

foci, are proportional. (See Exercise 3.) 

 

F1 F2 

R 

U 

T 

S 

d 

L 

 s 

 f 



 Chapter III. The Greeks 
Section III.A. Geometry  7. Apollonius 

42 

a Exercises III.A.7

1. In the (last) face-on figure of the ellipse (iii), the width RT is intended to be 2 inches and the 
distance F1F2 between the foci 1 in. Exactly how much is the height US? 

2. Solve 
 (s – f )/d  =  (s + f )/(2s + d)  
for d in terms of s and f. (Hint: Douglas’s idea makes it easier. Does the solution agree with 
the fact that R is (s – f) from F1 and d from L?) 

3. Suppose an ellipse has major axis 10 and minor axis 6. 

a) Show that its eccentricity  is 4/5. 
b) Show that its latus rectum (the length of the chord perpendicular to the major axis 
through either focus) is 

 2(s – f )(1 + )  =  18/5. (A picture is essential.) 
c) Suppose a second ellipse has eccentricity 4/5. Show that its major axis 2M, minor 
axis 2m, and latus rectum L are in proportion to those of the given ellipse: 
 M/10  =  m/6  =  L/(18/5). 

4. Characterize the locus of Apollonius, the set of points in a plane whose distance to one 
given point is a fixed multiple of its distance to a second given point. (Try using coordinate 
geometry in a specific example: Find an equation for the locus of points whose distance 
from the origin is 3 times their distance from (8, 0). Then put the equation into a form that 
allows you to give specific information about the locus.) 

5. One of Kepler’s laws says that the orbit of each planet is an ellipse, with the Sun at one 
focus. A planet is closest to the Sun when it reaches the major vertex closer to the Sun’s 
focus, a point called “perihelion.” It is furthest at the other major vertex, “aphelion.” 
a) Earth’s perihelion and aphelion distances are listed as 91.4 and 94.5 million miles. How 
long are the orbit’s major axis, focal distance, and minor axis, and what is its eccentricity? 
b) The orbit of Mars is often described as “much more elliptical” than Earth’s, because its 
eccentricity is around 0.093, vs. 0.017 for Earth. Show that its minor axis is about 99.6% as 
big as the major. [Accordingly, to human eyes, the orbit’s non-circularity is not detectable.] 
(Hint: Try putting numbers into a sketch.) 

c) the other sections 

Recall from b(ii) that the focus-directrix description  of the ellipse came from the relation 

 (distance to focus)/(distance to directrix) = 

  (sine of inclination of plane)/(sine of inclination of cone). 

Nothing there demanded that the cutting plane be shallow. The relation holds equally true for the 

parallel section and the steep one. 

(i) the parabola 

For the parallel section, no sphere can sit on the cone above the cutting 

plane (violet in the figure at right). There is only the lower balloon (not 

shown), tangent to the cone along the red circle and to the cutting plane at 

a single focus F. 

Other than F, the points are labeled as before: P is a typical point on 

the section; B is where the element of the cone from P meets the circle 

of tangency; D is vertically below P, on the (pink) horizontal plane of 
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the circle; and C is the foot of the perpendicular from P to the (blue) line of intersection of the two 

planes. 

By the tangent principle, PB = PF. From right triangles, we get 

 PD/PB = PD/PF = sin 65 and PD/PC = sin 65. 

The parabola’s distance ratio becomes 

 PF/PC    = (PD/PC)/(PD/PF) = sin 65/sin 65. 

That gives us two descriptions of the parabola. First in distance terms, the parabola is the locus of a 

point in the cutting plane whose distance to a certain fixed point (the focus) equals its distance to a 

certain fixed line (the directrix). Second, in eccentricity terms, we may as well refer to PF/PC as the 

eccentricity of the parabola. Therefore the parabola is that conic section whose eccentricity is 1. 

(ii) the hyperbola 

We can bring the same thinking to half the steep section. 

View the cone’s upper half in the figure at right. The cutting plane 

(blue) has inclination 85. From point P on the upper branch of the 

hyperbola (heavy blue), the element PB (dashed green) of the cone 

reaches the circle of tangency (red) of the small sphere. Picture, as 

in the parabola figure above (but not shown here), the vertical PD 

to the plane of the red circle and the perpendicular PC to the line of 

intersection of the two planes. As before, right triangles yield 

 PD/PB  =  PD/PF1  =  sin 65   and PD/PC = sin 85. 

The distance ratio for P becomes 

 PF1/PC  = (PD/PC)/(PD/PF1) = sin 85/sin 65. 

Thus, for every upper-branch point P, the distance to a certain fixed point in the upper half bears a 

(fixed) ratio bigger than 1 to the distance to a certain fixed line in the upper half. 

Now extend that thinking to the lower half, even though the hyperbola’s lower branch is not 

obviously a mirror image of the upper. 

In the lower half of the cone, we can find one sphere (orange in this figure) 

tangent to the cone along the orange circle and to the cutting plane at F2. 

Extend the element PB (dashed green) of the cone through the vertex to A 

on the orange circle. (If P and B are on the near side of the cone, then A 

has to be on the far side.) Let PE be the perpendicular to the line (heavy 

orange) of intersection of the orange circle’s plane (light orange) and the 

cutting plane. Let PG (not shown) be the vertical to the orange plane 

from P. Again by the tangent principle, we have PF2 = PA. The inclination 

of PA is the same as for PB, the inclination of the cone. Therefore 

 PG/PA  =  PG/PF2  =  sin 65. 

The inclination of PE is that of the cutting plane. That forces 

 PG/PE = sin 85. 

It follows that 

 PF2/PE = sin 85/sin 65. 

For every upper-branch point P, the distance to a certain fixed point in the lower half bears the same 

fixed ratio to the distance to a fixed line in the lower half. 

We conclude that the hyperbola has this focus-directrix characterization: There are two foci and two 

directrices, and for every point of the hyperbola, the ratio between distance to either focus and distance 
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to the corresponding directrix ([near focus]/[near directrix] or [farther focus]/[farther directrix]) is a 

constant exceeding 1. That constant is the eccentricity of the hyperbola. 

The last figure also gives us the distance characterization. Recall that 

 PF1 = PB and PF2 = PA. 

Because B is between P and A, 

 PF2 – PF1 = PA – PB = BA. 

That last is the constant distance along the cone from the level of the red circle to the level of the orange. 

Accordingly, the (complete, two-branch) hyperbola is the locus in a plane of a point whose distances to 

two certain fixed points differ (bigger distance minus smaller) by a certain fixed number. 

(iii) the unification 

The concept of eccentricity allows us a unified view of the conics as part of a continuum. At first, 

the parabola seemed to us to be a total break from the family of ellipses. Instead, in terms of eccentricity, 

the catastrophic change from ellipse to parabola is a smooth transition from eccentricity less 

than 1 to exactly 1. Similarly, the discontinuous change from parabola to hyperbola (for both of which, 

as for the ellipse, eccentricity determines shape) is just the continuation from eccentricity 1 to bigger. 

Moreover, Apollonius furthered this unification with a remarkable vision: 1800 years before 

Descartes, he used what amounts to Cartesian coordinates. He thought in terms of lengths (not strictly 

coordinates) to relate distances along the axis of a conic section to distances perpendicular to the axis.  

Consider the conic with focus F, directrix L, and points whose distances to F are eccentricity  times 

their distances to L. Build the figure at right in stages. The black parts are the 

focus, directrix, and the perpendicular A (for axis, dashed) from F to L. 

Line A  is necessarily an axis of symmetry for the conic. Call the focus-

directrix distance D. Add now in red the point V (for vertex) located 

 t = D/(1 + ) 

below F. For V, the distance to the directrix is 

 D – t  =  D(1 –  /[1 + ])  =  t/.   (Verify that.) 

Hence V is on the conic, which must open upward to each side from V. Add last (green) the typical 

point P, located h above the horizontal line of V and w rightward from A. Apollonius related h and w. 

Given that we plan to work with something like coordinates, let us make their use explicit. Place the 

origin of coordinates at V, with the y-axis up along A. The focus gets coordinates (0, t ), the directrix 

equation y = -t/, and the generic point P coordinates (x, y). The distance from P to F is 

 PF = ([x – 0]
2
 + [y – t]

2
). 

From P to  L,it is (y + t/). The focus-directrix characterization then reads 

 ([x – 0]
2
 + [y – f]

2
)  =  (y + t/). 

Square both sides and simplify to 

 x
2
  =  2(1 + )ty + (

2
 – 1)y

2
.    (Likewise.) 

This last form is not as easy to read as our standard forms, but it captures in a single equation all four 

conic sections. “Four” includes the circle. That is remarkable, since the circle has eccentricity 0, for 

which the focus-directrix description and the algebra above are nonsense. 

If  = 0, the form rearranges to 

 x
2
 + y

2
 – 2ty  =  0. 

Check that it describes a circle of radius t centered at F (Exercise 1a). If  = 1, the rearrangement is 

 x
2
  =  4ty, 
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standard form for a parabola opening upward about the  y-axis. For 0 <  < 1, we get 

 x
2
 + (1 – 

2
)y

2
 – 2(1 + )ty   =  0. 

You might recognize an ellipse with center up the y-axis (Exercise 1b). Last,  > 1 yields 

 0  =  (
2
 – 1)y

2
 + 2(1 + )ty – x

2
. 

This certainly represents a hyperbola, but you need to check that it conforms to our picture: 

specifically, that the transverse axis—the one that crosses the curve—is the y-axis (Exercise 1c).. 

Finally, a historical note: That long form 

 x
2
  =  2(1 + )ty + (

2
 – 1)y

2
 

led Apollonius to create the names of the positive-eccentricity curves. For  < 1, the equation looks like 

 x
2
  =  ry – sy

2
,  r and s positive. 

The right side has something taken away, something lacking. The Greek word for “lack” or “deficiency” 

is elleipsis. [We write “…” to indicate that something has been left out; the symbol is called “ellipsis.”] 

Accordingly, Apollonius named the conic section of eccentricity less than 1—whose sectioning plane’s 

inclination is short of that of the side of the cone—an “ellipse.” For the contrary  > 1, the form becomes 

 x
2
  =  ry + sy

2
. 

The right side has something added, an excess. The corresponding Greek word is hyperbole (or 

huperbole), for “excess” or “extravagance.” [Compare our word for “exaggeration.”] From it, we get the 

name for the section of eccentricity greater than 1, whose sectioning plane’s inclination exceeds the 

cone’s. Finally, if  = 1, then we have 

 x
2
  =  ry. 

The Greek parabole means “comparison” or “analogy.” [Our “parable” names a story that tells another 

story or gives a lesson by means of analogy. Compare Kline, pp. 92-93.] 

c Exercises III.A.7

1. a) Transform  
 x2 + y2 – 2ty  =  0 
into standard form for a circle of radius t and center (0, t). 

b) Show that for 0 <  < 1,  

 x2 + (1 – 2)y2 – 2(1 + )ty   =  0 

represents an ellipse with center at (0, t/[1 – ]). 

c) With  > 1, put 

 0  =  (2 – 1)y2 + 2(1 + )ty – x2 
into a form for a hyperbola that crosses the y-axis. 

2. We see that with properly placed and scaled axes, we can assign the equation y = x2 to any 
parabola. Let A(a, a2) and B(b, b2) be the ends of a chord on a parabola so represented. 
a) Suppose C(c, c2) and D(d, d2) are the ends of a chord parallel to AB. Show that the 
midpoints of both chords are on the same vertical line. 
b) Return at right to the picture from the quadrature of the 
parabola (section III.A.6a(iv)). There, triangles APB and 
AQP are inscribed in the segments bounded by AB and AP, 
line PQ meets the vertical from A at C, and the tangent at P 
meets the vertical at D. Show that C is the midpoint of AD. 
(Hint: Show that the slope of PQ [you know their x-coor-
dinates] is the average of the slopes of the tangent [same as 
that of AB] and PA. [Why does that suffice?]) 
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3. Show that in our generic conic, the latus rectum (the chord perpendicular to the axis 

through the focus) has length L = 2(t + t ). (Apollonius typically used L as the conic’s 

parameter, rather than our t = L/(2[ + 1]).) 

4. a) Argue geometrically (informally) why, given a point on the side of the plane across the 
parabola from the focus—such as a point below a parabola that opens upward—there must 
be two tangents to the parabola from that point. 
b) (Calculus) Find the points of the parabola given by y = x2 where the two tangents from 
the point (1, -3) meet the parabola. 

8. Beyond the Golden Ages 

a) trigonometry via chords 

After Apollonius, Greek geometry entered a period of decline. In the years roughly 200 BCE to 

600 CE, study concentrated on trigonometry. In the second century BCE, Hipparchus the astronomer 

(another Turk) developed an extensive body of trigonometric knowledge, including tables of 

trigonometric values, in pursuit of his occupation. More advances came later, including those of 

Claudius Ptolemy (Greek-Egyptian), also in the service of astronomy. 

The Greek way in trigonometry was not like ours. They did not work with 

the right-triangle ratios—sine, cosine, and the others—that introduce our trig. 

They put values in terms of chords. In the figure at right, we see part of a unit 

circle, with a central angle AOB labeled . The length AB (blue) is the chord 

of the angle. (If the radius is not 1, then chord() is AB/radius.) 

You can relate the chord to our trig functions (Exercise 1). We are going to 

relate chords to other chords, to turn trigonometric values into arithmetic 

values. Those we could calculate, if we chose. 

In the figure, we include the bisector (dashed) of angle AOB, meeting AB 

at its midpoint C and the circle at D. Angle AOD is therefore /2, and AD (red) is its chord. AOC is 

a right triangle with hypotenuse 1 and vertical leg AC = ½ chord(). That forces 

 OC = (OA
2
 – AC

2
)  = (1 – ¼ chord

2
()) 

for the horizontal leg. It leaves 

 CD = OD – OC  = 1 – (1 – ¼ chord
2
()). 

In right triangle ACD, therefore, 

 AD = (AC
2
 + CD

2
) 

  = (¼ chord
2
() + 1 – 2[1 – ¼ chord

2
()] + 1 – ¼ chord

2
()). 

We simplify to produce this “half-angle formula” : 

 chord(/2) = (2 – [4 – chord
2
()]). 

The figure intentionally has angle AOB  60. Use it to see that chord(60) = 1. From our formula, 

 chord(30) = (2 – 3). 

Then chord(15) = (2 – [2 + 3]), 

 chord(7.5) = (2 – [2 + [2 + 3]])  (Verify the last two.), 

and the pattern is clear (Exercise 3). 

Calculating those quantities requires time and adaptability. 
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Suppose we apply the square-root algorithm to 3 (Exercise II.B.3:5). We get the sequence: 

 estimate partner average 

 2 3/2 7/4 

 7/4 12/7 97/56 

 97/56 168/97 18,817/10,864. 

It happens that 18,817/10,864 approximates 3 to within 310
-9

. From the table alone, however, we 

can claim accuracy to only half the gap between 97/56 and 168/97, about 0.0001. 

You can simplify the ongoing calculation by truncating: 

 18,817/10,864   1,881/1,086. 

The truncated fraction approximates the longer one to accuracy better than 0.00001. Now write 

 2 – 3   2 – 1,881/1,086 = 291/1,086 = 97/362. 

(The reduction may not always be easy.) We approximate its square root as follows: 

 estimate partner   average 

 1/2  194/362  750/1,448 

 750/1,448 140,456/271,500 407,005,288/786,264,000. 

The long fraction approximates (2 – 3) to within 710
-6

. The truncated 4070/7862 is within 

0.00004 of the long fraction and is reducible. If you use 4070/7863, rounding the denominator 

upward after truncating, you stay equally close and achieve something desirable: an underestimate. 

The shortfall slightly offsets the overestimate that the square-root algorithm always produces. 

(Recall our elaboration of the need for underestimates in section III.A.6b(ii)). 

You can see the combination of laborious computation and judicious adjustment needed to continue 

the process. Claudius extended it five more levels, to the value of chord(15/16 ). 

Carrying out these chord calculations had two purposes. One was to refine the approximation of . 

Observe that [3 chord(60)] is half the perimeter of the inscribed regular hexagon, as [48 chord(3.75)] 

is the semiperimeter of the 96-gon. That was the target of Archimedes. You can see why with chord-

oriented trigonometry, he used perimeters instead of areas. [See how he might have proceeded, using 

chords, in Appendix 1.] If you are willing to grind chord(15/16 ) to eight decimal places, then you 

approximate the semiperimeter [192 chord(15/16 )] of the regular 384-gon to within 0.000002. 

The other purpose was to serve the needs of trigonometry. We produced a “half-angle formula” for 

chords. You can similarly produce analogues for the double-angle formula (Exercise 4), sum formula, 

and other trigonometric identities. The sum formula (Exercise 5) would lead from chord(15/16 ) to 

chord(30/16 ), chord(45/16 ), .... Thereby you would construct a table of trigonometric values. You 

could make the listing go by whole degrees, for example by beginning with the decent approximation 

 chord(1)  16/15 chord(15/16 ). 

However, it is worth considering that the latter listing would not have been useful before the develop-

ment of measuring instruments incorporating telescopes. Without optical aid, general angles would have 

been difficult to measure accurately. But certain angles can be laid out accurately. We already saw that 

the ancients could lay out precise right angles. You could build a 60angle by stretching three equally 

long ropes into an equilateral triangle. You could accurately bisect an angle by laying equal ropes along 

its sides and marking the midpoint of the segment joining their ends (median in an isosceles triangle 

bisects the apex angle); or by stretching four equal ropes into a rhombus (the diagonal of a rhombus 

bisects the angles it joins). Bisecting repeatedly, you build good angles of 30, 15, 7.5, and so on. 
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a Exercises III.A.8

1. a) In this section’s figure, use right triangle AOC to express AB = chord() in terms of our 
trig ratios. 

b) Separately, use the law of cosines to relate chord() to our trig ratios. 
c) Are the answers (a) and (b) equivalent? 

2. Verify our half-angle formula for the cases: 

a)  = 180. You have to start by determining chord(180) and chord(90). 

b)  = 120. You need chord(120) and chord(60). 

3. Show that 

 chord(3.75) = (2 – [2 + [2 + {2 + 3}]]). 

4. Produce a “double-angle formula” by making  = /2 and solving 

 chord(/2) = (2 – [4 – chord2()]) 
for chord(2) in terms of chord(). 

5. Produce a “sum formula” for chord( + β) in terms of chord() and chord(β) . (Hint: Use the 
formula from Exercise 1(a).) 

b) the parallel postulate 

The salient purely geometric pursuit of the late Greek period was a chase that lasted about 2100 

years. There was one particular postulate in Euclid’s geometry that seemed to have character different 

from the others. It did not lead to contradictions or such evils. It just offended readers in a way that made 

them wonder whether it might be removed from the list of axioms in the manner we described in 

section III.A.5a, by turning it into a theorem. The two millennia spent in trying to prove it made the 

statement so famous that we will render it several different ways. 

(i) Euclid’s version 

The postulate involves the lines L and M, in one plane, cut by line N at two points A and B, as in the 

figure at right. We demand A  B. That guarantees that we really have three different lines, and that if L 

and M intersect, then N does not share the common point. The transversal N 

(blue) forms eight angles at the two intersections. The four (numbered 1-4) 

between L and M are interior angles, the others exterior angles. 

Euclid’s Postulate. Suppose two lines are cut by a transversal so that interior 

angles on one side of the transversal add up to less than a straight angle. Then the 

two lines must meet on that side. 

The figure is intended to make angle 3 < angle 1. Therefore 

 angle 2 + angle 3 < 180. 

According to the postulate, L and M must intersect somewhere to the right. 

[I am not sure why geometers objected to this postulate. Maybe the reason is that it is not local. An 

earlier axiom, that you can draw a line joining two given points, is local. It looks at a specified region. 

Even if the points are light-years apart, you can visualize a long oval containing the two. By contrast, 

Euclid’s Postulate makes a promise about the indefinite distance out to the right of the picture. In that 

way, it borders on talking about infinity. 

It is wise to bear in mind that by “line,” Euclid meant what we call “line segment.” Watching over 

his shoulder for Zeno—as Eudoxus and Archimedes did—he did not visualize lines of infinite extent. 
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Instead, another earlier axiom said that “a line may be produced indefinitely.” That is, a segment may be 

extended by any finite number of copies of itself. “Then the two lines must meet …” is a promise about 

a sufficient but unstated number of extensions of segments.] 

(ii) angles related to parallels 

It is evident that when two lines are cut by a transversal, the four interior angles add up to two 

straight angles. Hence there are two possibilities. One is that the two on one side of the transversal sum 

to less than 180. In that case, the two on the other side must sum to more than 180, and Euclid says 

that the lines must meet on the less-than side. The other is that the two on each side add up to exactly 

180. We will describe the latter case in words that are more familiar. Then we will establish the inverse 

of Euclid’s postulate; that is, we will show that in this case, the lines cannot meet. 

Suppose angle 2 + angle 3 = 180. Then since angles 3 and 4 are supplementary, 

 angle 2  =  180 – angle 3  =  angle 4. 

Two angles on opposite sides of the transversal are said to be alternate. Angles 2 and 4 are alternate 

interior angles. In the current case, both pairs of alternate interior angles must be congruent: From 

angle 2 = angle 4, we conclude that their supplements, angles 1 and 3, have to be congruent also. 

Remember that lines in a plane are said to be parallel if they do not intersect. 

Theorem 1. If a transversal to two lines forms congruent alternate interior angles, then the lines must be 

parallel. 

For this theorem, you can make an intuitive appeal to symmetry. At right we 

have two lines cut by a transversal to form what look like 60 and 120 angles at 

both intersections. The picture is symmetric about the midpoint of AB. That is, if 

you rotate the page 180 about that point—for you, that means either rotating a 

monitor or rotating your head to view it—you end up with the same picture, a blue line sloping down to 

the right and crossing two others at 60 and 120 angles. Therefore if the two lines meet out toward the 

right, then they must also meet out toward the left. That would be a violation of one of the most basic 

properties we ascribe to straight lines, namely that two distinct lines cannot meet at two different points. 

We conclude that the lines cannot meet. 

For a more detailed proof, consider in the last figure the possibility that 

the extension of M toward the right (dashed in this figure) encounters L 

at point P. Reproduce length AP leftward from B, to point Q. Triangles 

BAP and ABQ are congruent by SAS. That is, they share side AB, 

side AP is congruent to side BQ, and the included angles BAP and ABQ 

are congruent alternate interior angles. Therefore angle BAQ matches angle ABP. That last angle is 

the interior angle on the right at B; remember that the line BP is simply M. Therefore it matches the 

interior angle on the left at A. In other words, the angle between the left half of L and the transversal 

is the same as the angle between AQ and the transversal. Therefore L is the same line as AQ. That 

means L meets M at the point Q. 

From the assumption that the lines meet to one side, we have concluded that they intersect again on 

the other side. Therefore they cannot meet. 

It is important to see that this theorem does not depend on Euclid’s Postulate. It follows from the 

idea of straightness embodied in the statement that two points determine a (single) line. That statement 

is a consequence of Euclid’s earlier postulates. 
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The theorem does guarantee that we can construct parallel lines: Since we can duplicate angles, we 

can construct congruent alternate interior angles, producing parallels. 

(iii) equivalent postulates 

Theorem 1 follows from the earlier postulates of Euclid. Its converse does not. 

The Parallel Postulate. If two lines are parallel, then any transversal to them forms equal alternate 

interior angles. 

The name “parallel postulate” is standard, but usually applied to our “Euclid’s Postulate.” The 

reason we have adopted it—for that matter, the reason we call it a postulate—is the next theorem. 

Theorem 2. If you assume Euclid’s postulate, then you can deduce the parallel postulate; and if you 

assume the parallel postulate, then you can deduce Euclid’s postulate. 

When each of a bunch of statements allows you to deduce all the others, the statements are said to be 

equivalent. The “equal value” they share is truth value: In every situation, they are all true, or else they 

are all false. We encountered equivalent statements in (ii), in the discussion just above Theorem 1. 

There, you can see that when lines are cut by a transversal, the statement 

 The interior angles on neither side of the transversal sum to less than a straight angle. 

is equivalent to 

 The interior angles on each side sum to exactly a straight angle. 

More generally, when a mathematical result takes the form 

 [This happens] if and only if [that happens]. 

(as in Theorem 1 of section II.B.1), then the two bracketed statements are equivalent. 

Proving the first part of Theorem 2 is easy. 

Look again at Euclid’s postulate; we assume that statement to be true. We must prove that a 

transversal to two parallel lines forms equal alternate interior (hereafter a/i) angles. Suppose, then,  

we have a transversal to parallel lines. On either side of the transversal, the interior angles cannot 

add up to less than a straight angle, because then (by the assumed postulate) the lines would meet. 

Hence on each side, the interior angles must add up to a straight angle. By our observation just 

above, the a/i angles have to be equal. We have deduced the parallel postulate from Euclid’s. 

Proving the second part, converse to the first part, requires an intermediary that is itself of interest. 

Theorem 3. (The Angle-Sum Theorem) If you assume the parallel postulate, then in every triangle, the 

angles sum to a straight angle. 

To the right, we see triangle ABC. We reproduce angle B at C, 

using BC as one side and the dashed black half line as the other. 

That gives us angle B = angle 1. The dashed green line extends 

the dashed black to the left of C. This new line and line AB are 

cut by transversal BC to form equal a/i angles. By Theorem 1, 

the added line is parallel to AB. If we assume the parallel 

postulate, then we infer that the transversal AC must also form equal a/i angles. Thus, angle A 

matches angle 2. Then the sum of the angles of the triangle is 

 angle A + angle ACB + angle B  =  angle 2 + angle ACB + angle 1. 

It is obvious that the latter three add up to a straight angle. 

Now we deduce Euclid’s postulate from the parallel postulate. 
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Assume the parallel postulate; that is, assume that whenever two lines are 

parallel, every transversal to them forms equal a/i angles. Suppose that in the 

figure at right, angles 2 and 3 sum to 175. Then 

 angle 4  =  180 – angle 3 

   =  180 – (175 – angle 2)  =  (angle 2) + 5. 

The a/i angles do not match. By the assumption, the lines L and M cannot be 

parallel; they meet someplace. That place is not to the left. If they met to the 

left, then L, M, and N would enclose a triangle whose angles would be 

angle 1, angle 4, and one other. But angles 1 and 4 already add up to 

 angle 1 + angle 4  =  360 – (angle 2 + angle 3)  =  185. 

The (assumed) parallel postulate guarantees that no triangle can have angle sum that high. Therefore 

the meeting place is on the side where the interior angles have the smaller sum. That proves Euclid’s 

postulate, on the assumption of the parallel postulate. 

Taking stock, we see that Euclid’s postulate and the parallel postulate amount to the same statement. 

We see also that either of them implies the angle-sum theorem. It happens that the angle-sum theorem 

implies the others, but that is harder to establish. Let us pretend we have established the implication. 

With it, we establish the theorem as a third statement equivalent to the two postulates. At the same time, 

it is important for us to remember that we did not prove Euclid’s postulate, or the parallel postulate, or 

the angle-sum theorem. What we showed is that if you want to prove one using the other postulates of 

Euclidean geometry, then it suffices to prove either of the others. 

That brings us back to this section’s introduction. The first well-known attempt to write a proof of 

Euclid’s postulate from the others was by Proclus (Alexandrian, 410-485 CE. Most of what we [believe 

we] know about Thales and Pythagoras is from the testimony of Proclus.) The proof turned out to 

depend on the principle that parallel lines are necessarily equidistant.  When we (teaching) introduce 

parallel lines, we sometimes use the analogy of train tracks. That analogy is based on this principle. You 

can prove the equidistance, if you assume the parallel postulate (Exercise 2). Indeed, like the angle-sum 

theorem, the equidistance turns out to be equivalent to the postulate. In other words, what Proclus hoped 

was a proof had the fatal flaw that it assumed what it was trying to prove. That malady, called circular 

reasoning, afflicted all the other attempts to prove the postulate in the 1400 years following Proclus. See 

Exercise 3 for a sample of it. 

b Exercises III.A.8

1. How did Greek geometry change after the time of Apollonius (roughly 200 BCE)? 

2. Prove that parallel lines are equidistant: Draw two parallel lines and put points A and B on 
one of them; prove (assuming the parallel postulate) that the perpendiculars from A and B 
to the other line are equally long. 

3. a) Draw triangle PQR with side PQ = 1, angle P = 74, and angle Q = 105. Find the length 
of QR. 
b) At right is a partial reproduction of this section’s opening 

figure, with the transversal making angles of 74 and 105 to 
the lines M and L, respectively, and the distance AB set at 1. 

Point C is chosen so that 

 AC = sin 74/sin 1. 
Prove that triangle BAC is congruent to triangle PQR in (a). 
c) Prove that M coincides with line BC. This proves that M must meet L at C. 
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d) You could use the argument in (a)-(c) as a template to build a proof of Euclid’s postulate. 
Show that the “proof” would be circular, by spotting the places where the postulate is a 
hidden assumption. (There are at least three such places in the argument. Recall “hidden 
assumptions” from section III.A.5b.) 

 Number Theory Section III.B.
The Greeks did not make any great contributions to numeration, but they did advance the study of 

numbers. They had two names for that study. One was logistiki, for what we would call “arithmetic.” 

They seem to have held a low opinion of the crass study of computation. What they held in high esteem 

was arithmoi, the more dignified study of properties of numbers that we would call “number theory.” 

Here we do a great deal of the latter. Just about all of it appeared in The Elements. Euclid’s great work 

was not limited to geometry.  

1. The Fundamental Theorem 

We start with a principle that must have been known to plenty of ancient people. Its proof may have 

been given first by the Pythagoreans. 

The Fundamental Theorem of Arithmetic. Every natural number beyond 1 can be factored into the 

product of primes, and the prime factorization is unique. 

To elaborate the Theorem, we need the elementary notion of divisibility. Let a and b be integers. 

They can be positive or negative, but it helps to demand a  0. We say a divides b if there is an integer k 

with b = ka. Thus, 5 divides 65 because 65 = 13  5. Evidently 13 also divides 65. If a divides b, then 

we also say a is a factor of b, a is a divisor of b, b is divisible by a, b is a multiple of a. 

Remember that a natural number is called prime if its only positive divisors are 1 and the number 

itself. For convenience, we do not count 1 as a prime number. You can check that 5 and 13 are both 

prime, and we have seen that 65 is not. We count each of 5 and 13 as a “product of primes” having a 

single factor. Also, we say “unique” to abbreviate “unique except for the order of the prime factors.” 

Accordingly, 65 = 5  13 = 13  5 is “the unique factorization” of 65. 

a) prime factorization 

You cannot prove general statements by resort to examples. However, we will adopt the practice of 

using specific numbers to reduce the abstractness of arguments—really, to keep the number of variables 

down—to the extent that we can still clearly illustrate how to structure a general proof. In that spirit, we 

give evidence for the part of the Theorem preceding the comma, using the example of 360. 

We try dividing 360 by the numbers from 2 to 359. Actually, we need only try to divide by primes 

(Exercise 2), and we have to try the primes only from 2 to 360 (Exercise 3). If none of those primes 

divides 360, then we conclude that 360 is prime and is therefore its own factorization. 

We immediately find that 2 divides 360. We obtain 

 360 = 2  180. 

That expresses 360 as the product of a prime and another factor. The other factor can be no greater 

than 360/2, because we are dividing by at least 2. Repeating on the end factors, we proceed through 

 360 = 2  2  90   (two primes and a factor no greater than 360/4) 

  = 2  2  2  45   (three primes and a factor no greater than 360/8) 

  = 2  2  2  3  15  (four primes and a factor no greater than 360/16) 

  = 2  2  2  3  3  5  (five primes and a factor no greater than 360/32). 

It happens that we have arrived at a prime factorization. Notice, though, that the process could go on 
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for an unpassable maximum of three more steps. If there were three more steps, the end factor would 

be at most 360/256; it would be 1. The process of breaking down into primes necessarily terminates. 

In practical terms, factorization usually works better if we make the factors closer together than, say, 

2 and 180. If for example we choose the fairly obvious 

 360 = 36    10, 

we can then write 

 360 = 6  6  5  2 

  = 2  3  2  3  5  2. 

We end up as before with a factorization consisting of three 2’s, two 3’s, and a lone 5. 

a Exercises III.B.1

1. Assume 36 divides the integer b. Show that: 

a) If b > 0, then 36  b. (Best attack: induction. We will cover that method in 1900 years.) 
b) 36 divides every multiple of b. 
c) If 36 also divides c, then 36 divides both b + c and b – c. 

2. Given an integer, show that its smallest divisor beyond 1 must be prime. 

3. The number 12,079 is not prime. Show that the smallest prime that divides it is no more 

than 12,079  110. 

b) integer division 

Proving the uniqueness part of the Fundamental Theorem requires some results that are of 

independent interest to us. 

Theorem 1. (The Division Algorithm) Suppose d (as in divisor) is a natural number and n is an 

integer. Then there exist two integers q (as in quotient) and r (as in remainder) such that n = qd + r, 

and these integers are unique if we require that 

 0  r < d. 

Notice the restriction on r. It is allowed to be zero, but must be strictly smaller than the divisor; see 

Exercise 1. Notice also that if (and only if) r = 0, then d divides n. 

In support of Theorem 1, pick d = 18 and n = 1000. Some multiples of 18, like 1000  18, exceed 

1000. By a property of the natural numbers, there must be a smallest such multiple. Call that 

multiple 18i. (What is the actual value of i?) Then 18(i – 1) does not exceed 1000. Put all that as 

 18(i – 1)  1000 < 18i. 

(That line is really what underlies the Division Algorithm: Every integer is between two consecutive 

multiples of 18; because the gap between those multiples is 18, the integer has to be from 0 to 17 

above the lower multiple.) From the previous inequality, we have 

 0  [1000 – 18(i – 1)] < 18i – 18(i – 1)  = 18. 

Accordingly, the equation 

 1000 = 18(i – 1) + [1000 – 18(i – 1)] 

tells us that (i – 1) is a quotient and [1000 – 18(i – 1)] a remainder upon division of 1000 by 18. 

[We referred to the following property of the natural numbers: Every nonempty set of natural 

numbers has a smallest member. The property is called the well-ordering principle. We need to accept 

it for now, on the promise that we will justify it eventually.] 
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As for uniqueness, suppose 1000 equals both 18q + r and 18Q + R. From 

 18q + r  =  18Q + R, 

we have 

 18(q – Q)  =  R – r. 

That says 18 divides R – r. If R and r are between 0 and 17, then R – r is between –17 and 17. In that 

string of integers, the only multiple of 18 is 0. The reason is that for 18, the positive multiples are 18 

and higher, the negative multiples -18 and lower (Exercise 1a above). Therefore R – r is zero: 

 R = r. 

That forces 18q = 18Q, and therefore q = Q. The quotient and remainder are unique. 

It is odd that Theorem 1 makes a statement with the name “algorithm.” An algorithm is normally 

defined as a step-by-step method for doing some job. The steps must be carried out in sequence, 

although an instruction may say “jump now to step x.” The algorithm must leave no decisions open; it 

must anticipate any that can arise and specify how to make them. (In 1996, failure of an algorithm—a 

vast computer program—to specify how to react to a calculation, turned an Ariane rocket into an 

expensive, unguided flying pile of ordnance.) By anybody’s definition, the algorithm must guarantee 

that it will reach an answer. The answer does not have to be good news; it could be, “What you want to 

do is impossible.” But termination must be guaranteed. Additionally, the definition sometimes provides 

that the algorithm must specify, or imply, the maximum time or number of steps it will need to 

terminate. We have seen such specifications. Look back at our factorization of 360 (subsection (a)). 

There we observed that it takes no more than 8 cycles of finding new prime factors, because 360/2
8
 is 

already less than 2; and each cycle requires no more than 360 divisions to produce the new factor. 

However, we forgive the odd name. The Division Algorithm is a remarkable combination of 

elementariness and power. It is clearly elementary; we introduce it in the schools by fourth grade. You 

will see its power in our frequent uses of it. It underlies a number of important principles. One of them 

comes right now, on the way to proving the uniqueness part of the Fundamental Theorem. 

Theorem 2. If a prime divides a product, then it has to divide one of the factors. 

It is not true that if a number divides a product, then it divides some factor. For example, 6 

divides 9  10, but it does not divide either of 9 or 10. Theorem 2 describes a property of primes. 

To prove Theorem 2, we need another property of primes. 

Theorem 3. If p does not divide n, then there are two integers i and j such that pi + nj  =  1. 

Fix two integers a and b. The expression ai + bj, i and j understood to be integers, is called an 

integer combination of a and b. (You could as well call it an integer combination of a and j, or i and b, 

or i and j.) The combinations of a and b include a and b themselves, 

 a = a(1) + b(0)  and b = a(0) + b(1), 

their sum and difference 

 a + b  =  a(1) + b(1) and a – b  =  a(1) + b(-1), 

and  0 = a(0) + b(0). 

Theorem 3 says that if p does not divide n, then some integer combination of p and n has a value of 1. 

To illustrate proof of Theorem 3, observe that the prime 19 does not divide 1000. The integer 

combinations of 19 and 1000 include some positive ones. (Name one.) By the well-ordering 

principle, one of those must be smaller than all the others. Let  

 d  =  19i + 1000j 

be the smallest positive combination of 19 and 1000. 

This number d divides both 19 and 1000. To see why, apply the Division Algorithm to 19 with d: 

 19  =  qd + r. 
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Rewrite that as 

 r = 19 – qd  

  = 19 – q(19i + 1000j)  =  19 (1 – qi) + 1000(-qj). 

You see that r is an integer combination of 19 and 1000. Since r has to be less than d and d is the 

smallest positive combination, r cannot be positive. It has to be 0. That is, d divides 19. By exactly 

the same reasoning, d divides 1000. 

The statement that d divides 19 narrows the possibilities. Only 1 and 19 divide 19; d has to be 

either 1 or 19. But it is not 19, because d divides 1000 and 19 does not. Therefore d is 1. We have in 

d an integer combination of 19 and 1000 whose value is 1. (Find one in Exercise 3.) 

We will continue to talk in terms of integer combinations, allowing ourselves the indulgence of 

using negative coefficients. If 19i + 1000j = 1, then either i or j has to be negative. The Greeks did not 

have a conception of negative numbers. What we write with a negative j, they would have rendered as 

the positive difference of positive multiples 

 19i – 1000(-j) = 1. 

If instead it is i that is negative, then it would have been 

 1000j – 19(-i) = 1. 

Our combinations provide a symmetry that lets us avoid having to deal with 19k – 1000l and 

1000m – 19n as separate cases. 

Keep in mind that if we can produce one form of difference, then we can produce the other. For the 

reasonable numbers p = 5 and n = 18, we easily see that 

 18(2) – 5(7) = 1. 

Think of that as saying that some multiple of 18 is 1 more than some multiple of 5. Multiply by 

5 – 1 = 4 to get 

 18(8) – 5(28)  =  5 – 1, 

then rearrange to 

 1  =  5 + 5(28) – 18(8)  =  5(29) – 18(8). (Get the calculator and verify.) 

Now some multiple of 5 is 1 more than some multiple of 18. 

Had we started with that last equation, we could have multiplied by 18 – 1 = 17 to write 

 18 – 1  =  5(29  17) – 18(8  17), 

which rearranges to 

 18(1 + 8  17) – 5(29  17) = 1.  (Calculator?) 

Now we justify Theorem 2. 

Assume 19 divides the product 1000m and does not divide 1000. Then some combination 

19i + 1000j equals 1. Multiply 

 1  =  19i + 1000j 

by m to write 

 m  =   m(19i + 1000j)  =  19(mi) + 1000m(j). 

On the right, 19 obviously divides 19(mi). It also divides 1000m(j), because the latter is a multiple of 

1000m and 19 divides 1000m (previous Exercise 1b). Therefore 19 divides the sum 

 19 (mi) + 1000m(j) = m   (previous Exercise 1c). 

We have shown that if 19 divides the product 1000m and does not divide the first factor, then it has 

to divide the other. That is our evidence for Theorem 2. 

The statement extends to any number of factors. If 19 divides the product abcd, then it divides a, or 

else has to divide bcd. In the latter case, it has to divide b, or else cd. If it comes down to that last, then it 

has to divide either c or d. If a prime divides a product, then it must divide at least one of the factors. 
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c) uniqueness of factorization 

Finally we can establish that 360 has just one factorization.  

Suppose 360 also factors as pqrs.... From 

 2  2  2  3  3  5 = pqrs..., 

we see that 2 divides the product pqrs.... Therefore 2 must divide one of the primes p, q, r, s, .... That 

means 2 has to be one of those primes. Make it p: 2 = p. Then we may cancel to write 

 2  2  3  3  5 = qrs.... 

Again we conclude that one of those primes q, r, s, ... is 2, so that (say) 

 2  3  3  5  = rs.... 

You see how this continues. We keep canceling one prime on the left with one on the right. Neither 

side can run out of primes before the other, because then one side would equal 1 while the other held 

a product of primes. Therefore the list p, q, r, s, ... consists of exactly six primes, comprising three 

2’s, two 3’s, and one 5. Prime factorization is unique. 

c Exercises III.B.1

1. What are the quotient and remainder on division by 5 for: 
a) 38  b) -38? 

2. Assume 1000 divides integers b and c. Prove that 1000 divides every integer combination 
of b and c. 

3. Find an integer combination of 19 and 1000 that equals 1. (One attack: The division 
algorithm will give you a combination equal to 12. Double that one, you get 24; subtract 19, 
you get 5; quadruple, you get 20; subtract 19.) 

4. Write 360 = 23 32 51. This expression is called the prime-power factorization for 360. 
a) Assume d divides 360. Show that the prime-power factorization of d must be 
 d = 2i 3j 5k, 

with no other primes and with the powers satisfying 0  i  3, 0  j  2, 0  k  1. 
b) May the powers be 0, 0, 0, respectively? May they be 3, 2, 1? 
c) In view of (a) and (b), how many divisors does 360 have, counting 1 and 360? 
b) In general, how many divisors are there for the number with factorization pa qb... rc? 

2. Irrational Numbers 

The Pythagoreans made a discovery that threw Greek geometry into something of a crisis. It is 

helpful to put it into a modern context. 

Recall that in our teaching of the real number line [better said, in my teaching of the number line], 

we begin by assigning two real numbers to two points on the 

line. It does not matter which two numbers we use; as soon as 

we assign them, we specify orientation on the line (which 

direction the numbers increase) and a unit of measure. For convenience, then, we choose to start by 

assigning 0 and 1 (red in the figure). Lay off their distance to the right, and it makes sense to attach to 

the point so reached the next natural number. At the same distance further right, we assign the number 

after that, and so on. The line also extends to the left, so we assign integers downward from 0 to the 

uniformly placed points leftward. 

Evidently this process leaves in-between points. Fortunately, we have in-between numbers. For 

example, to the midpoint of the segment joining the points labeled 1 and 2, we assign the number 

halfway between 1 and 2, shown in green. In each gap between integer-labeled points, we assign the 

0 1 2 ... -2 -1 ... 

3/2 
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infinity of rational numbers between the corresponding integers to the infinity of points. The question 

naturally arises: Does that take care of all the points on the line? 

For the Greeks (who would not have put in 0 and the part of the line left of there) the answer would 

have been affirmative. We know that you can take any integer length m and “multisect” it into n equal 

parts, thereby constructing the fractional length m/n. If you take literally the description of a length less 

than 1 as a “fraction,” then you are picturing those lengths—all of them—as coming from breaking a 

whole number length into another whole number of parts. That seems to be how the Greeks thought of 

all the intermediate lengths, until the Pythagoreans showed that the answer is no. 

Remember that it is possible to construct a length whose square is 2. We can do it by constructing 

either an isosceles right triangle with unit legs, on whose hypotenuse the square is 2; or a square whose 

area is 2 units (Exercise III.A.3:2a), whose side therefore fits the bill. In our notation, we denote the 

length by 2. Here is what the Pythagoreans discovered: 

Theorem 1. There is no fraction whose square is 2. 

For proof, we take a small departure from the usual argument. 

If there were a fraction m/n with 

 2  =  (m/n)
2
  =  m

2
/n

2
, 

then we would have 

 m
2
 = 2n

2
. 

That equation cannot hold between natural numbers. Look at it in terms of prime factorization. 

Whatever the factorization of m is, the factorization of m
2
 necessarily consists of the same primes 

written twice as many times. (For example,  

 360 = 222335  forces  360
2
 = 222335  222335.) 

Therefore the factorization of m
2
 has an even number of primes. The same of course goes for any 

square, including n
2
. Therefore the two integers m

2
 and 2n

2
 cannot be equal; the latter factors into an 

odd number of primes, owing to the extra 2. (Why can’t a product of an odd number of primes 

somehow contrive to match the product of an even number of primes?) The equation 

 2 = (m/n)
2
 

cannot be satisfied by any fraction m/n. 

We take it for granted that the real numbers encompass the fractions and the unfractions (hereafter 

rational and irrational numbers.) But it was their knowledge of the natural numbers that led the 

Pythagoreans to discover that there are reals, like 2, besides the rationals. 

 Exercises III.B.2

1. a) Prove that if a natural number is not a square (of another natural number), then its 
square root is irrational. 
b) Prove the same for any root: If n is not the k’th power of another natural number, then 
the k’th root of n is irrational. 
c) More generally, prove that the lowest-terms rational number m/n has a rational k’th root 
iff each of m and n is itself the k’th power of an integer. (Examples: 8/27 has a rational cube 
root, because 8 = 23 and 27 = 33; but 8/12,345 does not have a rational fourth root, 
because 8 is not a fourth power. Are you sure 8/12,345 is in lowest terms?) 

3. Eudoxus and the Nature of Ratio 

The discovery of irrational numbers was one reason philosophers, Zeno being perhaps best known, 

began to demand more precise definitions and tighter logic. Greek geometers found themselves in need 
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of a close look at the very nature of numbers and ratios of numbers. Ratios, especially equality of ratios, 

are at the heart of the relations we get from similarity. Those include, for one big example, the statement 

that the circumferences of circles are in proportion to their radii. The geometers needed someone who 

could address both the geometric tradition and the numerical Oriental tradition. They needed Eudoxus. 

Eudoxus gave the definition that two (positive) quantities have a ratio if some multiple of each 

exceeds the other. Under this criterion, there is a ratio between 2 and 5: 

 5  1 exceeds 2, because (5  1)
2
 is more than (2)

2
, and 

 2  4 exceeds 5, because [2  4]
2
 = 2  16 is more than 5

2
. 

He then defined equality of ratios as follows: Two ratios are equal if (equal) multiples of the two 

numerators relate the same way to (perhaps other, equal) multiples of the denominators. 

The last is a rarity, a definition that is easier to understand in symbols than in words. 

In symbols: 

 a/b = c/d 

means that whenever the multiple ma is less than the multiple nb, then mc < nd; and whenever 

ma = nb, then mc = nd; and whenever ma > nb, then mc > nd. 

Notice that both definitions use comparisons in terms of integer multiples. Dividing in the equality 

definition by n, we can cast it as: 

The ratios a/b and c/d are equal iff every rational multiple (m/n)a is less than, or equal to, or greater 

than b, alike as (m/n)c is below, at, or above d. 

Either way, the comparison is in terms of the good old numbers, meaning natural numbers and their 

ratios. The equality definition has the desirable quality of actually looking at the relative sizes of a and c 

compared to b and d. View that against our familiar criterion, 

 a/b = c/d  iff  ad = bc. 

This test puts the equality of the ratios in terms of the equality of two products that are blind to the ratios 

as quantities and even to the relation between a and b or between c and d. 

The other definition (“quantities have a ratio”) is worth some study, because it leads to a statement 

that helps confirm our picture of the real numbers. The statement bears the name of Archimedes, but 

Archimedes himself traced it back to Eudoxus. 

The Axiom of Archimedes. If r and a are two positive real numbers, then some multiple of a exceeds r. 

You can think of it in words as saying that if you take enough equal steps, no matter how small, 

rightward along the real line, then you eventually pass any fixed point on the line, no matter how far. In 

the language of Eudoxus, it says that any two positive real numbers have a ratio. 

To relate it to our picture of the reals, set a = 1. The axiom says that if r is positive, then some 

multiple of 1—in other words, some natural number—is to the right of r. If s is a negative real number, 

then -s is positive, there exists some natural n to the right of -s, and -n is to the left of s. Therefore the 

integers are coextensive with the reals; there is no real number that lies beyond the rightward reach or 

beyond the leftward reach of the integers. In more detail, since there are natural numbers to the right 

of r, the well-ordering principle says that there is a least such natural number. Call it m. Then m – 1 is 

not to the right of r. That is, 

 m – 1    r  <  m. 

Every real r, then, is itself an integer or lies in the gap between consecutive integers. We may study the 

vicinity of r by studying instead the interval between 0 and 1. 
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The vicinity of 0 is crowded with fractions. We can prove that if  is any positive real, no matter how 

close to 0—no matter how small—there exist unit fractions between  and 0 (Exercise 2). [We used  to 

represent eccentricity; now we make the standard use of it, to represent a positive number presumed to 

be small.] On the basis of that, we can establish a remarkable property of the rational numbers. 

Theorem 1. The rational numbers are dense in the real line: If r and s are any two real numbers, then it 

is possible to find a rational number between them. 

Let us proceed assuming r and s are both positive and r < s. If they are of opposite signs, then 0 is 

between them; and if they are both negative, the argument is simply the mirror image of what we write. 

Look at the length s – r between them. By Exercise 2, there is a unit fraction 1/n with 

 0  < 1/n  < s – r. 

By the axiom of Archimedes, some multiple of 1/n exceeds r. By the well-ordering principle, there is 

a smallest such multiple; denote it by m(1/n) = m/n. That means (m – 1)/n does not exceed r. Of 

necessity, 

 (m – 1)/n    r  <  m/n. 

How far above r is m/n? Put our two inequalities together and you have 

 m/n  = (m – 1)/n + 1/n 

    r  +  1/n < r + (s – r)  =  s. 

The rational number m/n is between r and s. 

We see that our “real line” model of the real numbers reflects ideas that go back to Eudoxus. 

 Exercises III.B.3

1. Use Eudoxus’s definition to show that 

 2/5 = 8/10. 

2. Let  be a positive real number. Prove that there is a unit fraction 1/n between 0 and . 

(Hint: 1/ is a positive real number.) 

3. Prove that between any two real numbers, there exists an infinity of rational numbers. 

4. Euclid and Number Theory 

Here we capture some of the number theory covered in Books 7-10 of the Elements.  

a) common divisors 

Much of this section applies to any finite set of integers. However, we will limit our talk to pairs of 

integers. 

A natural number that divides each of a and b is called a common divisor of them. Recall that there 

are always common divisors; it is automatic (in math: trivial) that 1 is a common divisor of any pair of 

integers. Sometimes that is it. If 1 is the only common divisor of a and b, then we say a and b are 

relatively prime. Since a divisor cannot exceed (the absolute value of) what it divides (Exercise 

III.B.1a:1a), there must be among the common divisors a biggest one. We call that one the greatest 

common divisor (hereafter GCD) of a and b. Thus, the GCD of 35 and 75 is 5, because the only 

divisors of 35 = 5  7 are 1, 5, 7, and 5  7, and of those only 1 and 5 divide 75. For a like reason, 35 

and 76 are relatively prime. 

[Remember that we choose to say of relatively prime numbers that they have “no common divisor.”] 

Here are two key results. 

Theorem 1. The smallest positive integer combination of two integers is their GCD.   
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For evidence, we work with 640 and 1000. Let  

 d  =  640i + 1000j 

be the smallest possible combination you can make from them. (Remember why it is that there must 

be a smallest positive combination.) We leave as Exercise 4 the proof that d must divide 640 

and 1000. It then has to be the biggest of the common divisors: If k is another common divisor, 

then k divides all the combinations of 640 and 1000 (Exercise III.B.1c:2), including d. From the fact 

that k divides d, we conclude k  d. Therefore d is the biggest common divisor. 

Theorem 2. (The Euclidean Algorithm) Let a and b be natural numbers. Divide a into b to get a 

remainder r1; divide r1 into a to get remainder r2; and so on, until you get a zero remainder. The last 

legal divisor—meaning either a or the last nonzero remainder—is the GCD of a and b. 

To continue with our example, divide 1000 into 640 to get 

 640 = 0  1000 + 640. 

Next we divide 640 into 1000, and absorb the valuable lesson that you save time by dividing the smaller 

into the larger in the first place. We proceed through 

 1000 = 1  640 + 360 

   640 = 1  360 + 280 

   360 = 1  280 + 80 

   280 = 3  80 + 40 

     80 = 2  40. 

We have reached a zero remainder. That was inevitable; the algorithm must reach 0 remainder, because 

the remainders decrease. The Euclidean algorithm says that 40 is the GCD of 640 and 1000. 

To establish the algorithm, observe that the last line says 40 divides 80. The previous line says 

   280 = 3  80 + 40. 

Because 40 divides 80, it also divides the integer combination 3  80 + 40. That is, 40 divides the 

divisor and dividend on that previous line, 80 and 280. The line two up from last reads 

   360 = 1  280 + 80. 

We know that 40 divides 80 and 280. Therefore 40 divides the divisor and dividend on that line, 280 

and 360. Keep climbing the ladder, and see that no matter how high it goes, we must arrive at 40 

dividing the original divisor and dividend, 640 and 1000. The Euclidean algorithm always produces 

some common divisor. 

Is it the biggest? Unwind the algorithm up from  the next-to-last line. Rewrite the line as 

 40 = 280 – 80(3). 

Substitute 80 from the line before, 

 80 = 360 – 280(1), 

to get 

 40 = 280 – 3[360 – 280(1)]  = 360(-3) + 280(4).  (Check it!) 

Substitute 280 from the next line up, and …. Read the pattern: This process keeps showing 40 as an 

integer combination of the guests of honor on each line, going up line by line. It continues 

 40 = 360(-3) + [640 – 360(1)](4) = 640(4) + 360(-7) 

  = 640(4) + [1000 – 640(1)](-7) = 1000(-7) + 640(11).  (Check!) 

The algorithm shows that 40 is an integer combination of 640 and 1000. (More than that: It delivers 

the coefficients that express 40 as such.) 

On one hand, 40 is a common divisor, so that 40  GCD. On the other hand, the GCD is the smallest 

of the positive integer combinations, implying GCD  40. We conclude that 40 is the GCD of 640 

and 1000, and that the Euclidean algorithm always produces the GCD. 
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Remember that our use of negative numbers is consistent with our way but not the Greek. In terms 

of positive numbers, we have 

 40  =  640(11) – 1000(7). 

To express 40 as a multiple of 1000 minus a multiple of 640, multiply through by 1000/40 – 1 = 24: 

 1000 – 40  =  (1000/40 – 1)40  =  640(11  24) – 1000(7  24), 

then rearrange to get 

 1000(7  24 + 1) – 640(11  24)  =  40. 

a Exercises III.B.4

1. Use the Euclidean algorithm to find the GCD of 360 and 94, and express the GCD as an 
integer combination of the two. Check with a calculator. 

2. Show that 999,999,999 and 1,000,000,001 are relatively prime. Then find an integer 
combination that equals 1. 

3. a) Describe how to obtain the GCD of two natural numbers, given their prime factorizations. 
b) Factor 360 and 94 into primes and apply (a) to obtain their GCD. 
c) Describe how to get the least common multiple (exactly what it sounds like, abbreviated 
LCM) of two numbers from their factorizations. 
d) Find the LCM of 360 and 94. 
e) Show that for any two numbers, GCD times LCM is the product of the numbers. 

4. Let d = 640i + 1000j be the smallest positive integer combination of 640 and 1000. Mimic 
the proof of Theorem 3 in III.B.1b to show that d divides both numbers. 

5. Show that if k divides the product ab and is relatively prime to a, then k must divide b. (One 
approach: Mimic the proof of Theorem 2 in III.B.1b. This exercise is a generalization of that 

theorem. Contrast the statement with our remark that 6 divides 9  10, even though it 

divides neither 9 nor 10. On the other hand, 9  10 = 5  18, and 6 is relatively prime to 5.) 

b) Pythagorean triples 

We now have the tools we need to keep the promise to establish the structure of Pythagorean triples, 

as given in Theorem 1 of section II.B.1. The first half says that if u and v are relatively prime and of 

opposite parity, then they yield a primitive triple. 

Let u > v be any natural numbers. It is automatic that the three numbers 

 u
2
 – v

2
,  2uv,  and  u

2
 + v

2 

form a Pythagorean triple (Exercise 1). 

Suppose that the triple is not primitive; that is, the three numbers have a common divisor. Then they 

must share a common prime divisor p. Necessarily, p also divides the sum 

 (u
2
 + v

2
) + (u

2
 – v

2
) = 2u

2
 

and the difference 

 (u
2
 + v

2
) – (u

2
 – v

2
) = 2v

2
. 

One way that could happen is if p = 2. In this case, u
2
 + v

2
 and u

2
 – v

2
 are both even, and u and v 

must have the same parity. The only other way p can divide both 2u
2
 and 2v

2
 is for p to divide both 

u
2
 and v

2
, and therefore divide both u and v. (Reasons?) Then u and v are not relatively prime. 

Summarizing via the contrapositive: If u and v are relatively prime and of opposite parity, then the 

triple has to be primitive. 

[Before we give evidence that every primitive triple has this form, you should consider how anybody 

could have thought up such a complicated structure. A good bet: The process must have been what we 
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used to facilitate construction of the hexagon (section III.A.4b) and the pentagon (III.A.2c); namely, you 

imagine what you want to study, then deduce properties that allow you to produce it.] 

Start, then, by letting a, b, c form a primitive Pythagorean triple: They have no common divisor and 

 a
2
 + b

2
  =  c

2
. 

We saw (Exercise II.B.1:1c) that a and b cannot both be odd. They also cannot both be even, because if 

they were, then all three numbers would be. In fact, no two of a, b, and c can have a common divisor. 

If say b and c had a common divisor, then they would share a common prime divisor q. In that case, 

q would also have to divide 

 a
2
 = c

2
 – b

2
, 

would therefore divide a. Similar reasoning works if anything divides both a and c or both a and b. 

For illustration, take a primitive triple like 93, 476, 485. (Check that they form a triple.) Observe that 

the smaller numbers are one odd and one even; and 

 93 = 3(31),  476 = 2
2
(7)17,  and 485 = 5(97) 

are pairwise relatively prime. 

(When among three or more numbers, no two have common divisors, the numbers are pairwise 

relatively prime. It is not automatic that relatively prime numbers are pairwise prime. The three 

numbers 15, 21, 35 do not have a common divisor, but 15 and 21 do, 21 and 35 do, and 15 and 35 do.) 

To establish that 93, 476, 485 is given by the Babylonian method, write 

 (476/2)
2
 = 476

2
/4 

   = (485
2
 – 93

2
)/4 

   = (485 – 93)/2  (485 + 93)/2. 

The first fraction and the last two are whole numbers, because their numerators are even. Therefore 

the product of the two numbers (485 – 93)/2 and (485 + 93)/2 is a square. Those two numbers have 

no common divisor: If they did, then that divisor would also divide their sum and difference 

 (485 – 93)/2 + (485 + 93)/2  =  485, 

 (485 + 93)/2 – (485 – 93)/2  =  93, 

two numbers we know to be relatively prime. 

Because (485 – 93)/2 and (485 + 93)/2 are relatively prime and their product is a square, they both 

have to be squares. A product of non-squares can be a square, like 2  8, but not if the factors are 

relatively prime. For proof, assume mn is a square with m and n having no common divisor. First, 

each prime in the factorization of mn appears an even number of times. Second, since m and n are 

relatively prime, the primes in mn come from m or from n, but not both. That means the primes in m 

appear in m an even number of times, likewise n. Hence m and n are squares. 

Having shown the two fractions to be squares, we denote 

 (485 + 93)/2 by u
2
, 

 (485 – 93)/2 by v
2
. 

(Verify that those fractions really are squares.) We already saw that u
2
 and v

2
 are relatively prime, 

and therefore so are u and v. Furthermore, 

 485 = u
2
 + v

2
, 

   93 = u
2
 – v

2
, 

 (476/2)
2
 = u

2 
v

2
. 

The first two equations guarantee that u and v cannot have the same parity. The last one gives 

 476/2 = uv, 

and 476 = 2uv. The Babylonian formulation gives all possible primitive triples. 
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b Exercises III.B.4

1. Show that for any natural numbers u > v, the three numbers 
 u2 – v2, 2uv, and u2 + v2 
constitute a Pythagorean triple. 

2. a) For the 6, 8, 10 triple, find u and v such that 8 = u2 – v2, 6 = 2uv, and 10 = u2 + v2. 
b) Show that the same cannot be done for 9, 12, 15. Is that a contradiction? 

c) commensurability 

Euclid, being of the Greek tradition, always associated numbers with lengths. The arithmetic notion 

of divisor goes with the geometric notion of measure. Length d measures length a if a is a whole 

number of times d. If d measures both a and b, it is a common measure. The biggest such thing is the 

greatest common measure. 

Any two rational lengths a/b and c/d have a common measure 1/(bd). (That statement is true for 

integers too: set b = d = 1.) The reason our criterion for equality of ratios, 

 a/b = c/d  iff ad = bc, 

works is that it compares the fractions as multiples of the common measure 1/(bd): 

 a/b = [ad](1/bd) and c/d = [bc](1/bd). 

The Euclidean algorithm applies to rational numbers exactly as to integers. For 2/5 and 8/3, we have 

 8/3 = 6  2/5 + 4/15. 

(The quotient 6 comes from (8/3)/(2/5) = 40/6 = 6+, and the remainder from 8/3 – 6  2/5 = 4/15.) 

Next, 

 2/5 = 1  4/15 + 2/15, 

 4/15 = 2  2/15, no remainder. 

By the algorithm, 2/15 is the greatest common measure. 

One irrational can measure another. Thus, 2 measures 50 = 52. Lengths or numbers with 

common measures are said to be commensurable. But no irrational is commensurable with any rational. 

If 2 and 5 had a common measure d, so that say 

 2 = md and 5 = nd, 

then we would have 2 as the fraction 

 2 = m(5/n) = (5m)/n. 

When numbers are commensurable, they have a “ratio,” as in “rational.” From 

 8/3 = 20  (2/15) and 2/5 = 3  (2/15), 

we judge that the two fractions are in the ratio 20/3. We see why Zeno, who preceded Hippocrates, 

would have objected to talk that 2 – 1 and 1 – 2/2 are in the “ratio” 2/1 (which we said in squaring 

the lune in section III.A.3b). We see also why Eudoxus had to develop the new notion of ratio to 

compare incommensurables like 2 and 5. 

d) primes and perfects 

There are two theorems credited to Euclid himself. One says that the set of primes is infinite. Greek 

philosophers avoided or even opposed the idea that a collection could be abundant beyond any number, 

perhaps because the capacity of the concept of infinity to generate paradoxes is—how shall we say—

infinite. But Euclid gave a proof that the primes are without end. 

Theorem 1. Suppose p1, p2, p3, ..., pk is a list of primes. Then some prime number is not on the list. 

The proof is remarkably brief. 
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Let p1, p2, p3, ..., pk be a list of prime numbers. Add 1 to their product: Write 

 N = (p1 p2 p3 ... pk ) + 1. 

If this number is prime, then it is a prime not on the list, because N exceeds all of p1, p2, p3, ..., pk. If 

instead it is not prime, then it is divisible by some prime number. This prime is not on the list, 

because none of p1, p2, p3, ..., pk divides N: The expression for N shows that on division by any of 

those primes, N has remainder 1. Either way, we verify that some prime has been left off the list. 

It is worth comparing what Theorem 1 says to what we said Euclid proved. The theorem indicates 

that if you make a list of 10
1000

 primes, then it is possible to find one that is not listed. You could add 

that one to your list, but then you would have a list with 10
1000

 + 1 primes. The theorem would equally 

apply to this enhanced list, would therefore guarantee that the enhanced list still does not have all the 

primes. In other words, no finite collection of primes exhausts the supply. It is in that sense that 

Theorem 1 establishes that the collection of primes is infinite. 

Our way of stating the theorem puts it into the important mathematical class of existence theorems. 

The statement says that under some circumstance, something with a specified property exists. It does not 

state what that something is. Rather, it cites circumstantial evidence that there is a smoking gun 

somewhere with our something’s fingerprints on it. Contrast that with the statements: 

 1. On a given line segment, there exists a point that breaks the segment into the golden section. 

 2. There exists a length whose square is 2. 

We did not just state that the point and length exist; we showed how to construct them. Indeed, 

providing evidence of how you produce the something in question is called constructive proof. 

The other theorem ascribed to Euclid deals with perfect numbers. A natural number is called perfect 

if it is the sum of its proper divisors, the divisors smaller than the number itself. Thus, 6 and 28 are 

perfect: 6 is divisible by 1, 2, and 3, and 1 + 2 + 3 = 6; 28 is divisible by 1, 2, 4, 7, and 14, and equals 

their sum. An equivalent definition is that the sum of all the divisors is twice the number. 

Theorem 2. Suppose 2
n
 – 1 is prime. Then 2

n – 1
(2

n
 – 1) is perfect. 

We work as usual with examples. 

2
1
 – 1 = 1 does not count. 

2
2
 – 1 = 3 is prime, so 2

1
(2

2
 – 1) = 6 is perfect. 

2
3
 – 1 = 7 is prime, so 2

2
(2

3
 – 1) = 28 is perfect. 

2
5
 – 1 = 31 is prime, so 2

4
(2

5
 – 1) = 496 is perfect. 

The skipped one, 

 2
4
 – 1  =  (2

2
 – 1)(2

2
 + 1), 

is not prime. The same goes for every even n; 2
n
 – 1 factors as the difference of squares. For that 

matter, n cannot even be composite (the opposite of prime): 2
15

 – 1 factors as both the difference of 

cubes 

 (2
5
)
3
 – 1 = [(2

5
) – 1][(2

5
)
2
 + (2

5
) + 1] 

and the difference of fifth powers 

 (2
3
)
5
 – 1 = [(2

3
) – 1][(2

3
)
4
 + (2

3
)
3
 + (2

3
)
2
 + (2

3
) + 1]. 

[Check both those multiplications. I do not always tell the truth. For example, the sentence before 

this one is false.] 

Let us use the example n = 5 to give evidence for the general statement in Theorem 2. 
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Since 2
5
 – 1 is prime, 2

4
(2

5
 – 1) is its own prime power factorization. (See Exercise III.B.1c:4.) 

Hence any divisor of 2
4
(2

5
 – 1) has to be the product of between zero and four 2’s and between zero 

and one (2
5
 – 1)’s. Accordingly, we can list the divisors: 

 1  2  2
2
  2

3 
 2

4 

 1(2
5
 – 1) 2(2

5
 – 1) 2

2
(2

5
 – 1) 2

3
(2

5
 – 1) 2

4
(2

5
 – 1). 

Add them up and notice that we can factor out [1 + 2 + 2
2
 + 2

3
 + 2

4
]. We produce the sum 

 s = [1 + 2 + 2
2
 + 2

3
 + 2

4
][1 + (2

5
 – 1)]. 

Now we use one of the interesting properties of the powers of 2: They add up to one less than the 

next power. In symbols, 

 1 + 2 + 2
2
 + ... + 2

n
  =  2

n+ 1
 – 1  (Exercise 3). 

Therefore the divisors of 2
4
(2

5
 – 1) add up to 

 s = [2
5
 – 1][1 + (2

5
 – 1)] 

  = [2
5
 – 1] 2

5
 = 2  2

4
(2

5
 – 1). 

The divisors add up to twice the number; 2
4
(2

5
 – 1) is perfect. 

Remarkably, 2300 years after Euclid, it is still unknown whether this formulation accounts for all of 

the perfect numbers. It is known that it takes care of all the even perfects, but no one has settled the 

question of whether there are odd ones. And for these Euclidean perfects, unlike the situation with the 

primes, no one knows whether there is an infinity of them. 

d Exercises III.B.4

1. a) Use the Euclidean algorithm to find the greatest common measure of two line segments 
of lengths 2/7 and 20/3. 
b) Answer the same question by multiplying both lengths by any common denominator, 
finding the GCD of the resulting integers, then dividing by the denominator. 

2. (Boyer) The number 213 – 1 is prime. Use this fact to find the related perfect number. 

3. Prove that 
 1 + 2 + 22 + ... + 2n = 2n+ 1 – 1. 
(One approach: xn+ 1 – 1 has a standard algebraic factorization.) 

5. Algebra 

The biggest Greek contribution to algebra came, like the investigations of Proclus into the parallel 

postulate, centuries after the golden ages. The Arithmetica of Diophantus (around 250 CE) introduced 

two new features: It took an abstract, exact approach, and did not tie it to geometry. Diophantus created 

a whole class of algebraic problems. He brought original insights to their treatments, including the 

ability to deal with multiple specifications (what for us are simultaneous equations). 

Diophantine equations come under the heading nowadays called “indeterminate equations.” An 

indeterminate equation carries insufficient information to pinpoint an answer. Rather, it is satisfied by 

some set of numbers, sometimes an infinite set. “Solving” it means describing the set of solutions. This 

kind of problem is not completely new to us: 

 x
2
 + y

2
 = z

2
, x, y, and z required to be integers, 

is a Diophantine equation. We solved it by characterizing the Pythagorean triples. We mention three 

more examples: 

 x
3
 + y

3
 = z

3
,  x

3
 + y

3
 = z

3
 + w

3
, 

and the (simultaneous) system 

 x = 10y + 4 x = 21z + 5, 

all to be satisfied by integers. We will have reason to come back to them later. 

http://www.archive.org/stream/AHistoryOfMathematics/Boyer-AHistoryOfMathematics#page/n148/mode/1up
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To treat one particular kind of example, look at the form 

 ax + by = c 

(“the general linear equation”). Here a, b, and c are given, fixed integers, x and y are integers to be 

determined. If a and b have a common divisor, then that factor has to divide c. Thus, 

 60x – 250y = 73 

has no solutions (Exercise 1). If instead the equation reads 

 60x – 250y = 730, 

then we divide by the GCD of 60 and 250 to produce 

 6x – 25y = 73. 

This is an equivalent equation (same solutions) in which the coefficients are relatively prime. Think of 

it as asking for a multiple of 6 that is 73 more than some multiple of 25, and you hark back to something 

we considered before. 

With 6 and 25 relatively prime, some integer combination equals 1. In different words, the equation 

 6i – 25j  =  1 

has a solution. We know we can solve that one via the Euclidean algorithm. However, with such 

small numbers, think multiples. To find a multiple of 6 that is 1 more than a multiple of 25, look at 

 25 + 1,  50 + 1,  75 + 1,  …. 

The first of those divisible by 6 is 126. Thus, 

 6(21) – 25(5)  =  1. 

Now multiply through by 73 to write 

 6(21  73) – 25(5  73)  =  73. 

One solution of 6x – 25y = 73 is 

 x = 21  73 = 1533, y = 5  73 = 365.   (Verify, then do Exercise 2.) 

 Exercises III.B.5

1. Show that there are no integers x and y with 
 60x – 250y = 73. 

2. a) Find one solution of 
 6x – 25y = 858. 
b) Find one solution of 
 21x – 15y = 300. 

 The Astronomers Section III.C.
In astronomy, unlike mathematics, the Greeks were heirs to the Babylonians. 

Much of man’s knowledge in astronomy owed to the movements of the Moon. [I will frequently call 

it “Luna.”] The ancients could see that the stars are fixed to the dome of heaven. Even over the course of 

twenty human lifetimes, human eyes could not detect any relative motion among the stars, motion say 

that would make a change in the shape of Orion or the Scorpion. (It was not until about 300 years ago 

that observatories, equipped with telescopes and fine measuring instruments, were able to confirm 

minute relative movements.) But there were things that did move relative to the stars. The Greeks called 

them astere planetai, heavenly objects that wander. They included Luna, the Sun, and five starlike 

objects that of course we now call “planets.” 

Of those, Luna is clearly closest, because it “occults” (passes in front of) the others. A little more on 

average than twice a year, it occults the Sun. (Those events are called “solar eclipses,” which is 

something of a misnomer. “Eclipse” really means shadowing, not blocking.) A few times a year, it 
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occults a visible star. Every few years, it occults one of the planets. Moreover, it goes around the sky 

(from the viewpoint of Earth) faster than the others, in a time that accounts for the word “month.” After 

that, the fastest swing around the sky is the Sun’s yearly trip. The ancients took that as evidence that Sun 

is next closest. The planets other than Venus and Mercury—the planets that are not always near the 

Sun—require years: Mars takes 2+, Jupiter 12-, Saturn 29+. Those, then, might be above the Sun. With 

the stars exhibiting no motion, and since the planets also occult stars sometimes, it was reasonable to 

conclude that the stars lie on a higher level than the planets. 

One more lunar event was important. About as frequently as solar eclipses—often half a moon (two 

weeks) before or after a solar eclipse—Luna is eclipsed.  The fact that those events happen when Luna 

and the Sun are opposite in the sky suggests that a lunar eclipse is Luna’s entry into Earth’s shadow. 

(Those eclipses, plus the near-blackness of the Moon at solar eclipses, say that Luna shines not by its 

own light, but by reflected sunlight.) The fact that Earth’s shadow upon the Moon is always circular, no 

matter what lunar eclipse you watch, suggests that Earth is spherical. Even in antiquity, then, those with 

astronomical knowledge knew that Earth is spherical. They could have further figured that Luna is also a 

sphere, illuminated on one side, so that its phases are due to how much of the lighted half we can see. 

1. Aristarchus 

Aristarchus, like Pythagoras born on Samos, lived something like 310-230 BCE, so that he 

overlapped decades with Archimedes. He is best known for proposing a Sun-centered universe. But he 

was a wonderful geometer, and here we will see the ingenuity he brought to the attempt to determine 

distances in the heavens. 

a) size compared with distance 

Long before the Greeks, people 

knew that the Sun and Moon show us 

faces of equal angular size. The figure 

illustrates the equality, for which clear evidence came from solar eclipses. At those eclipses, Luna is on 

average just big enough to cover the Sun. As for the angle, according to Boyer, Archimedes ascribed the 

approximate ½  determination to Aristarchus. That seems odd, because rope stretchers should have long 

before been able to determine the angle using marks on the ground or on structures. In any case, we will 

calculate using the ½  value. 

[Luna’s size varies considerably, owing to its changing distance to Earth. We now know that Luna’s 

distance covers a range of almost 14%, closest point to farthest. (That’s “perigee” to “apogee”. Compare 

“perihelion” and “aphelion” in Exercise III.A.7:5.) The Earth-to-Sun distance varies as well, but more 

tamely: 4% perihelion to aphelion.] 

The equal angular size implies a quantitative relationship between the sizes and distances to Sun and 

Moon. Say Luna has radius r and distance l from Earth, Sun has radius R and distance L. From the 

figure, we see that for each of them, the ratio diameter/distance is 

 2r/l  =  2R/L  =  chord(1/2 ). 

Aristarchus could have approximated the chord as (8/15 chord[15/16 ]). (See section III.A.8a.) More 

likely, he would simply have used the arc of a half-degree angle (dotted arc within the Sun in the figure). 

That arc (on a unit circle) would be 

 1/2 (2/360)    (22/7)/360  =  11/1,260. 

Therefore we have 

 2r/l  =  2R/L  =  11/1,260. 

We may also say that each of Sun and Moon is 1,260/11  115 times as far as it is big. 

 

Earth Moon Sun 
½  

http://www.archive.org/stream/AHistoryOfMathematics/Boyer-AHistoryOfMathematics#page/n193/mode/1up
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When you deal with small angles, there is little difference between the angle’s sine, its chord, and its 

radian measure, which by definition is the length of the arc the angle intercepts on the unit circle. For 

a 60 angle, we know the sine is 3/2  0.866, the chord is 1, and the arc is 2/6  1.047. That is a 

spread of about 21% from smallest to biggest. When you get down to 0.5, the sine is 0.00872654 

[via scientific calculator], the chord is 0.00872662 [via chord() = 2 sin(/2), which answers 

Exercise III.A.8a:1a], and the arc is 2/720  0.00872665. That spread is less than 0.0013%. 

b) the ratio of the distances 

Now advance the clock a quarter of a moon, seven days, 

to turn the previous figure into this one. (The calendar calls 

this situation “First Quarter.”) From Earth (E), we see half 

the sunlit hemisphere of Luna (M). Aristarchus realized that 

at this time, the angle SME between the Sun-Moon line and 

Moon-Earth line is 90. Therefore the distance l from Earth 

to Moon is related to the distance L from Earth to Sun by 

 l/L = cos(angle SEM). 

Aristarchus tried to measure angle SEM and obtained 87. [Remember that we are in modern idiom; 

Aristarchus would have used neither cosine nor degrees.] That puts the ratio of distances at 

 l/L  =  cos(87)  =  sin(3) 

      arc of 3  =  3(2/360)    1/19. 

Since 2r/l = 2R/L implies 

 r/R = l/L, 

it follows also that Luna has 1/19 the size of the Sun. 

c) size and distance in terms of Earth 

Finally, we let seven more days pass and arrive at the figure below. There, we have the full Moon 

(maroon) in eclipse, in the gray cone of shadow cast leftward by Earth (blue). The centers M of the 

Moon and E of Earth are l apart. The center S of the Sun (yellow) is in the line ME, at distance L 

from E. (That alignment is a statistical impossibility, as Exercise 1c suggests, but allows the illustration 

Aristarchus made.) Luna has radius r, Earth has radius 1, and the Sun has radius R. The common tangent 

to Earth and Sun is AB, whose extension leftward is the edge of the shadow. The ancients estimated that 

it took Luna about the same time to enter Earth’s shadow completely as it took, after entering, to leave 

completely. The timing suggested that Earth’s shadow cone, at the distance where Luna enters it, is 

about twice the size of Luna. Accordingly we have drawn the outline (dashed green) of a sphere 

concentric with Luna and having radius 2r. The extension of AB is tangent to the outline at C.  

Notice also that we have drawn AB sloping upward from left to right; in other words, we made the 

Sun larger than Earth. If Sun were smaller than or equal to Earth in size, then AB would slope down to 

the right or be horizontal, and the shadow would be greater than or equal to the Sun. That would make 

the shadow 19 or more times the size of the Moon. It would imply that at every full Moon, Luna would 

undergo a multi-day total eclipse. The calculations of Aristarchus dictated that Sun is larger, indeed 

 

E 

M 

S 

L 

l 

 

M 

r 
C 

E 

B 

F 
1 

l S 

A 

L 

R 
G 

r 



 Chapter III. The Greeks 
Section III.C. The Astronomers  1. Aristarchus 

69 

significantly larger, than Earth. [Maybe the idea that a small Earth orbiting a large Sun makes more 

sense than Sun orbiting Earth was part of the reason Aristarchus proposed a heliocentric universe.] 

The figure has one more important element. We draw the (red) horizontal at C, meeting BE at F and 

AS at G. We made CFG parallel to MES, but it is important to note that AS, BE, and CM are also 

parallel. They are radii, and therefore perpendicular to the common tangent ABC. Consequently, we 

(believers in the parallel postulate) conclude that triangles CFB and CGA are similar, and that CMEF 

and CMSG are parallelograms.  

The similarity gives us 

 BF/FC  =  AG/GC. 

From the CMEF parallelogram, we get 

 BF  =  BE – FE  =  1 – 2r and  FC = l. 

From CMSG, we have 

 AG = R – 2r   and  GC = l + L. 

The similarity proportion becomes 

 (1 – 2r)/l  =  (R – 2r)/(l + L). 

Putting that together with the three other relationships 

 2r/l  =  2R/L  =  11/1,260 and  l/L = 1/19, 

we find (Exercise 2) 

 r = 20/57  .35,  l  80,  R  6.7, L  1,530. 

Thus, Aristarchus calculated that Luna is about one-third the size of Earth and 80 Earth radii (“40 

Earths”) distant, Sun the size of seven Earths and 770 Earths away. 

d) modern values 

Our current data say that the angular size of the Sun is on average about 0.53. That changes the 

diameter to distance ratio to (0.53  2/360)  1/108. Exercise 2 shows that this change, surprisingly, 

has no effect on the calculated r, though of course it reduces l. The data also say that the size of Earth’s 

shadow is closer to 2.7 times the size of Luna. Using that value, instead of 2, reduces the calculated r to 

about .28 the size of Earth. More fundamental is that we now know the ratio between the distances is 

actually close to 400. That change reduces the r estimate by little, to about .27. However, it implies a 

Sun as big as 108 Earths and about 11,700 Earths away.  

The 400 ratio means that the cosine of angle SEM is 1/400, which makes the angle about 89.86. 

Aristarchus underestimated how short angle SEM is of a right angle by a factor of more than 20.  

The determination error is understandable for two reasons. First, it is guesswork to find the moment 

when the Moon is precisely half illuminated. Second, in trying at that moment to measure the angle, you 

need to aim something at the center of a high, blinding Sun. You cannot wait for Sun to be near the 

horizon, because then the Sun you see is actually an optical illusion caused by atmospheric refraction; 

and obviously you are helpless when it is below the horizon. Still, keep in mind the brilliance and 

mathematical validity of what Boyer calls the “unimpeachable” method Aristarchus used.  

http://www.archive.org/stream/AHistoryOfMathematics/Boyer-AHistoryOfMathematics#page/n193/mode/1up
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 Exercises III.C.1

1. This problem puts the frequency of lunar eclipses in terms of 
probability. In the figure, the dashed line is the ecliptic. Earth’s 

dark gray shadow is a circle with a radius of 0.675, centered 

on the line. The light gray Moon has radius 0.25 (1/2.7 the 
shadow’s size) and moves horizontally to the left. It moves so 
that its center follows a random horizontal level within a band 

that reaches 5 above and 5 below the ecliptic. 
a) Show that the probability of Luna’s catching some part of the shadow is 1.85/10. Under 

this model, an eclipse, maybe only partial, happens on average every 10/1.85  5.4 moons. 
b) Show that the probability of Luna’s crossing entirely within the shadow is 0.85/10. 

According to this, we should average a total eclipse every 10/0.85  12 moons. 
c) Show that the probability of Luna’s center crossing the central 10% of the shadow (the 

blue target in the middle of the shadow, with radius 0.0675) is 0.135/10  1/74. 

Accordingly, an eclipse that dark comes about once in 74 moons  six years. 

2. Use the size and distance relations 
 2r/l = 11/1260, 2R/L = 11/1260, r/R = 1/19 
to solve 
 (1 – 2r)/l  =  (R – 2r)/(l + L) 
for r. (Notice that in the solution process, the diameter-to-distance ratio 11/1260 cancels; r 
is independent of it.) Then find the corresponding l, R, and L. 

2. Eratosthenes 

You can see that putting absolute numbers to the relative calculations of Aristarchus required 

determination of the size of Earth. That was provided by Eratosthenes (275-194, one or two generations 

after Aristarchus). 

In mathematics, the name of Eratosthenes is generally known for “the sieve,” a method for 

compiling lists of primes. Imagine a list of integers from 2 to someplace, 

 2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25 .... 
We underline 2, then cross out every second number after it, to produce 

 2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25 .... 
We underline 3, then cross out every uncrossed third number after it, to produce 

 2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25 .... 
Next is 

 2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25 .... 
At each stage, the next uncrossed number is not divisible by any of its predecessors; therefore it is 

prime. We underline the number and cross out its multiples. Thus, the process underlines the primes and 

cancels all the composites, up until the end of the list. Such discoveries earned Eratosthenes, like Euclid, 

an invitation to Alexandria. There he became head of the Library and made a remarkable observation. 

The Tropic of Cancer is the circle of Earth latitude along which the midday Sun is directly overhead 

on the longest northern day. In our era, the latitude is around 23.4. (The circle of latitude does not go 

anywhere, but the Tropic moves, for a reason we will meet in the next section.) The Tropic now crosses 

Egypt at Lake Nasser, upriver from the dam at Aswan. That last was the site of the ancient city of Syene. 

Syene was widely known because on that longest day, the midday Sun shone right to the bottom of the 
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deepest wells. In other words, Sun passed dead overhead. Eratosthenes observed that on the same day, 

the midday Sun at Alexandria cast shadows; it was not at the zenith. He correctly ascribed the difference 

to the curvature of Earth. 

At right, we see the blue profile of Earth and two of its radii 

(dashed). The orange one reaches the surface at Syene. Its extension 

beyond the surface is the vertical there, and points directly at the 

overhead Sun. The blue one reaches Alexandria, where the Sun is in 

the same direction as at Syene, because the Sun is infinitely distant. 

That was a key assumption of Eratosthenes. It accords well with Sun’s 

distance being so much greater than any Earth-bound distance. It does 

not harmonize with Sun’s having positive size, but never mind. The 

extension of Alexandria’s radius is a column (blue) standing vertically in the city. The column casts a 

shadow, shown red. From measuring the shadow and the column, Eratosthenes estimated the angle 

between the vertical and the Sun’s direction at 1/50 of a circle (7.2 for us). That angle matches the 

central angle between the two radii (by alternate interior angles). Accordingly, the arc from Syene to 

Alexandria is 1/50 of Earth’s circumference. Knowing that Syene was about 5000 stade (500 miles for 

us) from Alexandria—plus pretending that the distance goes due north, which is needed for the arc 

between them in our figure to have that length—he estimated the circumference of Earth to be 50  500 

miles. That is a remarkable approximation of the 24,860 mi we accept as the “polar” circumference. 

(Earth is “oblate”: bigger around the Equator.) 

3. Hipparchus 

Hipparchus was born around 190 BCE, near the deaths of Eratosthenes and Apollonius. He is in 

different contexts called “the father of astronomy” and “the father of trigonometry.” He did remarkable 

analysis of the motions of Sun and Moon, refining and extending results of the Babylonians, including 

the estimate of the year. 

Hipparchus introduced degree measure. The Babylonians had divided the chord of 60 into 60 equal 

parts. Using the chord is natural, given the ancient way of doing trigonometry; and making it 60 parts is 

natural, given their sexagesimal numeration. But notice that dividing the chord does not divide the angle 

into 60 equal parts. (See Exercise 3. The angle need not be central in a unit circle. In the exercise, we 

have it as one angle in a unit equilateral triangle with the opposite side marked off into 60 parts.) 

Hipparchus divided the arc of 60 into 60 equal parts. Or else he divided the entire circle into 360 equal 

parts. It is not known [to me, anyway] which of those choices motivated the definition of degrees. 

The 360 version corresponds roughly to the Sun’s angular movement in a day. Hipparchus knew to 

within minutes that the year spans (365 + fraction) days. A non-integer is bad enough, but the closest 

integer is ugly too: 365 is divisible only by 5 and 73. On the other hand, 360 is divisible by 2, 3, 4, 5, 6, 

8, 9, 10, 12, 15, 18 and their eleven partners (360/18 = 20, ...). For that reason, splitting the circle into 

360 equal parts is a pragmatic choice. 

Among the angles Hipparchus measured were angles in the sky. The Babylonians had produced a 

coordinate system for star positions, measuring a sort of latitude north or south of the ecliptic and a kind 

of longitude eastward from the vernal equinox. Hipparchus performed new measurements. He found that 

the stars had moved toward the east. Remember that we said the stars do not move relative to one 

another (at least not enough for human eyes to detect, even over hundreds of years). What he found was 

that the entire dome of heaven had rotated eastward. He correctly ascribed the change to the equinox’s 

moving to the west. His measurements allowed him to quantify the “precession of the equinoxes.”  
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Earth’s rotation axis is not stable. Instead, it undergoes “precession,” the sort of wobble a top or toy 

gyroscope shows as it slows down. (Go to Wikipedia® for a great animation of precession.) The 

extension of the axis traces a circle in the sky over a period of around 26000 years. Since the axis is thus 

dancing, the Celestial Equator necessarily turns with it. Therefore the equinoxes (where the Equator 

meets the ecliptic) slide westward over the ecliptic (as Aristarchus suspected). In Babylonian times, the 

spring equinox was in the constellation Taurus. That put the start of spring and the long days in what we 

would call May. In our era, that equinox is two constellations to the west, in Pisces. Accordingly, our 

spring starts in March. 

One consequence of the discovery was that two possible definitions of the year are inequivalent. We 

have described the year as the length of Sun’s trip around the starry dome. That is now called the 

“sidereal” year (year of the stars). We also described it as the length of the cycle of the seasons. That 

would be Sun’s trip from one spring equinox to the next. It is called the “tropical” year. The latter is 

shorter. In the time the Sun travels eastward from this year’s spring equinox toward next year’s, the 

equinox moves westward about 1/72 of a degree to meet it. (In the time of Hipparchus, his estimate was 

1/100.) Therefore the tropical year is short of a sidereal year by about 1/72 of a day. (How long is that?) 

  Exercises III.C.3

1. a) Truncate the sieve of Eratosthenes to list the primes between 210 and 250. (Two hints: 
First, factor 210; second, if a number in that range is composite, then it has a prime factor 

less than 250.) 
b) Return to our illustration of the sieve. In the next stage, we underline 7 and cross out its 
multiples. What multiple of 7 is the first one that has not previously been crossed out? 

2. (Boyer) Hipparchus knew from eclipse observations that as seen from the Moon, Earth has 

an angular size of about 2, four times Luna’s size as seen from Earth. What Earth-Luna 
distance does that imply, assuming Eratosthenes was right (that  Earth is a sphere of 
circumference 25,000 miles)? 

3. In triangle ABC in the figure at right, each side has length 1. 
Put 59 equally spaced points along BC, to partition it into 60 
equal parts. Let D be the 30th point, so that D is the midpoint 
of BC. Then let E be the 31st, F the 32nd. 

a) Show that tan(angle DAE) = 1/(303). 
b) Show that tan(angle DAF) = 2 tan(angle DAE). 

c) Use trigonometry to prove that if 0 <  < 45, then 

 tan 2 > 2 tan . 
d) Show that angle DAE > angle EAF. 
e) (Calculus) Extend (c): Use the (extended) mean-value theorem to prove that if k > 1 and 

0 < k < /2, then tan k > k tan . (The tangent function grows faster than linearly. In 
simpler words: The tangent grows faster than the angle.) 

4. Claudius Ptolemy 

a) the solar system 

Last of the great ancient astronomers was Claudius Ptolemy, born around 90 CE. He was from the 

family that ruled Greek Egypt; it is not surprising that he spent much of his life in and near Alexandria. 

In one sense, he refined the work of Hipparchus. Claudius worked with degrees, and produced 

trigonometric tables for chords of degree-measured angles. It was Claudius who divided the degree into 
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Babylonian fractions. He divided one degree into 60 parts, each called parte minuta prima, first small 

part. The name minute has stuck, and indeed the mark used to denote minutes is called a “prime.” (For 

example, we would write that Sun’s angular size is about 32´.) He broke minutes into parts called parte 

minuta secunda, and you can see the origin of seconds. 

He applied his geometry to angle-measured organization of land and sky. On Earth’s surface, he 

described a system of longitude and latitude for the Mediterranean world he knew. For the stars, he 

devised updated star charts. He organized the ecliptic into twelve zones spanning 30 each. (There you 

have 12 again.) To each of those, he assigned a constellation of the Zodiac. That assignment is strictly 

conventional: The actual star groups’ expanses vary from the two Fishes, which together span 45 of the 

ecliptic (and 30 north to south), to the Crab, which spans barely 15. The assignment required the 

creation (or at least completion) of Libra. Basically, Libra consists of two stars that had been the claws 

of the Scorpion. 

[Much of today’s astrology owes to Ptolemy’s organizational scheme. That includes associating one-

month intervals with the constellations the Sun would be traversing during those months in his era. 

Thus, the month starting with the spring equinox is matched with the Ram. Unfortunately, from 

Ptolemy’s time to ours, precession moved the equinox west to the Fishes. As a result, the Sun now does 

not even enter the Ram until mid-April. 

In case you’re wondering, I’m a Taurus. The most important trait we Bulls share is our lack of 

superstition.] 

Ptolemy’s magnum opus is a book called Almagest. (Why would an ethnic Greek with a Roman 

name write a book with an obviously Arabic title?) In it, he proposed antiquity’s most accurate model 

for the motions of the heavenly bodies. The motions needed explaining because they are not uniform. 

The Sun’s motion is close to uniform. It moves along the ecliptic, toward the east, at the nearly constant 

rate of 360 per 365+ days. Not so the planets. Saturn—easiest to track because it is the slowest 

wanderer—spent the second half of 2011 moving east (the “normal” way) toward the line between the 

bright stars Arcturus and Spica. It crossed their line near end-year. In February 2012, it turned and 

headed west (“backward”) toward the line, crossing it in May 2012. After June, it turned again eastward 

and crossed the line a third time. The “retrograde” motion, interrupting intervals of the prevailing east-

ward travel, bothered the ancients. They wanted to describe the wandering in terms of uniform motions. 

Eudoxus had proposed that the wanderers are fixed to some transparent (“crystalline”) spheres with 

distinct axes and (uniform) rotation rates. Apollonius dropped the spheres and described the paths of the 

planets with the “epicycle model.” At right, we see the blue Earth at the center of 

a dashed circle. That circle is the orange planet’s “cycle.” The smaller dashed 

circle is the planet’s “epicycle.” The planet revolves counterclockwise at a fixed 

rate around the epicycle. At the same time, the center of the epicycle moves 

counterclockwise at constant rate around the cycle. If you tune the two sizes and 

rates the right way, then an observer on Earth sees the planet moving counter-

clockwise, except during the part of the epicycle closest to Earth. This description 

fit the ideal, of using uniform motions along a combination of circles. Unfortunately it was a poor fit to 

the data, the available observations of the planets. Others then added such modifications as having the 

center of the cycle itself orbiting a circle. Until Claudius, the most important ones came from 

Hipparchus and his measurements. However, it was Claudius Ptolemy’s refinements that provided the 

most successful model, so much so that his projections of planetary motion were in use until telescopes 

were turned to the sky some 1400 years later. 

epicycle 

cycle 

 



 Chapter III. The Greeks 
Section III.C. The Astronomers  4. Claudius Ptolemy 

74 

[You must see the University of Nebraska’s animation of the epicycle model. The animation incor-

porates Ptolemy’s refinements, shows why the model explains the prevailing eastward travel interrupted 

by retrograde motion, and actually lets you “tune” the sizes of the circles and the rates of revolution.] 

a Exercises III.C.4

1. a) Nowadays, the Tropic of Cancer is at north latitude 23.4 and Alexandria is (always was) 

at 31.2. How many minutes of arc is that difference? 
b) By definition, a “nautical mile” of distance is what a minute of Earth latitude covers. One 
nautical mile equals 1.15 land (“statute”) miles. What estimate does that imply for the 
circumference of Earth? 

b) other science 

(i) Claudius and the gap 

It is remarkable how Greek astronomy exemplified the scientific method [which I long assumed to 

have begun with Galileo]. All these astronomers (you can add Archimedes) put together others’ and 

their own observations, and especially their own measurements, to create geometric models of the 

heavens. The models allowed inferences, which in turn you could use improved measurements to refine. 

Their studies stand out all the more against the gap of a thousand years after Claudius. During that 

interval, essentially no scientific inquiry and little mathematical study took place in the Roman and then 

Christian worlds. The absence is not a coincidence. Both Rome and the Church to which it gave birth 

were inimical to curiosity, the driver of mathematical and scientific thought. Rome was inclined to 

strictly practical knowledge, the Church emphasized the next life, and both highly valued deference to 

authority. Indeed, the centers of scientific inquiry moved about in response to social conditions. By the 

time of Alexander, it had already become hard for the science-minded to make a living in Athens. 

Moving the center of study to Alexandria was a natural. Over centuries, the center moved to 

Constantinople, then Baghdad, and only about 600 years ago to western Europe. 

You should read Timothy Ferris’s Coming of Age in the Milky Way. It covers all the astronomy 

above, and is especially valuable for depicting the Ptolemaic model as genuine science. Many of us are 

steeped in the idea that Claudius’s solar system is just another unsophisticated attempt by ancient people 

to explain the phenomena of the world. [That idea was part of my education.] Ferris dispels that notion 

as coherently as the notion that people of Columbus’s time thought that the world is flat. 

(ii) Claudius and the mariner 

There is a story [that I heard from Prof. Akin] connecting Christopher Columbus and Claudius. 

Ptolemy’s writings covered all of science, much the way Euclid’s covered mathematics. Among his 

famous books was Geography. He saw Earth as smaller than it is. We referred to his system of latitude 

and longitude. Ptolemy estimated that Asia stretched to 180 in longitude, halfway around Earth. That 

happens to be true for northern Siberia, but not nearly for China and the Spice Islands (Indonesia). He 

also estimated Earth’s circumference at 18,000 miles. The estimate used the distance from Rhodes to 

Alexandria, a baseline that is reasonable but hard to measure reliably; unlike the trip from Syene to 

Alexandria, it is over water. 

That 18,000, though, was fine with Columbus. He was a master mariner. He would have known, for 

example, that if you sail south from Europe, below the Canary Islands, then the tropical winds and the 

corresponding currents will carry you west. Coming back, if you sail first north, then you get into winds 

and currents—what we now call the Gulf Stream—to speed you east. Columbus longed for the glory and 

wealth that would go to a man who sailed westward from Europe to the Indies. To mount such an 

http://astro.unl.edu/naap/ssm/animations/ptolemaic.swf
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expedition, he needed backing. To get it, he had to convince potential sponsors, as Ferris puts it, that the 

world is small. So, he lowballed even Ptolemy’s low estimate, stretched Marco Polo’s claims about how 

far Marco had gone overland to China, and claimed that the trip sailing west was under 4,000 miles. He 

proposed it to the Portuguese court. Lisbon, still possessed of its Moors and Jews, was the Alexandria of 

European science. The king consulted his geographers and astronomers. They told him Columbus was 

crazy: The Spice Islands were on the opposite side of a sphere 25,000 miles around; the trip would take 

three times as long as the food and water could hold out; to back this mad venture would be to toss men 

and money into the sea. The Portuguese passed, and Columbus went to the rubes in Castilla. There he 

found a teenaged queen, who persuaded her dim husband to finance the plan. The upshot, of course, was 

that the bumpkins got rich and the smart guys were late to begin exploration of the Americas. 

The astronomers delivered one more opinion. Even with Columbus claiming to have reached the 

Indies, they insisted he had been maybe an eighth of the way around the globe, and proposed to give 

evidence. There was a total lunar eclipse predicted for Europe in the night of February 29, 1504. They 

predicted that it would start, in whatever land Columbus had actually reached, around sunset. Months 

before that day, Columbus had been forced to beach his storm- and worm-damaged ships on Jamaica. 

The aboriginal Arawaks had turned, with good reason, against Columbus’s reprehensible crew, and the 

visitors faced starvation. Columbus decided to turn to heaven for help. He told the people he still called 

“indios” that his god was angry at them for their evil treatment of the whites and would destroy the 

world, beginning that night with the Moon. Sure enough, sundown revealed a Moon with part missing. 

More and more darkened out with the passing minutes. The Arawaks wailed and prayed, to no avail. 

Finally, they asked Columbus (as his son wrote) to intercede with his god in their behalf. Columbus 

promised to try, retired to his quarters, and got the Moon back. The natives resumed providing the 

supplies that allowed Columbus and his men to survive until the Spaniards sent rescue vessels. 

5. The Calendar 

Our account has now passed irreversibly into the Common Era. It is therefore worthwhile to discuss 

how the numbering system for our years came to be. It is also fitting that we cover Rome, since so much 

of our culture is based on hers, including the years’ numbering. Separately, it is apt that we limit the 

coverage to an afterthought like this. In the development of science and mathematics, Rome was at best 

useless, at worst destructive. That seems impossible, given the Romans’ skill and achievements in 

architecture, civil engineering, communications, even warfare. Still, it seems they had no use for 

intellectual pursuits that did not immediately produce buildings, roads, food and water, or dominions. 

a) the months 

Tradition has it that Rome was founded in 753 BCE. It also says that one of the founders was 

suckled by a wolf; suspend disbelief. Fairly early, Romans accepted months named Martius, after the 

god of war; Aprilis, perhaps referring to the opening of the flowers; Maius, after either Mercury’s 

mother or the goddess of majesty; Juno, after Mrs. Jupiter; and Quintilius, Sextilius, September through 

December, equivalent to Month5 through Month10. At some point, they added Januarius, named for the 

god of beginnings, and Februarius (for a festival?). 

By 500, they had dropped their monarchy and replaced it with a republic. The republic’s top officials 

were magistrates called “consuls.” They were elected in December and began their terms at its end. The 

consul system had such popular support that people began to think of the year as concurrent with the 

consuls’ terms. They started thinking of Januarius as the first month. Notice the strange effect: The 

months named 5-10 became numbers 7-12, so that December is still 12. 
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Lunar tradition still applied; the twelve months spanned just 354 days. (What does 354 have to do 

with the Moon?) Consequently it was necessary to “intercalate,” to stick in an extra month a little more 

often than once every three years. (A 354-day calendar leaves out 11¼  3 extra days every three cycles 

of the seasons. The Muslim calendar is that long and strictly lunar. It intercalates days—something like 

8 every 33 years—to synchronize with the Moon, not months to sync with the Sun. Accordingly, its holy 

days retreat 11 or so days per year: Thus, Ramadan started August 11 2010, August 1 2011, 

July 20 2012.) The intercalation was left to the decemviri, a council of ten men chosen no doubt for 

loyalty, as opposed to intelligence or honesty. Their intercalations were so variable that by the middle of 

the first century BCE, the beginning of the year (officially Martius) was almost a complete season off. It 

was then that the Senate decided to hand the fate of Rome to a member of the Julii. 

b) the leaps 

Gaius Julius Caesar was already an important man in 49 BCE. He was a senator and former consul, 

he was rich [But I repeat myself.], and he was pontifex maximus, chief of the bridge makers. The 

pontifices made and cared for the bridges over the Tiber; Julius was in effect Defender of Rome. In 49, 

the Senate voted to make him dictator for ten years. Notice, his word would be law, but for a fixed term, 

without inheritance. 

Julius was a pragmatic man. (What did he do for a living?) He wanted Rome to have a fixed 

calendar, one by which a grocer in Rome, a farmer in Tuscany, and an army captain in England would 

all know today’s date in the capital. Calendars being products of astronomy, he summoned the leading 

astronomer of Alexandria, Sosigenes the Greek. (How did Julius know about Alexandria?) Doubtless 

Sosigenes observed that Rome’s empire, importing food and exporting soldiers from a port that froze in 

winter—Rome is at the latitude of New York—needed to track the seasons. The cycle of the seasons 

covers 365¼ days, just about. A calendar of 365 days, with an intercalated day every four years, would 

track the seasons to within a day in about a century (Exercise 1). Presumably as a result, Caesar said, 

listen up Rome, we are going to do as follows. First, we are going to delay 45 BCE for eighty days, to 

put the beginning of spring back at the start of the calendar. Second, that year and every fourth year will 

have 366 days, consisting of alternating months of 31 and 30 days. Finally, the intervening years will 

have 365 days, with the adjustments made where we always make them, in February. [I did lie about 

“listen up” and “45 BCE.” You know there are untruths here, as in the previous clause.] That ruling 

established this sequence of months: 

Martius 31 days 

Aprilis 30 

Maius 31 

Juno 30 

Quintilius 31 

Sextilius 30 

September 31 

October 30 

November 31 

December 30 

Januarius 31 

Februarius 30 or 29 

A year later, a group of senators voted Julius out. The senators that did not participate in the 

assassination renamed Quintilius “Julius.” Two years after that, the decemviri interpreted “every fourth 

year” in a Roman way: leap, two, three, leap, two, three, leap .... [I once heard Roman counting des-
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cribed this way: Imagine a driving course along which there is a marker at the start, another at the one-

mile mark, another at two miles, another at three miles; the Romans would count, not three miles, but 

four markers.] They put a leap into what we would call every third year. 

It took 13 years to settle the leadership war between Caesar’s closest lieutenant, Marcus Antonius, 

and his nephew and adopted son, Octavian. Finally in 31, the forces of Octavian and Agrippa defeated 

those of Marcus and the last of the Greek rulers of Egypt. (What was the name of that last ruling 

Ptolemy?). Octavian became undisputed leader of Rome. Four years later, the Senate proclaimed him 

“Augustus,” first imperator of Rome. He, who was a decent ruler for more than 40 years, finally settled 

the leaps. In 9 BCE, after 12 leaps in 36 years—three too many—he ruled that Rome would skip the 

next three leaps. In 8 CE, he resumed the leaps. Augustus had set the Sun back into harmony with 

Rome. The Senate voted to rename Sextilius “Augustus.” You can see the problem with that: Julius was 

longer. So 31 days were assigned to Augustus. An adjustment was needed somewhere; Februarius was 

elected, changing to 29 or 28 days. Finally, the quarter Julius-September was excessively long, at 93 

days. The days were redistributed to 30 in September, 31 in October, 30 in November, 31 in December. 

Thus, barely over 2000 years ago, the calendar familiar to us was in place in Rome. 

c) the eras 

Sixteen centuries after Augustus, Rome still had an empire. Its leader was still called pontifex 

maximus, “Supreme Pontiff.” Those men were sentimental about the spring equinox, because they 

believed it pointed to the resurrection of the ruler of the universe. We therefore turn our gaze to a Jewish 

boy born to the name Joshua ben Joseph. 

There are no records from the lifetime of the man the Romans called Jesus the Nazarene. The 

biographies of Jesus, the Gospels, were written scores of years after his death. They do agree about the 

circumstances of his death. They say that he was arrested after a seder, the Pesach (Passover) dinner; 

that he was tried before Pontius Pilate and put to the cross the next day; and that the day was day before 

shabbos (Sabbath). For Pontius, there are plenty of records. He governed Judea from 26 (12 years past 

the death of Augustus) to 36 CE. 

That Gospel description carries astronomical information. It says that Jesus was taken on Passover, a 

Jewish holy night marked by the first full Moon following the spring equinox, and that the next day was 

Friday. Evidently, that full Moon does not happen on Thursday every year. During Pontius’s tenure, it 

happened in two years, 30 and 33. It is safe to conclude that Jesus died one of those two years. 

Within 100 years, Christianity became an important religion in Rome. Within 300, it became 

dominant, so much so that the emperor Constantine converted. He moved the capital to Byzantium, for 

which he found the convenient new name “Constantinople.” In 325, he convened the Council of Nicæa 

(birthplace of Hipparchus), which was a kind of constitutional convention for the Christian Church. The 

Council set out many of the Church’s tenets. It also began a search for information about Jesus. The 

search had an important result two centuries later, when the scholar Dionysius Exiguus (“Little Dennis”) 

concluded that Jesus was born in the 28
th

 year of Augustus. That year was 525 years before (Dennis’s 

work). He named it “1 Anno Domini,” first year (in the era) “of our Lord.” He called the year before that 

“first year before our Lord.” That was the origin of the designation of the eras as AD and BC.   

Dennis’s numbering amounted to beginning a new era at year +1 and calling the preceding year -1. 

Why was there no year number 0? 

There is wide disagreement as to which year Jesus was actually born, but 4 BCE is a good candidate 

for several reasons. Although 1 CE was the 28
th

 year of “Augustus,” that man was governing Rome 

for four years before gaining the name. Putting the birth of Jesus in 4 BCE and his death in 30 CE 

agrees with the accounts that say he was in his 34
th

 year at his crucifixion. 
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The numbering system did not come into wide use, even in the Church, for hundreds of years. The 

convention to use “Common Era” and “Before Common Era,” removing the religious content in AD and 

BC, is only about 40 years old. [It is a mystery to me why English used the Latin “Anno Domini” into 

the 20
th

 century, but not the Latin equivalent for “Before Christ.”] 

d) the skips 

Dennis made one other inference. He estimated that when the Council met in 325, the spring equinox 

happened on March 21. The Church accordingly declared that Easter would be celebrated on the Sunday 

following the (“Paschal,” maybe rooted in Pesach) first full Moon after March 21. 

Recall that the Julian calendar is too long, causing the seasons to retreat through the calendar at the 

rate of roughly one day every 130 years (Exercise 2a). In the 1250 years after 325, the spring equinox 

fell back to around March 11. Anchoring Easter, a holiday the New Testament tied closely to the time of 

flowering, to March 21 threatened to push it into the summer. 

Already around 700, the Venerable Bede—an early advocate for Dennis’ AD/BC scheme—was 

warning about this date drift and calling for adjustment to the calendar. 

By 1513, Juan Ponce de León had worn out his welcome as governor of the island he had named 

“Puerto Rico.” (Columbus had called it “San Juan,” still the name of its capital.) Ponce asked the 

king of Spain for permission to go colonize Bimini, in the Bahamas. Permission given, he set off 

northwest. He was as good at navigation as at politics, so he missed. He ended up on North America, 

arriving on Easter. Since Spanish calls the Christmas and Easter holidays pascuas natales and 

pascuas floridas (the birth celebration and the flowering one), he named the place where he landed 

“la Florida” (flo-REE-dah), claimed it for Spain, and invented the Early-Bird Special. 

In 1576, Pope Gregory XIII [unsuperstitious, like us Taureans] decided to make the adjustment. 

(Why then? How had the Church changed since, say, 1350, when the calendar drift was almost equally 

obvious?) He constituted a committee, which decided to follow recommendations made by the late Luigi 

Lilio (sometimes written “Giglio”). Lilio had suggested bringing the equinox back to March 21 by 

jumping ten dates, and keeping it there by removing three leaps every 400 years. He even suggested 

which three to skip. He said skip, for convenience, the century years that are not divisible by 400. 

Gregory ruled accordingly, decreeing that the day following October 4 1582 would have the date 

October 15 1582; and that the years 1600, 2000, 2400, ..., would be leap years, but not 1700, 1800, 

1900, nor 2100, 2200, .... That is how our yearly calendar is now set up. 

The “Gregorian Calendar” is now nearly universal, but like Dennis’s system, it was not accepted 

immediately. England was ruled in 1582 by a daughter of Henry VIII. Henry had fallen out with the 

Church, because it wanted him to buy his wives, and Henry preferred to lease. Therefore Gregory’s 

word was not law in Protestant England. She did not adopt the calendar until 1750. (Similar 

question: Why then? How was England different in 1750 from 1582?) Likewise, Orthodox Greece 

and Russia resisted into the twentieth century, respectively 1922 and 1918. (Why was Russia 

different in 1918 from, say, 1910?) 

[Remember the Y2K bug? My computer will not let me set the date to year 2100. I don’t know for 

sure, but maybe its programming is tuned to our age, meaning 1901-2099. During that span, every 

fourth year is leap. Do you suppose there will be a Y2.1K bug?] 
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  Exercises III.C.5

1. Sosigenes would have known Hipparchus’s estimate of the tropical year, 
 365 + 14/60 + 21/3600 days. 
(Why would he have known it?) What is the reciprocal of the difference between that 
number and 365¼? (Sosigenes must have told Julius that a calendar averaging 365¼ days 
would need adjustment by one day in that many years.) 

2. The current estimate of the tropical year is 365.242374 days. (Precession is periodic, and 
therefore so is this estimate.) 
a) What is the reciprocal of the difference between that number and 365¼? That reciprocal 
is the number of years in which the Julian calendar advances one day relative to the cycle 
of the seasons. 
b) The Gregorian calendar has 365 days plus 97 intercalated days every 400 years. Using 
the given length for the tropical year, in what year will it have advanced one day? 
c) According to (b), the Gregorian year is 365 + 97/400 days. Where did we encounter that 
number before? 

3. [On February 29 1996, I received a paycheck. I did not remember ever before getting paid 
on “leap day,” so I wondered when it would happen next. City College has its regular pay-
check issuance every other Thursday. When will it next have a payday on February 29?] 

4. a) Check that the Gregorian rule provides the following: Every 4th year is leap, except that 
you skip every 25th leap, but then you re-leap every 4th skip. 
b) Suppose you extend that provision ad infinitum: Leap every 4th year, skip every 25th leap, 
re-leap every 4th skip; re-skip every 25th re-leap, .... How long will the resulting year be? 
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 Middle Peoples Chapter IV.
India and China have long mathematical traditions. Indeed, they had robust and highly cultured 

civilizations when Europeans were barely out of the hunter-gatherer stage. In this chapter, we will see 

how Chinese and Indian discoveries were well ahead of the European, and take a look at the Americas. 

 India Section IV.A.
Alexander conquered western India, all the way through the valley of the Indus. (Remember that 

modern-day Pakistan came into existence when Gandhi’s dream fell apart in 1947.) The campaign 

brought influence from the west to Indian mathematics. Oddly, it was not Greek influence. What the 

Macedonian brought was from Mesopotamia, Struik’s “Oriental tradition.” Consequently, geometry 

was not a great interest, and none of Indian mathematics reflected a deductive approach. Instead, the 

focus was numerical. The development was intuitive and the works were prescriptive, exhibiting 

instructions, methods, and the like. 

1. Geometry 

The earliest Indian books were the Sulvasutras, literally “books of rules about cords.” The name 

suggests association with surveying, with good reason. The books were compendia of geometric 

information, on such topics as Pythagorean triples and measure formulas. 

Some of their mensuration was mistaken. The errors were not simply approximations, as in the 

Egyptian rule that a circle has the area of a square 8/9 as wide (section III.A.1). They were actually 

erroneous statements, as in claiming that the area of a quadrilateral is the product of the averages of 

opposite sides. 

A better example came from the extensive work of Brahmagupta. The Indians knew the equivalent 

of Heron’s formula: A triangle of sides a, b, c, with semiperimeter s = (a + b + c)/2, has area 

 A = (s[s – a][s – b][s – c]). 

(An elementary, but necessarily complicated, geometric proof is at the University of Georgia.) 

Brahmagupta (6
th

 century CE) gave a generalization for a quadrilateral with sides a, b, c, d: 

 A = (s[s – a][s – b][s – c][s – d]), 

with s the new semiperimeter. Bhaskara (12
th

 century) in the Lilavati observed that Brahmagupta’s 

formula could not be right, because a quadrilateral is not determined by its four sides. That is, two 

triangles of matching sides must be of equal size, by SSS; but a square and non-rectangular rhombus of 

equal sides do not have the same area. The observation was perceptive, but Bhaskara seems to have been 

unaware that Brahmagupta’s formula works for a quadrilateral inscribable in a circle. (Compare 

Exercise III.A.3:6. See also Boyer page 242. At page 233, Prof. Boyer recalls how the Arabic 

philosopher Muhammad al-Biruni (973-1048), commenting on the odd combination of truth and error in 

Indian mathematics, described it as a mixture of “common pebbles and costly crystals.”) 

For us, it is Indian trigonometry that is important. It was the first to look 

like ours. The Surya Siddhanta (“Sun system,” with obvious astronomical 

connection and going back possibly to BCE) introduced the half-chord. 

Recall that Greek trigonometry worked with the chord AB (red at right) of 

central angle AOB. The Indians drew the angle bisector OM (dashed), 

which necessarily bisects the chord, and called AM the half-chord of 

angle AOM. (Compare section III.A.8a plus Exercise 1 there.) That length is 

precisely our definition of the sine of the angle. Our cosine, tangent, and the 

other functions are in that Siddhanta as well. 

 

A 

B 

O 

M 

1 

http://jwilson.coe.uga.edu/EMT668/EMAT6680.2000/Umberger/MATH7200/HeronFormulaProject/GeometricProof/geoproof.html
http://www.archive.org/stream/AHistoryOfMathematics/Boyer-AHistoryOfMathematics#page/n258/mode/1up
http://www.archive.org/stream/AHistoryOfMathematics/Boyer-AHistoryOfMathematics#page/n249/mode/1up
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2. Numeration and Arithmetic 

The other way in which Indian mathematics resembled ours—meaning, of course, in which ours 

follows the Indian—is “ciphered positional decimal” numeration. Decimal numeration is ancient. The 

Egyptians used decimal aggregates (symbols for 10 and its powers). So did the Romans, with the added 

convenience of symbols for the 5-multiples 5, 50, and 500. Positional, or place-value, numeration was 

the Babylonian way. In geometry and astronomy, their sexagesimal numeration persisted until just 

centuries ago. Ciphered numeration, using symbols instead of marks or aggregates for the digits, also 

predates the Indians. (Here, “cipher” has nothing to do with codes. The Romance languages, and some 

others, use words related to it for “digit.”) The Egyptians had some cipherization as far back as 

2000 BCE, and the Greeks used letters of the alphabet to represent some numbers. All those elements 

had coalesced in India by 600 CE. 

The Indians came to represent any natural number by a string of symbols chosen from nine that have 

evolved into our 

 1 2 3 4 5 6 7 8 9; 

see Boyer. What we call “Arabic numerals” are Indian numerals. 

The lack of a zero symbol made for the usual difficulty. When a power of 10 was missing, a space or 

other indication was needed. Recall that the Babylonians faced the same problem, and did not create any 

zero symbol until very late. The culmination of Indian numeration was the adoption, before 876, of the 

round symbol we now use for zero. 

We have remarked that in aggregate-based systems, addition is easy and multiplication hard. It is 

worthwhile to look at base-based algorithms for arithmetic. 

Consider the multiplication process in the array at right. It uses the distributive law, 

 567  89  =  (7 + 60 + 500)(9 + 80) 

      =  7  9 + 60  9 + 500  9 + 7  80 + 60  80 + 500  80. 

However, it multiplies only digits. The 7  9 = 63 is first. For 60  9, we need 

just 6  9 = 54, offset so that its value is 54 tens. The offset is why in each pink 

square, we may write the zero, or instead leave the square empty. The array then 

displays the remaining digit multiplications, all blue.  

Does the array look unfamiliar? We normally “carry” from place to place. Here 

it is clear that carrying simply saves space. It holds the multiplication by each 

digit in 89 to a single line. On the other hand, operating right-to-left agrees with 

our usual way. We see the advantage of doing so: It facilitates placing the digit-

products in the right columns. 

The illustration continues with the sums (red) of the digit-products. If we insist 

on refusing to “carry,” we may again write multi-digit sums on separate lines, in 

the appropriate columns. We then keep adding until all the sums are less 

than 10. Computers do something like that, but in base 2. 

There is another algorithm, although in use it has become extinct. Look at the 

following approximation of 567.8. (We allow ourselves decimal fractions; the Indians never wrote 

them.) To begin, it pairs the digits leftward and rightward from the decimal point (left-hand panel in the 

figure on the next page). It supplies the 0 if needed, plus as many pairs 00 as the answer’s desired 

number of decimal places calls for. It then iterates the following set of instructions: 

5 6 7

x 8 9

6 3

5 4

4 5

5 6

4 8

4 0

3

1 6

2 3

4 8

4 6 3

1 0

4

5 0 4 6 3

http://www.archive.org/stream/AHistoryOfMathematics/Boyer-AHistoryOfMathematics#page/n277/mode/1up
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1. Create a number on the red line by 

a) doubling what is currently on the green line and 

b) placing a digit at the end (units place) of the red line and above the current pair. The same 

digit goes at both places. Make the digit the largest such that it times the created number does not 

exceed the current “dividend.” 

2. Multiply digit by created number, then subtract from dividend. 

3. Bring down the next pair to create the next dividend. 

4. Repeat as necessary, for the number of decimal places desired in the approximation. 

2 2 3

5 67 8 0 00 02 5 67 8 0 00 02 5 67 8 0 00

4 1

1 67 43 1 67

1 29

38 8 0  

We want to approximate 567.8 to two places. In the left-hand panel of the box above, we supply 

“0 00” after the decimal point. On the red line, we (a) start with 0, from doubling the empty green, 

(b) then adjoin 2 (middle panel). That makes 02 the created number and 2 the digit. We could fit 1 on 

the green line, because 1  01  5; and 2, because 2  02  5; but not 3, because 3  03 exceeds 5. 

So far, it appears that we have u = 2 as the largest digit whose square is 5 or less. In fact, what we 

found is the greatest 10-multiple 10u = 20 such that (10u)
2
  567.8. This square falls short by 167.8. 

When we bring down the 67 pair, it is clear that we next work with just the 167 part of the shortfall. 

To restart, (a) we double 2 to put 4 on the next red line (right-hand panel). Then (b) the digit is 3 and 

the created number 43. The reason is that 3  43  167, but 4  44 > 167. Multiply, subtract, bring 

down, and the next dividend is 3880. During this stage, we found v = 3 to be the largest digit with 

 v(2u  10 + v)  167. 

Do you see why that is related to squares? From 

 v(2u  10 + v)  167 = 567 – (10u)
2
, 

we have 

 (10u)
2
 + 2u  10  v + v

2
  567. 

We recognize (10u + v)
2
 on the left. Our process so far has identified the biggest two-digit number 

10u + v whose square is 567 or less. 

That gives you an idea why the method works. Complete it in Exercise 2. 

A few things are reasonably evident. First, if the square root is a terminating decimal, like 

552.25 = 23.5, then the algorithm will arrive at a zero dividend and terminate at the exact root. Second, 

it does not matter how many digits there are either side of the decimal point. If the original number had 

been 56,780, then the algorithm would still have produced 2. The 2 would have been one column further 

left, representing 200, the biggest multiple of 100 whose square is 50,000 or less. Then it would produce 

3, because 230 is the biggest multiple of 10 squaring to less than 56,700. (Check!) Third, the 

multiplication algorithm and the square-root algorithm both take advantage of place-value numeration, 

not specifically decimal numeration. Try Exercises 1 and 3. 

[Richard Anderson was a contributor to the mathematical community as well as to mathematics. 

Around 1985, I heard him address the American Association for the Advancement of Science on the 

subject of technology’s effect on the math curriculum. His teachers had learned the formula for solving 
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cubic equations (which we will meet later), but did not teach it to him. They did teach him our square-

root algorithm, but he had found it unnecessary to teach it to his students. He taught his students linear 

interpolation in the use of log and trig tables, but they did not need to teach it to their students. 

Back then, the first graphing calculators were coming out. It fell to Anderson’s grandstudents to 

consider the possibility that teaching approximation and equation-solving methods might be rendered 

obsolete. Now, hand-held devices can carry out symbolic algebra and calculus. If you are going to teach 

mathematics, expect parts of your learning to turn into quaint relics, and prepare to adapt.] 

 Exercises IV.A.2

1. Use a multiplication algorithm—either as above or in the familiar way—to multiply  

 123(base 5)  432(base 5). 
Check by turning the numbers into base 10. 

2. Continue the square-root algorithm in this section to approximate 567.8 to two decimal 
places (truncated in the second place). 

3. Use the square-root algorithm in base 5 to find the integer part of 120241(base 5). (The 
radicand is the answer in Exercise 1, and the square root is decimal 66+.) 

3. Extension of Arithmetic 

Brahmagupta’s geometry was in the service of his astronomy, but he also contributed where algebra 

meets number theory. He defined the arithmetic of negative numbers six centuries before they were 

known in Europe, as well as the arithmetic of zero long before “0” entered the numeration. 

The “natural numbers” really are natural, having quantitative significance that must have been in the 

minds of the earliest humans. We, dealing with (among other things) commerce and temperature, have 

no trouble using numbers below 1. Even early peoples, however, must have dealt with bodies of water 

whose levels rise and fall with spring melt, droughts, and the tides. In any of those situations, you can 

make one mark where the lowest water was, expecting to see the water rise some marks above the low 

point. If later the extreme low becomes lower, then you can talk about the level reaching so many marks 

below the original mark. That gives some quantitative meaning to “numbers” less than 1. 

This levels interpretation, though, is not enough to qualify them as numbers. Let us agree that for 

things to be called that, there must be a way to operate on them, to do arithmetic. We will decide how to 

designate them and how to add, subtract, multiply, and divide. 

One choice is to call the number right before 1 “before1.” Then the next number down would be 

“beforebefore1.” Too clumsy—make that one 2before1, then continue 3before1, .... In that case, 

make the first one 1before1. Notice that this is exactly what Little Dennis did in numbering the years 

 ... 2 BC, 1 BC, 1 AD, 2 AD, .... 

We can then easily define additions with these new things by continuing the pattern 

 1 + 3 = 4, 

 1 + 2 = 3, 

 1 + 1 = 2. 

The next left side is 1 + 1before1, and the next right side is 1. Therefore we continue 

 1 + 1before1 = 1, 

 1 + 2before1 = 1before1, 

 1 + 3before1 = 2before1, .... 

We can deduce this addition rule: If m and n are natural numbers, then 
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 m + nbefore1  =  m – n + 1  if m  n, 

 m + nbefore1  =  (n – m)before1 if m < n. 

That need for a two-case rule is an annoyance. Dennis’s system has the same irksome property. 

Augustus ruled Rome from 31 BCE until he died in 14 CE. He ruled for 

 14 CE – 31 BCE  

years, a difference that looks like 45 years. Subtraction is defined in terms of addition: By definition, 

that difference is what you would add to 31 BCE to make 14 CE. Since 

 44 + 31before1  =  44 – 31 + 1  =  14, 

we conclude that he ruled 44 years. We need to change the names of the numbers. 

Call the number before one “zero.” We are not saying, invent a symbol other than space to indicate a 

missing power of 10. We are saying, give a name to the number that signifies how many oranges are left 

if you start with one and lose it. Then invent even lower numbers: 1below, 2below, ..., the same names 

we attach to temperatures. Our pattern then reads 

 1 + 1 = 2, 

 1 + zero = 1, 

 1 + 1below = zero, 

 1 + 2below = 1below. 

The addition rule becomes one, without separate cases: To add numbers on opposite sides of zero, 

subtract the absolute values and attach the “sign” that went with the higher value.  

Let us adopt the familiar designations 0, -1, -2, .... By decreasing the first terms, we establish 

 2 + -1 = 1, 

 1 + -1 = 0, 

 0 + -1 = -1, 

 -1 + -1 = -2. 

We see, for example, that to add numbers of like signs, we add values and replicate sign. Furthermore, 

adding 0 leaves the other summand unchanged. 

Once we define addition, it defines subtraction. Thus, 3 – -5 is that number whose sum with -5 is 3. 

Since 

 8 + -5 = 3, 

we see that subtracting gives the same result as sign-changing the subtrahend [or subtractee or whatever 

you call that second term] and adding. Observe then that, unlike with just the natural numbers, all 

integer subtractions are defined. 

For multiplication, one combination is natural. If we think of multiplication as repeated addition, 

then we immediately have 

 -2  3 = -2 + -2 + -2, 

and we have already agreed that the latter result is -6. Separately, we see that in 

 2  3 = 6, 

 1  3 = 3, 

the products are decreasing by 3. Accordingly, the next three results are 

 0  3 = 0, 

 -1  3 = -3, 

 -2  3 = -6. 

The patterns: Multiplication by 0 always gives 0, and the product of unlike signs is always negative. 

The other combination, negative times negative, is the one that always makes trouble. We can follow 

two interpretations to resolve it. First, we thought of -2  3 as repeated addition. How about if we say, to 
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multiply by -2, first change the other factor’s sign, then multiply by 2? Then 

 -2  (-3) = 2  (3). 

Alternatively, we can return to our patterns. In 

 -2  2 = -4, 

 -2  1 = -2, 

 -2  0 = 0, 

we see that the products are increasing by 2. We then have to continue with 

 -2  -1 = 2, 

 -2  -2 = 4. 

We must accept that the product of like signs is positive. 

Finally, division answers a multiplication question, and is therefore not always defined within the 

integers. We have -12  6 = -2, because we have agreed that 6  -2 = -12. However, there is no integer 

whose product with 6 is -13; -13  6 is undefined. More important, division by 0 is undefined. To write 

5  0 = x, you would need 5 = 0  x; the latter is impossible. To write 0  0 = y, you would 

need 0 = 0  y; not a problem, except that it does not uniquely specify y. 

 Exercises IV.A.3

1. a) Give a definition that “invents” the “rational number” -13/6. 
b) Use your definition to prove that -13/6 is negative. 
c) Use your definition to prove that -3 < -13/6 < -2. 

2. Evaluate the sum 
 1 – 2 + 3 – 4 + ... + 99 – 100. 
Mention the arithmetic or algebraic principles that allow you to proceed. 

4. Algebra and Number Theory 

Brahmagupta’s algebra was remarkably advanced. It included extensive treatment of indeterminate 

equations, including certain kinds of quadratics. It displayed, for the first time, a willingness to allow 

negative roots. Here we highlight his complete solution of the linear Diophantine equation. 

In section III.B.5, we looked at the general form 

 ax + by = c. 

Here a, b, and c are fixed integers, and the hunt is for integer solutions x and y. We noted that we can 

limit attention to the case in which a and b are relatively prime. For the example 

 6x + -25y  =  73, 

we found one solution, x = 1533, y = 365. 

Now assume x = s, y = t is another solution. We subtract the two equations 

 6s + -25t = 73, 

 6(1533) + -25(365) = 73, 

and transpose to write 

 6(s – 1533)  =  25(t – 365)  =  -25(365 – t). 

The left side is a multiple of 6, so 6 divides -25(365 – t). Because 6 is relatively prime to -25, we 

conclude that 6 divides (365 – t). (The theorem that if a number divides a product and is prime to 

one factor, then it must divide the other factor, is Exercise III.B.4a:5.) For the same reason, -25 

divides (s – 1533). In fact, rewriting 

 (s – 1533)/-25  =  (365 – t)/6, 

we see that (s – 1533) is the same multiple of -25 that (365 – t) is of 6. Call the multiplier m. We can 
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then characterize the structure of every solution x = s, y = t: 

 s = 1533 + -25m, t = 365 – 6m. 

In words, given the one solution x = 1533, y = 365, you get every other solution by adding to 1533 a 

multiple of -25 (in the general form, a multiple of b) and subtracting from 365 the like multiple of 6 

(respectively, of a). 

You can see that this argument is more number-theoretic than algebraic. The influences of 

Brahmagupta and others made number theory the focus of Indian mathematics through and far beyond 

the Middle Ages. The achievements in this area are noteworthy, but none more so than those just a 

century ago of Srinivasa Ramanujan (Rah-MAH-nu-jam). In a number of ways, his work was the 

epitome of Indian mathematics: given to numerical relations; intuitive rather than deductive, with results 

seeming to spring full-blown from his mind; occasionally false; brilliant. 

Ramanujan was born in 1887. As boy and young man, he showed flashes of mathematical brilliance, 

but was not good enough overall to get a university degree. Around 1912, he sent stacks of results to 

some English mathematicians. (Many of the results involved infinite series. Merzbach, p. 202, indicates 

that series were known in India by the end of the 1300’s.) They were roundly ignored, except by the 

renowned Godfrey Hardy. He alone recognized that they were not just largely correct, but actually 

works of genius. He got Ramanujan to Cambridge, where the son of tropical India continued a 

prodigious output until the English weather killed him in 1920. Read his story in this book: Robert 

Kanigel, The Man Who Knew Infinity. 

[It is common for math departments to receive manuscripts from non-academics evincing earth-

shaking discoveries. (They are never routine discoveries.) These include astonishing formulas, 

amazingly short proofs of either deep or unestablished results, or arguments showing that some famous 

theorem is false. To be fair to Hardy’s colleagues, we have to admit that deep math from a clerk in the 

Indian port of Madras would have been as unlikely as important physics from a clerk in the Swiss patent 

office at Bern.] 

 Exercises IV.A.4

1. Describe all the integer solutions of the equation 
 56x + 30y  =  16. 

2. In what way did the influence of Greek mathematics upon ours differ from Indian influence? 

 The Middle Kingdom Section IV.B.
Any coverage of China has to face ancient China’s relative isolation. Trade and interaction certainly 

existed, especially with India, but Chinese discoveries only slowly drifted westward. China developed 

gunpowder and printing around the tenth century, paper and the magnetic compass by the eleventh, all 

of them novelties in Europe when the age of exploration began at the end of the fifteenth. Another factor 

is the orientation of this book. It intends to culminate with mathematical developments centered on 

nineteenth century Europe. For those, there was little Chinese influence. Further, the record of Chinese 

science has gaps. Their media were not as hardy as the Babylonians’ baked clay tablets and were not 

favored by Egypt’s dryness for preservation. Therefore even when we know Chinese discoveries, it is 

difficult to date them. 

1. Geometry 

Evidently, a people with advanced architecture, civil engineering, and cartography must have known 

sophisticated geometry. We do not have evidence of deductive development like that of the Greeks. 
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Indeed, there was no Greek influence in Chinese mathematics, since Alexander’s conquests did not 

reach far enough. However, we do have evidence of parts of their knowledge. 

Some material on the properties of right triangles is in the earliest known mathematical text, the 

Arithmetical Classic of the Gnomon and the Circular Paths of Heaven. It contains a picture that clearly 

serves as proof of the Pythagorean theorem. We cannot know whether it preceded the Greeks’ proof, 

because the best we know of its date is that it traces to the Zhou Dynasty, 1046-256 BCE. 

In the left panel of the figure below, we have right triangle ABC, shaded blue. We adjoin a copy 

(green) of it by going down from A to D with AD = BC, then right to E with DE = AC. Repeat (yellow) 

with EF = BC, FG = AC. At that stage, BC and its extension rightward and BG bound an uncolored right 

triangle whose legs must match AC and BC, making it also congruent to ABC. 

 

B C 

A 

D E F 

G 

B C 

A 

D E F 

G  

We now conclude that ABGE is the square on the hypotenuse. Its four sides are congruent, same 

length as AB, and each of its four angles is the sum of the complementary acute angles of triangle ABC. 

(In the Chinese picture, this tilted square was inscribed within an upright square subdivided into seven 

rows and seven columns, clearly indicating that ABC was a 3-4-5 triangle. However, our construction is 

independent of the dimensions of triangle ABC.) 

In the right-hand panel, we move the blue triangle to the bottom right-hand corner and the green 

triangle to the bottom left. We fill with gray the previously uncolored square and triangle. The stair-step 

region now having all the colors comprises the square on BC on the left, the square on DE = AC on the 

right. We have disassembled the square on AB, then reassembled the pieces into the squares on AC and 

BC. We have shown that the square on the hypotenuse is the sum of the other two. 

That the picture proves the theorem is undeniable, but it yields a puzzle. The argument clearly 

depends on the statement that the right triangle’s acute angles sum to a right angle. That statement is 

equivalent to the angle-sum theorem. Also, the original square’s coming together and “moving” the 

triangles involve considerations of congruent triangles. But the geometry in the Classic does not include 

those properties of triangles; it does not display the development in Euclid’s Elements. 

There is a compendium, as the Elements was, of Chinese knowledge. It originated between 200 BCE 

and 200 CE and was later amplified. The Nine Chapters on the Mathematical Art includes chapters on, 

among other topics, mensuration, properties of right angles, computation, taxation, and algebra. Its 

geometry included formulas for areas and volumes—some of them approximate, like the Egyptian and 

Babylonian—and approximations for  that went far beyond those of Archimedes. 
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2. Numeration 

China had a strong central administration and extensive commerce. Both elements are spurs to the 

development of arithmetic. The result was place-value numeration and arithmetic of negative numbers 

and of fractions. In the latter two, China preceded Indian arithmetic, and may indeed have influenced it. 

(Recall that place-value numeration already existed in Mesopotamia.) 

There were actually two systems of numeration. One was reminiscent of Egypt’s, using decimal 

aggregates but not place value. It used markers for units and for 10 and its powers. Under it, if we use 

our numbers underlined as symbols for the corresponding markers, then we would write 54,321 as 

 5 10000  4 1000  3 100  2 10  1 

and 2,012 as 

 2 1000  1 10  2. 

We put the powers in descending order, but clearly decreasing order is unnecessary. Even order is 

irrelevant if we keep the coefficients with their powers. Therefore zero placeholders are unneeded. As 

always with reliance on aggregates, addition is easy and multiplication hard. 

The other one amounted to a base-100 positional system. Recall again the disadvantage of the 

sexagesimal system: It required the Babylonians to symbolize the digits 1-59. The Chinese produced a 

way to render the digits 1-99 with 18 symbols, corresponding to 1, 2, ..., 9 and 10, 20, ..., 90. Then 

54,321 would have its digits paired as 5/43/21 and would appear as 

 5  40 3  20 1; 

similarly 2,012 would be 

 2           10 2. 

Here the lack of a zero symbol is a problem, particularly for trailing zeroes (as in 2010). The zero the 

Chinese eventually adopted came back from India. 

Notice that both systems relate to the way many languages name numbers. In English, 11 and 12 

have special names, but “thir/teen” through “ninety/nine” all reflect multiples of 10 plus some units. 

Spanish 11-15 are special, but 16 to 99 are dieci/séis to noventa y nueve (separate words). German 

has 11 and 12, but drei/zehn through neun/und/neunzig. (French is—what can we say—Gallic.) 

Our own use of sort-of-base-100 names extends to 100 through 9999. We commonly call 4,321 

“forty-three hundred twenty-one,” although 4000 is rarely “forty hundred.” The use stops at 9999; 

nobody calls 10,000 the equivalent of “one hectohundred.” 

Unlike the Egyptians, the Chinese dealt from early on with common (as opposed to unit) fractions. 

More interestingly, they dealt with decimal fractions more than a millennium before those came into use 

in India and the Islamic world.  

3. Algebra 

 The algebra in Nine Chapters on the Mathematical Art is like what we know from the Egyptians 

and Babylonians, in that it presented a large set of specific problems and their solutions, generalization 

presumably left to the reader. 

Chinese algebra may have been static through 1000 CE, but it certainly advanced in the next three 

centuries. By around 1270, Yang Hui (Merzbach says that we know almost nothing about his life) put 

the binomial theorem in a form recognizable to us. Recall that the theorem describes the expansion of 

powers of binomials: (a + b)
n
 is a sum of terms; each term has a coefficient, a power of a, and a power 

of b; the powers of a decrease from n to 0, those of b rise from 0 to n; and the coefficients are given by 

Pascal’s Triangle.  Yang described the Triangle, perhaps known before him. (Named after the 

seventeenth century French scientist Blaise Pascal, it evidently should bear instead a Chinese name.) 
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The triangular array begins with 1, then expands as it descends, each position holding the sum of the 

entries to its upper left and upper right. Thus, in the 

table at right, the underlined 4 is the sum of the 3 and 

1 above it. The red numbers are row numbers. 

Row #1 tells us that 

 (a + b)
1
 = 1a

1
b

0
 + 1a

0
b

1
. 

Row #4 likewise says 

 (a + b)
4
 = 1a

4
b

0
 + 4a

3
b

1
 + 6a

2
b

2
 + 4a

1
b

3
 + 1a

0
b

4
. 

Yang also worked on a uniquely Chinese interest, magic squares A magic square is a square array 

of numbers, usually the integers from 1 to some integer square, in which all the rows, all the columns, 

and the diagonals have the same sum. To see the simplest possible example, try to fill a 3x3 array with 

the numbers 1-9 to render the correct sums. Exercise 1 asks you to attack the problem as a series of 

deductions. [Compare the recent Japanese puzzle import, sudoku.] The exercise demonstrates that the 

topic does not fall into the category of mere arithmetic. Yang wrote on considerably bigger squares.  

The high point in Chinese mathematics generally and algebra in particular came in Zhu Shijie’s book 

Jade Mirror of the Four Origins of 1303. The book treats problems describable by systems of 

simultaneous polynomial equations, where the systems reduce to single equations of high degree. Zhu 

then applies a method that now bears another European name, that of William Horner. 

Horner’s method has elements of false position. It works by reducing the constant in the equation. 

Consider the simplest type of polynomial equation, which we could solve to extract a root: 

 v
3
 = 100. 

The substitution w = v – 1 will reduce the right side. Thus, v = w + 1 turns the equation (we put the 

binomial theorem immediately to work) into 

 w
3
 + 3w

2
 + 3w + 1  =  (w + 1)

3
  =  100,  or 

 w
3
 + 3w

2
 + 3w  =  99. 

Notice that the reduction on the right is 1
3
. 

The last equation is a more general type. It has the form 

 polynomial = (positive number), 

where the polynomial has all positive coefficients and no constant. Write 

 p(w) = w
3
 + 3w

2
 + 3w. 

Our example has 

 p(w) = 99. 

[This is our first use of function notation. If it is unfamiliar to you, check dummies.com. No offense 

is intended. Strictly speaking, it is past the level this book is supposed to require.] Such an equation 

necessarily has a solution, because p(0) = 0 and p increases beyond 99. Here, 

 p(3) = 63 and  p(4) = 124, 

putting the solution between w = 3 and w = 4. [We are tiptoeing around the advanced principle called 

the “intermediate-value theorem.”] If we now substitute x = w – 3, we write 

 (x
3
 + 3x

2
[3] + 3x[3]

2
 + 3

3
) + 3(x

2
 + 6x + 3

2
) + 3(x + 3) = 99,  or 

 x
3
 + 12x

2
 + 48x = 99 – (3

3
 + 3[3

2
] + 3[3]) = 36.  

(Check that. Verify also that we would have ended up here if we had substituted x = v – 4 in the first 

place.) Notice that the reduction on the right is p(3). 

What is special about the last form is that the root is between 0 and 1. For that reason, the 

approximate solution is laid bare as 

 x    (number)/(sum of coefficients)  =  36/(1 + 12 + 48). 

1 0

1 1 1

1 2 1 2

1 3 3 1 3

1 4 6 4 1 4

http://www.dummies.com/how-to/content/how-to-use-function-notation.html
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That approximation is simply linear interpolation. Write 

 q(x) = x
3
 + 12x

2
 + 48x. 

We have q(0) = 0 and q(1) = 61. The solution is therefore about 

(36 – 0)/(61 – 0) of the way from x = 0 to x = 1. 

Look at the interpolation graphically as well. On the right, we draw (red) the 

graph of  y = q(x) between x = 0 and x = 1. If the graph were a line (green), 

then the place (c, 36) where it crosses the horizontal y = 36 would be given 

by similar triangles: 

 36/c = q(1)/1, 

or c = 36/q(1). The denominator q(1) is the sum of the coefficients. 

Lest we forget, the solution of the original equation is then given by 

 100
1/3

  4 + 36/61. 

 Exercises IV.B.3

1. Assume that the array at right is a magic square, a-i representing 1-9. 
a) What is the sum of the numbers in each row? 
b) Add the diagonals, the middle row, and the middle column to show that 
 a + b + c + d + 4e + f + g + h + i = 60. 
c) Based on (b), show that e has to be 5. 
d) Show that 9 cannot be at any of the corners. (Hint: If say a = 9, then the sums b + c 
and d + g must both be 6. There are not enough candidates left with sum 6.) 
e) Set b = 9. Show that a = 2 and c = 4, or vice-versa. 
f) Set a and c either way (2 or 4), then complete the array. 

These show that the square is unique, except for symmetries (rotating it a multiple of 90 
and/or flipping it.) 

2. a) Write row #5 of “Pascal’s Triangle.” 
b) Approximate 1001/5 by using “Horner’s method” on the equation 
 x5 – 100 = 0. 

4. Number Theory 

In section III.B.5, we alluded to the Diophantine linear system 

 x = 10y + 4 

 x = 21z + 5 

where x, y, and z are required to be integers. Qin Jiushao (13
th

 century, whom Merzbach describes as an 

“unprincipled governor and minister”) dealt with such indeterminate systems in the Mathematical 

Treatment in Nine Sections. (He even treated systems of higher degree, and such geometric odds and 

ends as Heron’s formula.) We can read the above system as asking for an x that simultaneously has 

remainder 4 on division by 10 and 5 on division by 21. Then it falls under the next result. 

Theorem 1. (The Chinese Remainder Theorem) Suppose the natural numbers m, n (and possibly 

others) are pairwise relatively prime (no two have a common divisor). Let r, s (and …) be corresponding 

remainders; that is, 0  r < m, 0  s < n, .... Then there are integers whose remainders are r under 

division by m, s under division by n, .... 

a b c

d e f

g h i

 

O 

36 

O 
c 1 (0, q(0)) 

(1, q(1)) 
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In our example, 10 and 21 are relatively prime. (Check.) We know (Theorem 1 in section III.B.4) 

that we can find integers i and j such that 

 10i + 21j = 1. 

Look at 

 x = 4(21j )  + 5(10i ). 

For division by 10, we have 

 x = 4(1 – 10i ) + 5(10i )  = 10[5i – 4i] + 4. 

Hence x has remainder 4, and 

 y  = [5i – 4i]  

solves the first equation. For division by 21, we have 

 x = 4(21j )  + 5(1 – 21j ) = 21[4j – 5j] + 5. 

Hence x has remainder 5, and 

 z  = [4j – 5j] 

solves the second equation. (Verify this numerically in Exercise 1.) 

In the spirit of Diophantus, we found one solution. In the spirit of Brahmagupta, let us characterize 

them all. There are others. After all, if we add a multiple of 1021 to x, then the sum has the same two 

remainders. That turns out to be the only way to make other solutions. 

Suppose that 

 s = 10t + 4 

 s = 21u + 5 

supplies another solution. We will show that s has to be just x increased by some (possibly negative) 

multiple of 210, t has to be y increased by the same multiple of 21, and u has to be z increased by 

that same multiple of 10. 

Subtract to write 

 s – x = (10t + 4) – (10y + 4) = 10(t – y) and 

 s – x = (21u + 5) – (21z + 5) = 21(u – z). 

The number s – x is divisible by both 10 and 21. Therefore it is divisible by 1021 (Exercise 2a). 

From s – x = (1021)k, we conclude that every solution s is just x plus some multiple 210k. As for 

the rest of the solution, 

 (s – x)/10 = t – y forces  t = y + 210k/10. 

In words, t is y plus the like multiple 21k. At the same time, 

 (s – x)/21 = u – z forces  u = z + 210k/21; 

that is, u is z plus the like multiple 10k. 

Extending the theorem to more divisors depends on just one more principle. 

Check that 5, 21, 22, and 289 are pairwise relatively prime (Exercise 2c). Necessarily, the product of 

any of them is relatively prime to the product of any of the others. For example, 5(21) is relatively 

prime to 22, 289, and 22289 (Exercise 2d). Therefore each is prime to the product of the other 

three. That means there are integer i’s and j’s with 

 21(22)289i5 + 5j5 = 1, 

 5(22)289i21 + 21j21 = 1, 

 5(21)289i22 + 22j22 = 1, 

 5(21)22i289 + 289j289 = 1. 

From all those, we find that 

 r[21(22)289i5]  +  s[5(22)289i21]  +  t[5(21)289i22]  +  u[5(21)22i289] 

has remainders r, s, t, u on division by  5, 21, 22, 289, respectively. (Compare Exercise3.) 
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 Exercises IV.B.4

1. a) Find integers i and j such that 10i + 21j = 1. 
b) Evaluate x  =  4(21j ) + 5(10i), and verify that x has remainders 4 and 5 on division by 10 
and 21, respectively. 
c) Find the smallest positive integer with those same remainder properties. 

2. Show in (a)-(d) that: 
a) If v is divisible by a and b, and a and b are relatively prime, then v is divisible by ab. 
(One approach: prime factorization. A second: Write v = ma = nb and work from there.) 
b) The conclusion in part (a) might fail if a and b are not relatively prime. 
c) The numbers 5, 21, 22, 289 are pairwise relatively prime. (Hint: prime factorization.) 

d) The product 5(21) is relatively prime to 22, 289, and 22289. 

3. a) Find i’s and j’s to make 

 21(22)i5  +  5j5     = 1  (Hint: 321(22) ends in 6, 1 more than a multiple of 5.) 

 5(22)i21  +  21j21  = 1  (Hint: 5(22) = 521 + 5, so 175(22) = 17521 + 85.) 

 5(21)i22  +  22j22  = 1.  (Hint: 5(21) = 522 – 5, so 135(21) = 13522 – 65.) 
b) Evaluate 
 4[21(22)i5]  +  10[5(22)i21]  +  12[5(21)i22] 
and verify that it has remainders 4, 10, 12 on division by 5, 21, 22. 

5. Astronomy 

In China as in Greece, astronomy was important in driving mathematics. That is clear in the very 

title of the Arithmetical Classic of the Gnomon and the Circular Paths of Heaven. We normally think of 

a gnomon as the shadow-casting upright on the face of a sundial, a Chinese invention. However, a tall 

marked gnomon is usable to measure and chart the positions of stars. It can work directly to measure 

elevation, or work via timing to measure longitudinal location. Various courts built observatories with 

gnomons, quadrants (vertical quarter-circles), and other instruments that allowed charting of the skies. 

They used observations to mark the months and the years. A month started when the thin crescent 

Moon first became visible in the dusk after New Moon. The year started with the winter solstice. When 

needed, they intercalated months to reconcile the lunar calendar with the seasons. 

The extensive astronomical records of the Chinese led to two important, considerably later 

discoveries. Chinese records of comets reach back beyond the time of Jesus. They were part of the 

evidence that led Edmond Halley, in 1705, to conclude that a spectacular comet that appeared in 1682 

had been appearing every 76 years or so for more than 2000 years. He inferred that the comet, which 

now bears his name, is a body in orbit around the Sun. Separately, the Chinese recorded a “guest star” in 

1054 CE. It materialized suddenly, a star so brilliant that it was visible in daylight for months. In a few 

years, it faded so much as to disappear from the night. In the 1700’s, Europeans discovered a faint 

“nebula” (Latin for cloud) where the guest star had appeared. It took 20
th

 century photography to reveal 

that the nebula is a growing, glowing shell. The nebula is the expanding gaseous shell of a star that 

exploded. The shell’s rate of expansion indicates that the explosion was the event of 1054. The “guest” 

was an inconceivably brilliant “supernova.” 

 Maya Section IV.C.
Records are scarce for the Americans, the peoples whose lax immigration policies allowed hordes of 

undocumented Europeans to enter the lands on this side. The North Americans remained hunters until 

the encounter with the white men. The Andeans—our name “Incas” actually refers to the rulers, and 
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they ruled only for the century before the Spanish came—had a civilization occupying much of western 

South America. Their empire covered nearly 2000 miles, from above Ecuador into Chile, between the 

mountains and the Pacific. They built cities and connected them with roads. They erected temples and 

citadels oriented to the directions of the solstices and equinoxes. Those sites’ location, construction, and 

orientation evinced understanding of architecture, astronomy, even warfare. But with all this civil 

engineering knowledge, they did not have a written language. Only the remains of their structures give 

us evidence of what they achieved. 

The one group of Americans for whose science we have documents is the Maya of southern Mexico 

and northern Central America. Their monumental architecture—temples, stadia, and the like—still 

survives. Our interest is a set of scroll-like books (codices, plural of codex) that reveal Mayan 

numeration and astronomy. 

The Maya used a vigesimal system, almost. In such a base-20 system, you need digits for 0-19. 

Remarkably, they had a zero symbol centuries before the Indians did. The other digits were rendered 

with marks and 5-aggregates. Thus, 1, 2, ..., 18, 19 looked like 

 , , ..., ///, ///. 

The wrinkle came in the 20’s place. There, the digit was limited to 0-17. The number 

 ///  ///  =  17(20) + 19(1) 

was followed by 

   (zero symbol)  (zero symbol)  =  1(1820) + 0(20) + 0(1). 

The place values were therefore 1, 20, 1820, 1820
2
, 1820

3
, .... (What is special about 1820? See 

Exercise 1 for a related question.) 

The Maya were careful trackers of the celestial wanderers, particularly of the Sun and Venus. 

Tracking the Sun led to accurate measurement of the year. Just like the Egyptians, though, they adopted 

a solar calendar of 365 days and accepted the drift of the seasons forward through the calendar. For 

Venus, they had extensive calculations of its positions, especially the heliacal risings.  

[An astronomical highlight of 2012 was the transit of Venus. The planet crossed the face of the Sun, 

as seen from Earth, for the last time this century. It seems odd that the Maya would not have anticipated 

such events, but I have never seen any mention that they did. I would welcome the reader’s guiding me 

to any source that speaks to the question. 

I would equally welcome indication whether it was coincidence that a Venus transit—they are rare, 

occurring in pairs spanning eight years and separated by 105 or 121 years—should fall in the year the 

Maya predicted for the end of the world. That prediction made me worry I might not finish this book.] 

 Exercises IV.C.1

1. Place-value systems always use the sequence 1, b, b2, ... of powers of a base b. But any 
sequence in increasing order will do. 
a) Argue why any natural number n of US cents can be assembled using the coins 
worth 1, 5, 10, 25, and 100 cents. In symbols, 
 n = 1a + 5b + 10c + 25d + 100e, 

for some nonnegative a  4, b  1, c  2, d  3, e unlimited. 
b) Find an n that can be so expressed two different ways. 
c) Show that the expression is unique if we demand that the sum a + b + c + d + e of the 
“digits” be as small as possible. That sum is the number of coins. Then check that making it 
minimal amounts to demanding b + c < 3. 
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 The Road to Europe Chapter V.

 The World of Islam Section V.A.
Muhammad lived 570-632 CE. Beginning in 610, he preached verses that were recorded as the 

Qur’an, which became the foundation of Islam. During his life, his followers took control of the Arabian 

Peninsula (modern-day Saudi Arabia and the countries to its south). After his death, they embarked on 

an extraordinary campaign of conquest. At its height, the resulting empire reached north to Turkey, east 

through Iraq, Persia, and India nearly to China, west through all of northern Africa to the Atlantic, north 

there to southern Spain, Sicily and other islands, and Greece. 

Aside from extent, the campaign had another remarkable feature. The original conquerors were 

illiterate. They chose to absorb the knowledge and cultures of the conquered. Accordingly, they set 

scholars to translate books from the subjugated lands into Arabic (whose written form such scholars had 

created). They then extended the acquired knowledge into some of the most important scientific and 

mathematical discoveries of the fourteen centuries following Claudius Ptolemy. 

[For the history of Arabic science, the outstanding book is Jim Al-Khalili’s The House of Wisdom. 

There is always difficulty in naming the people of this empire. The word “Arabs” is clearly a 

misnomer, since the empire encompassed Turks, Persians, Berbers, and many other peoples. “Muslims” 

is inaccurate, because the conquerors did not demand conversion to Islam. Not all in the empire knew 

Arabic, but it certainly became the language of the scholars, as Latin became in Europe. For that reason, 

we will follow Merzbach and al-Khalili and refer to “Arabic mathematics and science.”] 

1. The Translations 

In 762, al-Mansur founded the city of Baghdad. Like Alexandria, it soon became an important com-

mercial and cultural center. When paper was brought west from the China end of the empire, 

al-Mansur’s successor established the world’s first mills. Baghdad, again like Alexandria, became a 

capital of science. 

Under Abdullah al-Ma’mun’s rule, 809 to 833, Baghdad acquired the successor to the Museum, 

“The House of Wisdom.” With the House began a golden age of translation that lasted two centuries. In 

fact, the campaign of translation was still going on at the western end, Spain, in the 1100’s. The original 

scholars had translated eastern works, from Persia and India. Al-Ma’mun’s interest in the Elements and 

Almagest led to work on the classics of Greece. From that, we have Ptolemy’s famous work translated to 

Arabic by 845. (Ptolemy wrote two works called Syntaxis, Greek for “collection.” The larger was called 

E Megiste Syntaxis, the Greater Collection. In Arabic translation, it became “The Greatest,” Almagest. 

The Arabic title was not Ptolemy’s idea.) 

By early in the 900’s, Diophantus and Aristarchus had been translated. By around 945, the long 

work on Euclid’s Elements was complete. It is fair to say that much of the works of the Greeks would 

have been lost to us had they not been conveyed by Arabic scholars. 

2. Arithmetic and Geometry 

The greatest influences on Arabic mathematics were Mesopotamia and India. Consequently Arabic 

arithmetic and algebra developed much more than geometry. The arithmetic part was taken over com-

pletely from India. It was through the Muslim world that Indian numeration eventually got to Europe. 

But Ahmad al-Uqlidisi extended the numeration to decimal fractions around 950. Those became useful 

tools for Arabic astronomers, although their widespread use came five centuries later. (See al-Khalili, 

bottom of page 285, and compare with Boyer, page 268.) 

http://www.archive.org/stream/AHistoryOfMathematics/Boyer-AHistoryOfMathematics#page/n284/mode/1up
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In geometry, part of their legacy was carrying Indian trigonometry westward by around 1300. They 

completed our list of trigonometric functions, and even influenced our names for them. [See Boyer on 

the origin of “sine.” But consult also al-Khalili, page 224.] It was not just a matter of outlook and 

names: Our forms of the laws of sines and cosines and of the double- and half-angle formulas were 

proved by Arabic mathematicians. 

One area of Greek-influenced geometry was the attempt to prove the parallel postulate. Recall 

(section III.A.8b) that the question was to deduce the parallel postulate from the other Euclidean 

postulates. Arabic geometers pursued it by working on four propositions: 

a) Parallel lines are necessarily equidistant. In panel (A) of the figure below, we have two lines 

(black) that do not meet and the perpendiculars (red) to the lower line from two points on the upper. 

Prove that the perpendiculars are equally long. 

b) If a transversal cuts two lines so as to form interior angles, on one side, that sum to less than a 

straight angle, then on that side the distance between the two lines reduces to zero. In panel (B), 

angles 1 and 2 add up to less than a straight angle. Prove that the perpendicular (red) reaches zero 

length as point P recedes rightward. 

c) If three angles in a quadrilateral are right angles, then so is the fourth angle. That is the picture in 

panel (C), where one must prove that the remaining angle is a right angle. 

d) If in a quadrilateral, two opposite sides are congruent and perpendicular to a third side, then the 

quadrilateral is a rectangle. In panel (D), the vertical sides are congruent, and they are perpendicular 

to the base. It suffices to prove that the top is congruent to the base, or that it is perpendicular to one 

of the verticals. 

 

(A) (B) (C) (D) 
P 

1 

2 
 

[Boyer ascribes (d) to Omar Khayyam and (c) and (a) to ibn al-Haytham; see both later.] 

The parallel postulate implies each of these. For example, Exercise III.A.8b:2 asked for proof that if 

you assume the parallel postulate, then the equidistance (proposition (a)) follows. The exercise below 

addresses the other three statements. It is harder to prove that each of them implies the postulate, but it 

can be done. They are all, therefore, equivalent to the postulate. However, none of them actually follows 

from the other postulates. The geometers ended up in the same trap as the Greeks, relying for proof on 

other assumptions equivalent to the postulate. 

 Exercises V.A.2

1. Assume the parallel postulate.  
a) Prove propositions (b) and (c). 
b) Prove that in panel (D) of this section’s figure, the top side is congruent to the base and 
perpendicular to the two vertical sides. 

3. Algebra 

Muhammad al-Khwarizmi lived about 800-850. He was a geographer and astronomer of such 

renown as to be invited to head the House of Wisdom. (Think of Eratosthenes at the Library a thousand 

years before.) With that description, you might figure that he contributed to geometry, as he did. He also 

http://www.archive.org/stream/AHistoryOfMathematics/Boyer-AHistoryOfMathematics#page/n294/mode/1up
http://www.archive.org/stream/AHistoryOfMathematics/Boyer-AHistoryOfMathematics#page/n282/mode/1up
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wrote a book on Indian numeration that eventually transmitted “Arabic” numbers (but, oddly, not 

negative numbers) to Europe. (See Boyer.) However, he is best known for creating what came down to 

us as algebra. 

His most important book is called al-Jebr.  Part of it followed Egyptian and Babylonian precedent in 

dealing with geometric questions: areas, land distributions, and the like. It also separated forms of 

equations into cases. But it introduced, for the first time, statements of general methods that led to 

solutions for the cases. The methods are what we now call solution algorithms. Algebra as theory of 

equations—as the study of methods for the production and solution of equations—began with this book. 

[Words like “alcohol,” “almanac,” and “Alberto” evince their Arabic origins by their first two 

letters. Doubtless you have already seen that “algebra” comes from the book, and “algorithm” honors 

the scholar.] 

To illustrate “cases” and “general methods,” consider how we deal with quadratics. What we call the 

“quadratic formula” addresses the general form 

 ax
2
 + bx + c = 0, 

in which a, b, c can be any real numbers. Al-Khwarizmi would not have dealt with that form 

(Exercise 3). He would have turned 

 x
2
 + 12x – 70 = 0 

into x
2
 + 12x = 70. 

The long name of al-Jebr included words for “comparing” or “balancing.” [The long name is al-Kitab 

al-Mukhtasar fi Hisab al-Jebr wal-Muqabala. “That’s easy for you to say, you might be thinking,” adds 

al-Khalili, page 110.] The latter turns up in the idea of adding the same quantity to both sides. We did 

just that to produce the last equation, which requires no subtraction or negative coefficients. That 

equation is the case of the quadratic in which the constant term is isolated. Two other cases would be 

 x
2
 + e = dx (linear term isolated) 

and x
2
 = dx + e (quadratic term isolated). 

(Al-Khwarizmi also considered the three cases in which a term is missing. We can skip those. If the 

quadratic term is not there, then it is not a quadratic equation; if the linear term is missing, the question 

is simply to find a square root; and if the constant term is out—and zero is not considered a solution—

then division reduces the equation to a linear one.) 

For the first case, al-Khwarizmi laid out a method that was already known to the Babylonians. It is 

worth our attention because we still use it. 

Given the form 

 x
2
 + dx = e,  

draw a square (red in the figure below right) of side x. Extend each side by 1/4 of the x-coefficient, 

adding d/4 to each length. Then draw the horizontals and verticals to enclose four rectangles (blue) 

sized d/4 by x. At this point, the colored area is 

 x
2
 + 4(d/4)x  =  x

2
 + dx, 

 which we know to be e. If we enclose the missing corner pieces (by the 

dashed outlines), we add four areas d
 2

/16 and produce a new big square. 

The big square has sides x + 2(d/4) long. That means 

 (x + d/2)
2
  =  e + 4(d

 2
/16). 

We take the root of interest, the positive one, to write 

 x + d/2   =  [e + 4(d
2
/16)]. 

The value of x is clear. 

 

x 

d/4 

http://www.archive.org/stream/AHistoryOfMathematics/Boyer-AHistoryOfMathematics#page/n267/mode/1up
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The method is named for what it does, completing the square. Recall that we teach it in school 

algebra because it proves to be useful here and there, but its first application is in the derivation of the 

quadratic formula. 

A worthy successor to al-Khwarizmi was Umar al-Khayyami, the Persian poet Omar Khayyam 

(1050-1123). His book Algebra ventured beyond al-Jebr into the first systematic treatment of solution of 

cubic equations. He solved them in terms of intersections of conic sections, more reminiscent of the 

methods of Archimedes and Apollonius than of al-Khwarizmi. (See Exercise 5 for illustration.) On the 

other hand, he did organize them into cases. That is considerable work, because there are many cases; 

see Exercise 6. 

 Exercises V.A.3

1. (Boyer) a) Compare, in their effect on learning, the Arabic conquests with the earlier ones 
of Greece and Rome. 
b) Name parts of Greek mathematics that would have been lost to us, except for their 
transmission within the Muslim world. 
c) In what ways would the Crusades have helped, and in what ways hindered, the 
transmission of Islamic math to Christian Europe? 

2. How did the Greek approach to geometry differ from Al-Khwarizmi’s approach to algebra? 

3. (After Boyer) Why did al-Khwarizmi’s algebra not treat quadratics of the form 
 ax2 + bx + c = 0 
(equivalently, x2 + dx + e = 0)? 

4. Solve x2 + 12x = 70 in the (pictorial) style of al-Khwarizmi. Compare with the solution given 
by our quadratic formula. 

5. Put the conic-section approach into modern terms: 
a) Sketch the parabola and hyperbola given by 
 y = x2 + 2x + 10 and y = 20/x. 
b) Argue why they have exactly one intersection. 
c) Argue why the x-value at the intersection is the solution to the cubic 
 x3 + 2x2 + 10x = 20. 
d) Use the graphs to approximate the solution to about 0.1. 

6. We implied that our form of quadratic equation, 
 ax2 + bx + c = 0, 
rearranges into six possible cases of an equation with positive coefficients and positive 
roots. They come from six possibilities: any (single) one of a, b, and c being zero and the 
other two having opposite signs; or one of them having sign opposite that of the other two. 
How many such cases can the cubic 
 ax3 + bx2 + cx + d = 0 

turn into? 

4. The Sciences 

We saw in Section III.C that in the four centuries from Aristarchus to Ptolemy, Greek astronomy 

achieved its greatest triumphs. Copernicus came 1400 years after Ptolemy, and may fairly be said to 

mark the reawakening of astronomy, and science in general, in Europe. In between, the heights of 

science were reached in the Islamic world. The discoveries in chemistry, medicine plus physiology, 

physics, and philosophy represented the limits of human knowledge for at least five centuries. 

http://www.archive.org/stream/AHistoryOfMathematics/Boyer-AHistoryOfMathematics#page/n286/mode/1up
http://www.archive.org/stream/AHistoryOfMathematics/Boyer-AHistoryOfMathematics#page/n286/mode/1up
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We will look at two examples that are by no means the most important discoveries, but that are 

amenable to study by means of our geometry. 

a) optics 

In optics, Arabic discoveries included explanations of vision and the action of lenses. These 

appeared in the Book of Optics of Abu Ali al-Hassan ibn al-Haytham (965-1039). It was the most 

important work in the subject since Ptolemy’s book more than eight centuries earlier. Understanding of 

lenses led to the invention of telescopes. Those finally reached Europe, via the Dutch, in the 1500’s. 

The explanation of lens action relied on a discovery that preceded ibn al-

Haytham, the law of refraction. In the figure at left, we have a ray of light (red) 

from A, entering a body of water at B, continuing to C. It was known that such a 

ray bends (refracts) away from the surface. Science describes the phenomenon 

by reference to the normal, the perpendicular (dashed) to the surface. The ray 

bends toward the normal, so that the angle of refraction  is smaller than the 

angle of incidence . The process works as well in the opposite direction. A ray 

from C surfacing at B refracts away from the normal, to A. At A, our brains 

would interpret the ray as coming in a straight line from C*. That is why a fish or 

stone in the water appears to us to be closer to the surface than it actually is. 

Ptolemy thought that  would be proportional to : / = constant. From considerations of speed of 

propagation (Exercise 1), we now know that the relation is actually 

 sin /sin  = constant. 

(Notice that Ptolemy was approximately right for small angles. For them, /  sin /sin .) The 

“constant” is independent of the two angles, but it depends on the two media. It is the ratio of speed of 

light in water to speed of light in air. If you substitute a body of glass for the water—or for the air—then 

the speed in the corresponding medium changes, along with the constant ratio. What is more, the 

constant depends on the color of the light. Refraction increases (smaller constant) as you move from the 

red end of the spectrum to the violet. 

The relationship is called “Snell’s Law,” after a European. (What else? He was Dutch, living either 

side of 1600.) But the first one to describe it was al-Ala’ ibn Sahl, 600 years before. The description 

took a delightful form; see al-Khalili, page 163. Ibn Sahl described refraction in terms of half-chords. 

(In the figure above, which assumes that AB and BC are equally long, the half-chords would be 

proportional to the perpendiculars from A and C to the normal, just like the sines of  and .) In other 

words, he used the Indian version of trigonometry to render the law of refraction. 

b) astronomy 

In 828, al-Mansur commissioned the establishment of an observatory at Baghdad. It was originally 

meant to extend the observations of Ptolemy, and it produced important star charts. Part of its legacy is 

still in the sky: Many stars, Betelgeuse perhaps most famous, have names from Arabic. From Arabic 

astronomy, there is one discovery we will chase for its geometric value. It is ibn Mu’adh’s calculation of 

the height of the atmosphere. 

In the left half of the figure below, we see Earth (blue) surmounted by a layer of air (lighter blue). 

For an observer standing at P, the line of sight to the horizon is roughly the tangent (red) at P to the 

planet. The tangent reaches the (assumed) top of the atmosphere at Q and continues into space. When 

the Sun is above PQ, there is daylight at P. When Sun’s leading edge reaches PQ, sunset at P begins. 

[Ignore the “sunset illusion.” The atmosphere’s thickness increases as you go down. Hence it refracts the 

light of the setting Sun—and moon, stars, any sky object near the horizon—toward the normal; in a 

 

B 
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word, downward. Our brains, always interpreting the light as coming in a straight line, “see” the Sun 

about ½ higher than it actually is. Since the Sun happens to be ½ across, when the Sun appears to be 

sitting on the horizon, it is actually sitting just below the horizon.] 

In the right half (after al-Khalili, 

page 165), we add the other tangent 

(green) from Q, meeting Earth at R, 

and the lines (dashed) from P, Q, R 

toward the center O of Earth (out of 

the figure). OQ crosses the surface 

at S. The astronomer ibn Mu’adh 

reasoned that while the Sun is above 

QR, it illuminates some of the atmosphere through QS. That makes the western sky display twilight to 

the observer at P. When the Sun gets below (the extension of) QR, it no longer illuminates any of QS, 

and twilight ends for P. He further estimated that twilight ends when the Sun reaches 19 below the 

horizon. In other words, the angle between PQ and QR is 19. 

[The moment when the Sun reaches an angle of depression of 18 is called the end of astronomical 

twilight. It represents a modern convention that serious observing of the night sky can start then. It does 

not happen at a fixed time after sunset. Our (temperate zone) experience is that summer twilight lasts 

longer than winter. The reason is that the summer sun approaches the horizon at a slant; it descends 

slowly below the horizon. The winter sun approaches the horizon at almost a right angle; it descends 

quickly. For his estimate, then, Ibn Mu’adh needed to consider the rate of descent.] 

With those numbers, Ibn Mu’adh ended up with the figure at right. 

The quadrilateral has the technical name “kite”: It has two pairs of 

congruent adjacent sides. OP and OR are congruent because they are 

Earth radii, for which astronomers (including al-Biruni) had calculated 

around 3900 miles. QP and QR are congruent because they are 

tangents from a common point. They also have to be perpendicular to 

the radii, and OQ bisects the angles at O and Q. Since angle PQR is 

 180 – 19 = 161, 

triangle OQP has angle OQP = 80.5 opposite 3900. Therefore 

 3900/OQ = sin 80.5. 

We calculate OQ  3954 miles. That leaves SQ  54 miles for the height of the atmosphere. 

There is no real end to the atmosphere, but beyond that altitude (just past the conventional end of the 

stratosphere) there is less than a millionth of the air. Go back to Section III.C to compare this wonderful 

combination of observation and geometric reasoning to those of Aristarchus and Eratosthenes. 

 Exercises V.A.4

1. In the figure at right, a red beam of light approaches the water at 

angle of incidence , then continues through the water at angle of 

refraction . Its edges AB and GF are parallel, and are perpen-
dicular to the “wavefront” BF. In the time t after the front reaches B, 
the upper edge of the beam travels FG through the air to the water 
at speed V; the lower edge travels BC through the water at speed v; 
and GC becomes the new front, perpendicular to BC. Prove that 

 sin /sin  = v/V. 
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 Medieval Europeans Section V.B.
A great deal of interaction between Christian Europe and the Muslim dominions consisted of war. 

That is true even if you discount the Crusades, 1095 to 1291. The Moors conquered Andalusia, roughly 

the southern quarter of Spain, in 711. They held most of it until the natural stronghold of Toledo was 

recaptured by Alfonso VI in 1085, and were not driven completely out of Spain until 1492. By then, 

they were also out of Sicily (but not Greece, which Turkey ruled until the 1800s.) 

1. The Translations 

During their Andalusian hegemony, the Moors established at Córdoba a center of science in the style 

of Baghdad. Oddly, the forces driving this science were medicine and philosophy, as opposed to the 

astronomy and mathematics of Baghdad. (See al-Khalili, chapter 13. Struik says that the large-scale, 

unirrigated agriculture of the West never provided a stimulus to astronomy.) Its golden age was 

929-1031. Early on, interaction with Europeans began to include scholars. The Christians who journeyed 

to Toledo and Córdoba—and to smaller extents, to Venice (which had much trade with the east) and 

Sicily—recognized the importance of the Arabic texts. They started to translate them into Latin. By 

about 1150, there existed Latin versions of the Elements, Almagest, and most interestingly, al-Jebr.  Its 

translation made an impression on the first great Western mathematician. 

2. Leonardo of Pisa 

[I ask the reader to indulge my preference for his given name. Leonardo of Pisa is generally called 

“Fibonacci.” That is just a nickname meaning “son of Bonaccio.” The last was, in turn, not his father’s 

name, but a nickname meaning “good guy.” Calling him Leonardo of Pisa distinguishes him from the 

later genius Leonardo the Florentine, who of course is almost always called by his place-name, da Vinci. 

I would have far preferred to call Abu Abdullah Muhammad ibn Musa al-Khwarizmi—Muhammad 

from Khwarizm, father of Abdullah, son of Moses—by his given name. That would have created the 

obvious problem that the name is best reserved for The Prophet. The greater problem is that al-

Khwarizmi is terribly important, rates therefore widespread mention, and is universally identified by that 

place-name. Prof. al-Khalili was kind enough to answer my query about naming. He pointed out that 

Leonardo referred to al-Khwarizmi as “Maumeht,” the Latin version of the name, but added a guide that 

I will mostly follow: “I just use the name he is best known by.”] 

a) numeration 

Leonardo lived roughly 1180-1240. His greatest work was the Liber Abaci, 1202. The title might 

better be rendered “Book of Calculation” than “Book of the Abacus,” because one of its themes was the 

advantage for calculation of decimal numeration. Exposed in his travels to the Latin translation of 

al-Khwarizmi’s book on numeration, Leonardo tried to popularize the use of Indian numbers (which had 

been introduced to Europe before.) Perhaps he saw translations of Brahmagupta as well, because he 

dealt with the arithmetic of negative numbers. Those would have been an important tool in commerce, 

since the beginnings of banking and credit (and what you might call currency exchange) trace back to 

Leonardo’s time. 
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b) algebra 

Leonardo’s most famous contribution is the Fibonacci numbers. They form a sequence that begins 

with 1, 1, then sets each subsequent term to the sum of the previous two. Thus, the sequence looks like 

 1, 1, 2, 3, 5, 8, 13, …. 

(You can start with any two numbers. As long as the recursion—the definition of new terms by 

reference to the ones already there—stays 

 fn+2  =  fn+1 + fn, 

the result is called a (generalized) Fibonacci sequence.) 

Leonardo used the sequence in answer to a specific question. Suppose you have a pair of rabbits, and 

they mature to mate at the end of month #1. At the end of every subsequent month, they produce a pair 

of offspring. The descendants then behave like the original: a new pair of young at the end of every 

month, beginning with the second month of life, forever. How many pairs are there at the start of each 

month? The numbers born to that schoolbook exercise turned out to have a remarkable number of 

algebraic properties (Exercises 1-2), plus a huge number of appearances in nature. Except for the two 

exercises, we will not pursue them. The linked article has a wealth of references where you can chase. 

More relevant to our interest is that Liber Abaci introduced to Christian Europe the algebra of the 

worlds of Islam and India. It teaches the methods of al-Khwarizmi, expanding on them to allow negative 

solutions. Recall that the problems of al-Khwarizmi had everyday settings, like questions about land 

areas and inheritances; he did not allow answers of zero or less. Leonardo was pitching commercial 

applications, where negative numbers could be readily interpreted as debts. The Liber also teaches and 

expands on Brahmagupta’s methods in indeterminate equations. 

It even expands on Omar Khayyam’s work on cubic equations. Look at 

 x
3
 + 2x

2
 + 10x  =  20, 

which is sometimes called “Fibonacci’s cubic.” Omar had expressed the opinion that some cubic and 

higher-degree equations could not be solved by combinations of roots. Leonardo drew the conclusions 

of Exercise 4, plus the next step, that even such a combination as 

 (m/n + [k/l
 
]) 

would not solve this equation. Such combinations represent lengths we can construct with straightedge 

and compass. That constructibility is in contrast to the solution in Exercise V.A.3:5; you cannot 

construct parabolas and hyperbolas with just straightedge and compass. 

Sometimes you can construct a solution without solving its equation. We illustrate with 

 x
4
 = 3x

2
 + 11. 

Draw AB of length 11 and extend it 1 past B to C. Find the midpoint M of AC, and draw the circle 

of radius AM centered at M. Erect the perpendicular to AC 

at B, meeting the circle at D and E. The segments and circle 

are red in the figure. By one Euclidean theorem, the products 

of the pieces of intersecting chords are equal. Thus, 

 DB  BE  =  AB  BC  =  11. 

By a second theorem, the diameter AC bisects any chord 

perpendicular to it. Thus, 

 DB = BE. 

That gives us 

 DB
2
 = 11. 

(This is a standard construction; it produces the square root of 

any given length. Compare section III.A.3b.) 

http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Fibonacci/fibnat.html


 Chapter V. The Road to Europe 
Section V.B. Medieval Europeans  2. Leonardo of Pisa 

102 

Now extend BC to make BF = 3/2, half the x-coefficient. Draw DF and extend it past F, to G, by the 

same 3/2. All those additions are in green. In right triangle DFB, we have 

 DF
2
 = (3/2)

2
 + (11)

2
. 

That yields 

 (DG – 3/2)
2
 = 9/4 + 11,  or 

 DG
2
 – 3DG + 9/4 = 9/4 + 11,  and 

 DG
2
 = 3DG + 11. 

If we now construct the square-root length GH, so that GH
2
 = DG, then we have 

 (GH
2
)
2
 = 3GH

2
 + 11. 

We have constructed the solution GH without solving algebraically. (Verify in the figure that GH 

has to be (3/2 + [11 + 9/4]). Compare that with the answer to Exercise 6.) 

Observe that Omar and Leonardo’s thought here is unlike earlier algebraic thought. It does not relate 

to practical problems; cubic equations rarely do. It does not specifically try to create solution algorithms 

or lines of attack. Instead, it focuses on the nature of unspecified solutions. Algebra would move 

increasingly in that direction in the coming centuries. 

 Exercises V.B.2

1. Show that any two consecutive Fibonacci numbers are relatively prime. 
(Hint: Any number that divides f50 and f51, say, must divide all the previous ones also.) 

2. The ratio fn+1/fn of consecutive Fibonacci numbers has a limit L. (Without the calculus 
language: There is a number L with the property that for all large values of n, 

 fn+1/fn  L, 
and the approximation gets closer to exact as n increases indefinitely.) 
a) Figure out L. (Hint: Write the recursion as fn+1 = fn + fn–1.) 
b) Where did we meet that number before? 

3. Consider an organism that is born one day, produces one offspring the next, produces 
another offspring the third, then dies. (This is more realistic than Leonardo’s immortal 
rabbits. Everybody knows that dealing with multiple young is bound to kill you.) The 
offspring do the same. 
a) How many creatures are born on day n? 
b) How many are alive at the end of day n? 

4. For Fibonacci’s cubic equation 
 x3 + 2x2 + 10x = 20: 
a) Show that if the reduced fraction m/n, n > 0, satisfies it, then n = 1. 
(Hint: If n is relatively prime to m, then it is relatively prime to all powers of m.) 
b) Show that no integer satisfies it. 
(Hint: Eliminate negative integers, then 2 and above, then 0 and 1.) 
c) Use (a) and (b) to show that the equation has no rational solution. 

d) Show that the simple irrational (m/n) cannot solve the equation either. 

e) Show that even  m/n + [k/l ]  will not work. 
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5. (Calculus) 
a) Prove that Fibonacci’s cubic must have a real solution. 
b) Prove that it has exactly one solution. 
c) Prove that the solution is between x = 1 and x = 2. 
d) Calculate to approximate the solution to within 0.01. (“Calculate” means you may use the 
arithmetic functions, but not the algebraic or graphics power, of a calculator.) 

6. Use the quadratic formula to find the lone positive solution of 
 x4 = 3x2 + 11. 

3. Oresme 

The most accomplished algebraist of the century after Leonardo was the cleric Nicole Oresme 

[aw-REM; French is wasteful with letters], around 1320-1382. 

a) fractional powers 

One of his original ideas was fractional powers. We can describe these as intermediate proportionals. 

Thus, half powers fit halfway between whole-number powers by 

 a
3/2

/a  =  a
2
/a

3/2
  =  a

5/2
/a

2
  =  a

3
/a

5/2
. 

Notice that the first proportion implies 

 (a
3/2

)
2
 = a

3
. 

That meshes with our definition 

 a
3/2

 = (a
3
), 

which we can match up with (a)
3
. Similarly, 

 a
5/4

/a  =  a
6/4

/a
5/4

  =  a
7/4

/a
6/4

  =  a
2
/a

7/4
 

defines fractional powers of denominator 4 (with such caveats as Exercise 1). 

(Jordan of Nemore, who overlapped with Leonardo, was first to use letters to represent quantities. 

That step is important, because it allows concise statements of algebraic principles. Consider how 

 (a + b)
2
  =  a

2
 + 2ab + b

2
 

renders a general law much more simply than the corresponding words would.) 

b) series 

Oresme made contributions to the study of “infinite sums.” It was known that such things might or 

might not make sense. Clearly we cannot interpret 1 + 1 + 1 + 1 +… as a number. It represents 

something bigger than any fixed number; we would call it infinity. On the other hand, Archimedes had 

“summed” an infinite series in the quadrature of the parabola (Section III.A.6(iv)), and there are good 

reasons to write 

 1 + 1/2 + 1/4 + 1/8 + … = 2. 

For one thing, that “sum” is not bigger than 2. That is, it never reaches 2, because its partial sums 

 1, 1+1/2, 1+3/4, 1+7/8, … 

are all less than 2. At the same time it is not less than 2, because its partial sums eventually exceed 

any number that is less than 2 (Exercise 2). For another, write 

   s = 1 + 1/2 + 1/4 + 1/8 + ….  

Then 

 2s  =  2 + 1 + 1/2 + 1/4 + 1/8 + …  =  2 + s. 

That forces s = 2. (Dividing by the common ratio—multiplying by its reciprocal—is the standard 

way to evaluate the sum of a geometric series. See Exercise 3 for a variation.) 
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On the third hand, manipulating series as though they were actual (finite) sums leads to paradoxes. 

Write 

 t = 1 – 1 + 1 – 1 + ….  

From 

 t  =  1 – (1 – 1 + 1 – 1 + …)  =  1 – t, 

we conclude t = 1/2. If instead we interchange terms 2 and 3, terms 4 and 5, and so on, to write 

 t  =  1 + 1 – 1 – 1 + 1 + 1 – …  =  2 – 2 + 2 – 2 + …  =  2t, 

then we conclude t = 0. We will not settle on a meaning for infinite series for another 500 years. 

Between the extremes, we have the subtle harmonic series 

 1 + 1/2 + 1/3 + 1/4 + …. 

Does that infinity of vanishingly small terms add up to a number, like the 1/2
n
 and (1/4)

n
 progressions? 

Oresme gave an incontrovertible argument that it does not. 

Look at the terms from just after a power of 1/2 until the next power. Of the two terms 1/3 and 1/4, 

the latter is smaller, so that 

 1/3 + 1/4 > 2/4. 

Of the four terms 1/5, 1/6, 1/7, 1/8, the last is least, making 

 1/5 + 1/6 + 1/7 + 1/8  >  4/8. 

Similarly 

 1/9 + 1/10 + 1/11 + 1/12 + 1/13 + 1/14 + 1/15 + 1/16  >  8/16, …. 

Therefore 

 1 + 1/2 + 1/3 + 1/4 + …  >  1 + 1/2 + 1/2 + 1/2 + …, 

and the last is clearly infinite. (See Exercise 4.) 

c) mechanics 

Finally, Oresme investigated a question in the study of motion. (Before him, Jordan had already 

made a great contribution to mechanics [Boyer], and others were studying defects in the mechanics of 

Aristotle.) The subject was the distance covered by an object starting from rest and accelerating 

uniformly, meaning gaining speed at a constant rate. 

Oresme, three centuries before 

Descartes, made the equivalent of a 

graph of the speed vs. time. At 

equally-spaced points (marking 

“longitudes”) along the horizontal time 

line, he raised vertical segments 

(shown black in the figure) whose 

heights (“latitudes”) corresponded to 

the current speed. Since the verticals 

are uniformly spaced in time, the 

heights are also proportional to the 

distances covered during the 

intervening short, equal time spans. 

Viewing the infinity of possible 

segments as constituting the region under the sloping dashed line, Oresme in effect saw the distance as 

an area. [You could make the same argument for any variation in the speed, not just uniform increase. 

Oddly, none of the histories suggests that Oresme made the generalization.] 

http://www.archive.org/stream/AHistoryOfMathematics/Boyer-AHistoryOfMathematics#page/n299/mode/1up
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This geometric interpretation yields a number of conclusions. Add the red letters and horizontal mid-

line GCE to the figure. Triangle CEF is congruent to triangle CGA. Therefore the whole area under AF 

equals the area under the red line. That says the distance covered is the same as would be covered at a 

constant speed equal to the speed BC halfway through the interval (see Merton rule). Furthermore, 

rectangle BDEC has twice the area of triangle ABC, so that the area under CF is three times the area 

under AC. Similarly, continuing the graph to the next subinterval of length BD encloses an area (yellow 

in the figure) five times the area under AC. The distances for consecutive subintervals are therefore in 

the ratios 1: 3: 5: …. That is itself an important discovery, but it also means that the total distances 

 1, 1 + 3 = 4, 1 + 3 + 5 = 9,  1 + 3 + 5 + 7 = 16, … 

are proportional to the squares of the time. Those became Galileo’s discoveries, around 1600, from his 

experiments with falling bodies. 

 Exercises V.B.3

1. Is this true for all real numbers r : 

 (r 3) (which is the definition of r3/2) is the same as ∜(r 6) (definition of r 6/4)? 

2. What is the first power n such that 
 1 + 1/2 + 1/4 + … + 1/2n 
exceeds 1.999 999 999? 

3. Let 
 u = 1 + 1/4 + (1/4)2 + (1/4)3 + …. 
Subtract 1 from both sides, then factor 1/4, to evaluate u. 

4. For what values of n is 
 1 + 1/2 + 1/3 + 1/4 + … 1/n > 1,000,000,000? 
(Hint: Estimate from either Oresme’s argument or from the integral of 1/x.) 

http://www.archive.org/stream/AHistoryOfMathematics/Boyer-AHistoryOfMathematics#page/n303/mode/1up/search/merton
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 Renaissance Europeans Chapter VI.
In the 1400’s, Europe began to assume the leading role in the sciences and mathematics. Boyer 

suggests an interesting interpretation: You could date the beginning of the new age to the 1436 birth of 

Regiomontanus. At that point, Europe was recovering from the disaster of the Plague, commerce was 

fueling relative prosperity, and printing was just a few years away. National states were forming, and by 

century’s end would embark on the Age of Exploration. Having absorbed Arabic scientific knowledge, 

Europe became the center of discovery just as Arabic scientific inquiry was ending. 

In mathematics, the Arabic influence meant that algebra was of far greater interest than geometry. 

 Geometry Section VI.A.
The principal geometric advances came in trigonometry, but two other pursuits came under study. 

Those two were related to problems of capturing three-dimensional features on flat media, like paper. 

1. Trigonometry 

  Regiomontanus trained in astronomy, which of course immersed him in trigonometry. (He took a 

Latin name meaning “King’s Mountain,” because it translated the German name Königsberg, where he 

was born Johann Müller.) His book De Triangulis Omnimodis (“Of Triangles of All Kinds”) included 

many theorems and examples on the solution of triangles. He used properties of right triangles, moving 

toward our approach. (Compare Exercise 3.) 

Regiomontanus saw the potential of the printing press to disseminate mathematical and scientific 

knowledge. Unfortunately he died in 1476 (aged 40), before the appearance of even De Triangulis. Its 

publication (1533) established trigonometry as a separate area of inquiry (and not just a tool of 

astronomy). It appeared in time to come to the attention of Copernicus. He also wrote a trigonometry 

book, obviously influenced by Regiomontanus. Copernicus’s student Rheticus created one of his own, 

Opus Palatinum de Triangulis (“Work on the Science of Triangles,” the name “trigonometry” being in 

the future). It had elements that appeared for the first time: tables of all six of our trig functions, and 

their expression in terms of sides in a right triangle. 

2. Perspective and Cartography 

The development of perspective was driven by art. It is frequently said that the most striking 

difference between medieval and Renaissance art is the rendering of perspective. To take one 

rudimentary part of it, consider the “cubes” drawn at right. 

In this picture, the parallel left and right edges of the closer 

cube’s square top appear to converge (along the dashed 

green lines) toward a “vanishing point,” in the distance 

behind the cube. For the farther cube, the edges also seem 

to converge. But from our point of view—from our 

perspective—they converge not behind that cube, but 

leftward toward the same vanishing point as for the first 

cube. The three-dimensional effect is heightened by the 

coloration of the solids, suggesting that the light is coming 

from the left foreground. Numerous artists wrote on the 

mathematics involved, but its strictly mathematical 

treatment (projective geometry) did not come until the 

late 1600’s. 

 

http://www.archive.org/stream/AHistoryOfMathematics/Boyer-AHistoryOfMathematics#page/n315/mode/2up


 Chapter VI. Renaissance Europeans 
Section VI.A. Geometry  2. Perspective and Cartography 

107 

The other pursuit was cartography. Here the most important name is Mercator (1512-1574. The 

name is Latin for “merchant.” It translates his Flemish surname; he was born Gerard de Cremer.) 

In mapmaking, the problem is to image a solid Earth on a flat sheet. One approach is to define lines 

of latitude and longitude on Earth’s surface, plot a grid of lines on the paper, and represent land features 

on the paper according to their coordinates. It is irreproachable at the scale of tens of miles, satisfactory 

at a few hundred miles. At continental or global scale, however, a grid of equally-spaced lines overstates 

east-west distance. That distortion increases toward the poles. The reason is that Earth’s meridians of 

longitude converge as you go north or south away from the Equator; indeed, they all meet at the poles. 

Look at this Mercator-derived map. Its longitude lines (vertical, at multiples of 15) are equally spaced. 

Therefore it shows Greenland, at its widest, slightly less wide than the northern USA. In reality, that part 

of Greenland is about 760 miles across, the US 2850 miles. 

In the figure, we have a spherical Earth (blue) girdled by the Equator 

and by the circle (“parallel,” green) of latitude 75. The latitude is the 

angle GOE between the line OG, from Earth’s center O to G on the 

parallel, and the plane of the Equator. The Equator (black band) has 

circumference 2(OE). If A is the center of the parallel, then OAG is a 

right triangle. We gauge that the parallel has radius 

 AG  =  OG cos 75  =  OE cos 75, 

giving it circumference (2 OE cos 75). Therefore the map, displaying 

the 75
th

 parallel (first horizontal line below the top of the map) with the 

same length as the Equator, exaggerates the parallel’s length by a factor 

of 1/cos 75  3.86. 

Look again at the map. Measure the width of Greenland along the 75
th

 parallel and the width of the 

Atlantic Ocean along the Equator (sixth horizontal, northern Brazil to Gabon at the western edge of 

Africa). On [my measurements of] the map, the ratio Greenland/Atlantic is about 0.61. On Earth, it 

is about 660 mi/4100 mi  0.16. By those numbers, the map overstates the ratio by 0.61/0.16  3.8. 

Mercator’s fix was to exaggerate north-south distance to the same extent as the east-west. To do that, 

the band of the globe near latitude 1 had to stretch vertically about 1/cos 1, the band near latitude 2 

had to stretch about 1/cos 2, …. (In the language of calculus: Mercator numerically integrated the 

function 1/cos x = sec x.)  Observe that the map’s parallels of latitude (horizontal, also at multiples of 

15) get farther apart with distance from the Equator. 

Therefore, there is still length magnification, increasing toward the top and bottom. Thus, northern 

Greenland is exaggerated (vertically) even more than southern Greenland. But at small scale, the 

horizontal and vertical magnifications are equal. Consequently, proportion (“aspect ratio”) is preserved: 

An Earthly triangle of sides 2 mi, 3 mi, 4 mi is represented on the map by a similar triangle. That means 

angles are preserved. A map with that property is said to be conformal. The property is important to 

mariners. Indeed, “for the Use of Navigators” is part of the first Mercator map’s title. Conformality 

implies that a straight line on the map corresponds to a path of constant heading (compass direction) on 

Earth. Thus, the map's line from Lisbon to where the Equator leaves Brazil, slanting down and left at 

around a 45 angle, depicts a path on Earth whose heading really is 45 south of west. 

(Be careful to distinguish straight lines on the map from travel paths on the planet. Imagine on the 

map the line from Barrow to Nordkapp, from the top of Alaska to the top of Norway. It heads due east 

along the 71
st
 parallel. Spot those places on a globe, though, and you see that the shortest flight path 

between them goes due north, over the North Pole, then due south.) 
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http://www.touchblue.net/zine/wp-content/uploads/2007/02/mercatur.jpg
http://www.touchblue.net/zine/wp-content/uploads/2007/02/mercatur.jpg
http://www.touchblue.net/zine/wp-content/uploads/2007/02/mercatur.jpg
http://www.touchblue.net/zine/wp-content/uploads/2007/02/mercatur.jpg
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 Exercises VI.A.2

1. (Boyer) a) Why did algebra and trigonometry develop more rapidly than geometry during 
the Renaissance? 
b) How do you account for the fact that many medieval and Renaissance mathematicians 
were clerics (like Oresme) and physicians (Rheticus)? 

2. (Boyer) a) Find algebraically the other two sides of a triangle that has one side 5, the 

altitude to that side 3, and those remaining sides in the ratio 2:1. 
b) Given the solution, construct the triangle. 

3. Prove the Law of Sines: In the figure at right, show that 
 (sin A)/BC = (sin B)/AC. 
(Hint: Drop the altitude from C to side AB. The figure does not 
show the general case; it has angles A and B both acute. 
Draw the situation where, say, A is right or obtuse, and prove 
the same relation.) 

4. (Calculus) Sometimes Mercator’s method is incorrectly described as cylindrical pro-
jection. In the figure at left, an endless right circular cylinder 
(dashed red), whose axis and diameter match those of Earth 

(blue), hugs Earth. The point G at latitude  on Earth’s 
surface “projects” onto H, where the extension of OG meets 
the cylinder. After all the surface features are projected, a 
vertical cut along the cylinder opens it to a flat map. 
Show that this description does not match what Mercator did: 

a) Express the height h = HE in terms of  and OE. 

b) Use (a) to find the derivative dh/d. 

c) Add the differential angle d to the latitude. This angle cuts 
off an arc ds long on the circle, and the arc projects to an 
added height dh on the cylinder. Show that the magnification 

dh/ds is sec2 . That is not the magnification sec  required to 
fit the vertical stretching to the map’s horizontal stretching. 

 Algebra: The Cubic and Quartic Equations Section VI.B.
The most dramatic algebraic development of the Renaissance was the solution of the cubic and 

quartic equations. 

In 1545, Geronimo (Girolamo?) Cardano (1501-76) published Ars Magna (“The Great Art”) with a 

partial solution of the cubic.  The trouble was, it was not his solution. Tartaglia (an insult, meaning 

“stammerer,” that the physician Niccolo Fontana chose to take as his name) had found it some years 

before—and Cardano said so—but had chosen to keep it secret. It took all Cardano could do to persuade 

Tartaglia (1500-1557) to confide it to him, under a vow of secrecy. But Tartaglia was not the discoverer, 

either. It had been the discovery of Scipione del Ferro (1465-1526), who had also kept it under wraps. 

Finding out about del Ferro, Cardano decided he was not bound by his promise. Read about the multiple 

imbroglios—and name-calling and challenges, plus much other important mathematics history—in 

Boyer, and most especially in Mario Livio’s The Equation That Couldn’t Be Solved. 
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http://www.archive.org/stream/AHistoryOfMathematics/Boyer-AHistoryOfMathematics#page/n347/mode/1up
http://www.archive.org/stream/AHistoryOfMathematics/Boyer-AHistoryOfMathematics#page/n347/mode/1up
http://www.archive.org/stream/AHistoryOfMathematics/Boyer-AHistoryOfMathematics#page/n327/mode/1up
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1. Reducing the General Cubic 

In the most general form 

 t
 3

 + t
 2
 + t +   =  0 

of third-degree equation, divide by the leading (highest degree) coefficient to make it look like 

 t
 3

 + Bt
 2
 + Ct + D  =  0. 

We then apply a transformation. 

Theorem 1. The substitution t = x – B/3 always eliminates the quadratic (second-degree) term. 

Substituting t = x – B/3 turns the last form into 

 (x – B/3)
3
 + B(x – B/3)

2
 + C(x – B/3) + D  =  0, 

or 

 x
3
 – 3x

2
B/3 + 3xB

2
/9 – B

3
/27 + Bx

2
 – 2BxB/3 + BB

2
/9 + Cx – BC/3 + D  =  0. 

You can see that the only two quadratic terms (red) cancel. (Compare Exercise 1.) The substitution 

leaves us with an equation of the form 

 x
3
 + bx + c = 0. 

Thereby the many possible cases of cubic equation (Exercise V.A.3:6) reduce to just three, just like 

the quadratic. (Remember that we need not bother if either b = 0 or c = 0.) 

As modern types, we gain much by bringing coordinate geometry to this algebra. The graph of 

 y = t
 3

 + Bt
 2

 + Ct + D 

is always an S-curve. There are three possible shapes of S, shown as solid curves in the figure below. In 

panel (a), the graph is going up to the right at the inflection, the point I where it changes from curving 

right to curving left. In panel (b), it momentarily levels off at I. In panel (c), it is going down. In that last 

case, there is necessarily a high point H to the left of I and a low point L to the right. For any of them, 

the inflection is at the place where t = -B/3. For that reason, the substitution x = t + B/3 moves the 

inflection to the place where x = 0. In each of the panels, the dashed blue line is the y-axis for the graph 

of the transformed 

 y = x
3
 + bx + c. 

We do not show the x-axis, but it would be c below I. (See Exercise 2 for all of this.) 

 

I I 

H 

L 

(a) (b) (c) 

going up level going down 

I 
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 Exercises VI.B.1

1. Use the substitution t = x – 2/3 to turn Fibonacci’s cubic 
 t 3 + 2t 2 + 10t  =  20 
into the form 
 x3 + bx + c  =  0. 

2. (Calculus) a) Show that the graph of 
 y = t 3 + Bt 2 + Ct + D 
has an inflection point where t = -B/3. 
b) Show that if b > 0, then the transformed graph 
 y = x3 + bx + c 
has the shape shown in panel (a) of the figure in this section. In particular, show that in this 
case, the graph crosses the x-axis exactly once (so that 
 x3 + bx + c = 0 
has exactly one solution). 
c) Show that if b = 0, then the graph has the shape shown in panel (b). 
d) Show that if b < 0, then the graph has the shape in panel (c), with a high point to the left 
and a low point to the right of the inflection. 

2. Cardano’s Solution in the Definite Case 

We look first at the instances of 

 x
3
 + bx + c = 0 

in which the x-coefficient b is positive. Recall that in this case, the equation has exactly one real 

solution. (Exercise 2 above asks for calculus evidence, but observe that x
3
 increases as x increases. That 

means x
3
 + bx + c also increases with x. Accordingly, if the polynomial is zero at some x, then it must be 

positive to the right and negative to the left. [Why must it be zero at some x?]) Cardano found the one 

solution by substituting x = u – v, subject to the condition that uv = b/3.  

You should immediately ask why such a complicated scheme should work. Just imagine 

that b = 12.3 and the solution is x = 456.789. How can you be sure that among the pairs that satisfy 

uv = 12.3/3, there is one that captures u – v = 456.789? 

Here we give a geometric answer; do Exercise 4 for algebraic 

evidence. Draw the u-v coordinate system as at right. The 

graph of uv = 4.1 is a hyperbola (blue) with branches in 

Quadrants I and III, asymptotic to the two axes. The graph 

of u – v = 456.789 is a line sloping up to the right, 

with u-intercept 456.789. It is clear that the line cannot miss 

the hyperbola. Indeed, it must cross both branches, one high to 

the right of the u-axis, the other way left below the v-axis. 

Those intersections give the required u and v. 

Theorem 1. For the transformed cubic equation 

 x
3
 + bx + c = 0 

with b > 0, the substitution x = u – b/3u always produces the solution. 

 u 

v 

uv = 4.1 

u – v = 

456.789 (4.1, 4.1) 
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First, just make x = u – v. That turns the equation into 

 (u – v)
3
 + b(u – v) + c  =  0. 

Multiplying out yields 

 u
3
 – 3u

2
v + 3uv

2
 – v

3
 + bu – bv + c  =  u

3
 – u(3uv – b) + v(3uv – b) – v

3
 + c  =  0. 

We can reduce the clutter by making 3uv – b = 0. Accordingly, we select v = b/3u. 

We now have 

 u
3
 – v

3
 + c  =  u

3
 – b

3
/27u

3
 + c  =  0. 

We do not want the unknown u in the denominator. Multiply by u
3
 to get 

 u
6
 + cu

3
 – b

3
/27 = 0. 

If that does not seem like progress—trading a third-degree problem for one of degree six—observe 

that the last equation has degree six, but is actually quadratic. It has u
3
 and (u

3
)
2
. The discriminant 

 c
2
 – 4(-b

3
/27)  =  c

2
 + 4b

3
/27 

is clearly positive. Therefore we have the two solutions 

 u
3
  =  (-c  [c

2
 + 4b

3
/27])/2  =  -c/2  [c

2
/4 + b

3
/27]. 

Cardano, like al-Khwarizmi, did not countenance negative solutions. He would have discarded the - 

choice, because it would have given a negative u
3
 (consult Exercise 5). We share no similar 

inclination, but let us humor him for a minute. From u
3
 with the +, we proceed to 

 𝑢 =  √– 𝑐/2 + √𝑐2/4 + 𝑏3/27
3

. 

That does not answer the question. We need to subtract v = b/3u. We have 

 b/3u =  
𝑏

3 √–𝑐/2 + √𝑐2/4+𝑏3/27
3

 . 

Remarkably, we can move that root to the numerator by a sort of rationalization. Multiply numerator 

and denominator by √– 𝑐/2 −  √𝑐2/4 + 𝑏3/27
3

. The result is 

 b/3u =  

𝑏 √–𝑐/2 − √𝑐2/4+𝑏3/27
3

3 √(–𝑐/2)2− [𝑐2/4 + 𝑏3/27]
3

 . 

In that denominator, everything cancels except ∛– 𝑏3 = -b. (Verify the cancellation!) Hence 

 b/3u = – √– 𝑐/2 − √𝑐2/4 + 𝑏3/27
3

 . 

 The solution to the cubic is 

 x = √– 𝑐/2 +  √𝑐2/4 + 𝑏3/27
3

+  √– 𝑐/2 − √𝑐2/4 + 𝑏3/27
3

. 

Let us agree to call that last the cubic formula. It is immediate from this form of it that either choice 

in the  produces the same solution. (Compare Exercise 1.) It also follows that if c is positive, then the 

solution x is negative. In that case, the radicand 

 – 𝑐/2 +  √𝑐2/4 + 𝑏3/27  

is a positive number, evidently with positive cube root. At the same time, 

 – 𝑐/2 −  √𝑐2/4 + 𝑏3/27 

is a negative number with greater absolute value, has therefore a negative cube root of greater absolute 

value than the first one. Hence the two cube roots sum to a negative number. (Compare Exercise 2.) 
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Cardano and his algebraic forebears ignored the forms 

 x
3
 + bx + c = 0  and x

2
 + bx + c = 0 

with positive coefficients, because clearly they have no positive solutions. The quadratic might not have 

negative solutions either, but not so the cubic. It necessarily has one—precisely one—negative solution. 

(For the calculus evidence, do Exercise 6. We will see algebraic evidence in about 90 years.) 

If instead c = -d is negative, then the equation is the case the algebraists would have written as 

 x
3
 + bx = d. 

The evidence from either algebra or calculus points to a positive solution, and the formula confirms that. 

Of the two radicands, 

 d/2 + √𝑑2/4 + 𝑏3/27  

is positive, 

 𝑑/2 −  √𝑑2/4 + 𝑏3/27 

is negative, and the former has greater absolute value. Therefore the sum of their cube roots is positive 

(Exercise 3a). 

. In these, you need a scientific calculator to evaluate the cube roots. Exercises VI.B.2

1. a) Make Cardano’s substitution x = u – v with uv = 6/3 = 2 in the equation 
 x3 + 6x = 88 
and solve for u. 

b) Calculate both possibilities () for u. 
c) Calculate the corresponding values v = 2/u, then the two values u – v. 
d) Check by substitution that (c) solves the equation. 

2. For the equation 
 x3 + 3x + 14 = 0: 

a) Calculate  – 7 + √(– 7)2 + 33/27  and  – 7 − √(– 7)2 − 33/27 . 

b) Calculate their cube roots, then add the roots. 
c) Check that (b) solves the equation. 

3. In Exercise VI.B.1:1, we (you) transformed Fibonacci’s cubic into 
 y = x3 + 26/3 x – 704/27 = 0. 
a) Apply the cubic formula to express the (necessarily positive) solution. 
b) Calculate (a) and compare with the estimate in Exercise V.B.2:5d. (Remember: The 
solution in (a) is offset by 2/3 from the earlier one.) 

4. Show algebraically that there exist solutions to the simultaneous system of equations 
 u – v = 456.789, uv = 4.1. 

5. If b > 0, why is -c/2 – [c2/4 + b3/27] necessarily negative, irrespective of the sign of c? 

6. (Calculus) a) Use the intermediate-value theorem to show that 
 123x3 + 456x + 789 = 0 
has a negative solution. 
b) Use the derivative to show that it can have only one solution. 
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3. Cardano’s Limitation in the Indefinite Cases 

The cases of 

 x
3
 + bx + c = 0 

in which b is negative need separate treatment. There is no better substitution than Cardano’s, which 

may or may not work. It might work to find the lone positive solution; it might work, when there is no 

positive solution, to find the lone negative solution; and it might find the negative one, even though 

there is a positive one. Instead, it might fail, unable to find any solution even when we can tell that there 

must be a positive one and two negatives, or vice-versa. (See Exercise 6.) 

A crucial step in the algebra of the previous section was the solution of a sixth-degree equation by 

means of the quadratic formula. The discriminant of the quadratic was 

  = c
2
 + 4b

3
/27. 

(It is typical to denote a discriminant by , the Greek capital delta.) If  is positive—as was guaranteed 

before, because b was positive—then we continue to the solution of the cubic. If , which we will call 

the discriminant of the cubic, is negative, then the solution process stops. Notice the important nature 

of that inference. We conclude that the solution process fails, not that the cubic has no solution. 

In developing the formula to solve the quadratic 

 ax
2
 + bx + c = 0, 

we divide by a and complete the square to write 

 (x + b/2a)
2
  =  -c/a + b

2
/4a

2
  =  (b

2
 – 4ac)/4a

2
. 

This equation is equivalent to the original: It has the same solutions. If b
2
 – 4ac < 0, then the last 

equation has no real solution. We justifiably conclude that the original has no real solution. 

When we apply the quadratic formula to the Cardano substitution, a negative  does not imply that 

the cubic has no solution. A cubic equation must have a real solution. Negative  simply blocks the 

Cardano approach to solving the cubic. 

The discriminant being so important, we organize our survey—which we undertake with examples 

instead of a bunch of symbols—by the sign of . 

a) zero discriminant 

A cheap way to make  = 0 is to take b = -27. (Taking b = -3 is a little too economical.) Then c has 

to be 54. (Verify.) 

For c = -54, our equation is 

 x
3
 – 27x – 54 = 0. 

The cubic formula gives 

 x = √– 𝑐/2
3

 + √– 𝑐/2
3

  = 6. 

That means x – 6 is a factor of the cubic, for a reason that we will see in the future. From there, the 

factoring is easy. The other factor has to include x
2
 and 9. Thus, 

 x
3
 – 27x – 54  =  (x – 6)(x

2
 + ? + 9). 

The middle term in that second factor has to multiply by the first x to eliminate the -6x
2
 term that the 

product already displays. We deduce 

 x
3
 – 27x – 54  =  (x – 6)(x

2
 + 6x + 9)  =  (x – 6)(x + 3)

2
. 

That factorization is not an accident. If  = 0, then x
3
 + bx + c has to be the product of the first-

degree factor  (𝑥 − 2 √– 𝑐/2
3

)  and the perfect square  (𝑥 + √– 𝑐/2
3

)

2

 (Exercise 4). 
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From the factorization, we see that x
3
 – 27x – 54 has a unique positive root at x = 6 and a unique 

negative one at x = -3. (We will mostly stick to the language “the equation has a solution” and “the 

polynomial has a root.”) However, because the factor (x + 3) appears to the power 2, we say that x = -3 

is a double root or a root of multiplicity 2. Under this usage, we say that the cubic has one positive 

root and “two negative roots.” 

Now view the graph, in the figure at right. From the factoring, we 

can see that x
3
 – 27x – 54 is positive rightward from x = 6 and negative 

leftward, except zero at x = -3. Knowing the general shape of such a 

cubic, we sketch at right the graph of 

 y = x
3
 – 27x – 54. 

Notice that the graph is tangent to the x-axis at the double root. 

In this situation, we have seen, Cardano’s method captures the simple root and not the double. It 

does the same if c = +54, even though then the captured root is negative (Exercise 1). 

b) positive discriminant 

To make  = c
2
 + 4b

3
/27 positive, we can simply take the previous example and boost the absolute 

value of c. Accordingly, we examine 

 x
3
 – 27x – 90 = 0. 

The cubic formula gives 

 x  =  √45 + √452 − 272
3

+ √45 − √452 − 272
3

  

     =  ∛81 + ∛9    6.4. 

Factoring is out of the question, but graphing is easy. The graph of 

 y = x
3
 – 27x – 54 (previous figure) 

looks like the dashed curve at right. Hence the current cubic 

 y  =  x
3
 – 27x – 90  =  (x

3
 – 27x – 54) – 36 

graphs as the solid curve. The negative root has disappeared, and the lone positive root is further to 

the right. (Compare Exercise 2, where the positive root disappears and there is a lone negative root.) 

Thus, when  > 0 with b < 0, Cardano’s method finds the one real root, on either side of zero. 

c) negative discriminant 

Stick with c as our guide. We can make  negative in our examples by reducing |c|. Examine 

 x
3
 – 27x + 46 = 0. 

For this one, 

  = 46
2
 + 4(-27)

3
/27 = -800. 

We cannot complete Cardano’s process. 

Consider the graph of   

 y = x
3
 – 27x + 46. 

Calculation gives y = 46, 20, 0, -8 when x = 0, 1, 2, 3, respec-

tively. Without calculating, we see that y is high and positive 

when x = 10, low and negative when x = -10. The graph 

(heavy black in the figure at right) must cross the x-axis once 

between x = -10 and x = 0, again between x = 0 and x = 3 (we 

know where), and a third time between x = 3 and x = 10. It lies above the graph (dashed red) whose 

upper turning point is at the x-axis, and below the one (dashed blue) with lower turn at the x-axis. 

In this case, the original equation has three distinct roots, yet Cardano’s method is blind to them all. 

 

O 

-3 6 -54 

 

O 
-3 6 

-54 

-90 

 

O 
-3 3 

-54 

-90 
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Revisit our question why the substitution x = u – v should capture a solution if uv has to be b/3. 

In VI.B.2, where b was  positive, we saw that the uv-graph given by 

 u – v = (the solution) 

had to intersect the graph with uv = b/3. Now we have b = -27. The hyperbola 

 uv  =  b/3  =  -9 

(dashed curve at right) has its branches in Quadrants II and 

IV. You can see in the figure three possibilities: The line 

 u – v = constant 

might cross the hyperbola (black line), just touch it (blue), or 

miss completely (red). 

The borderline (“touch”) case is precisely the boundary 

between the substitution’s success and failure:  = 0. When 

we made 

 c
2
 + 4b

3
/27  =  0 

by taking c = -54 (section (a)), we found the solution to be 

 x  =  u – v  =  6. 

The graphs of 

 u – v = 6 and  uv = -9 

meet only at (v, u) = (-3, 3) (the figure and Exercise 3a). At that point, the hyperbola has a 45 incli-

nation, same as the line; the two graphs are tangent. The substitution produces unique u and v. 

When we took c = -90 (section (b)) to make  positive, we found the solution 

 x  =  u – v    6.4. 

The line u – v = 6.4 meets the hyperbola uv = -9 at two places (figure and Exercise 3b). Just as 

in VI.B.2, when the substitution produces two values of u, the resulting two values of u – v match. 

Finally, in our current setting of  < 0 with c = 46, we see that x  =  u – v  =  2 is a solution of the 

cubic equation. There are plenty of places where u – v = 2, but none simultaneously satisfies uv = -9 

(figure and Exercise 3c). Therefore Cardano’s substitution cannot find solutions to the cubic. 

 Exercises VI.B.3

1. For the equation 
 x3 – 27x + 54 = 0: 
a) What solution does the cubic formula give? 
b) In view of (a), how does the polynomial factor? 
c) What is the uncaptured, positive double root? 
d) Sketch the graph of 
 y = x3 – 27x + 54. 
Check that this one is the graph in the text, lifted by 108; that is just enough to move the 
text’s low point, from y = -108 when x = 3, up to the x-axis. 

2. a) Apply the cubic formula to 
 x3 – 27x + 90 = 0 
to find a solution. 
b) How does the graph of 
 y = x3 – 27x + 90 
compare with the one in Exercise 1? Use the graph to explain why the solution (a) is 
negative and left of x = -6. 

 
u 

v 

uv = -9 

u – v = 2 

(-3, 3) 

u – v = 6.4 

u – v = 6 
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3. Solve each (simultaneous) system: 
a) u – v = 6 and uv = -9 
b) u – v = 6.4 and uv = -9 
c) u – v = 2 and uv = -9. 

4. a) Show that if c2/4 + b3/27 = 0, then 

 x3 + bx + c = (𝑥 − 2 √– 𝑐/2
3

) (𝑥2 + 2 √– 𝑐/2
3

 𝑥 + √𝑐2/4
3

), 

and the last factor is a perfect square. 
b) Show that if b2 – 4ac = 0, then 
 ax2 + bx + c = a(x + b/2a)2. 
That makes x = -b/2a a double root of the quadratic polynomial. 

5. We know that the line 
 u – v = constant 
might miss the hyperbola uv = -9. But 
 u + v = constant 
slopes down to the right; it cannot possibly miss. Why do we not use the substitution 
 x = u + v, subject to the requirement uv = -9? 

6. (Calculus, although algebra will also serve) When b is negative, why is it impossible for 
 x3 + bx + c = 0, 
to have three positive roots, or three negative roots? 

4. Bombelli’s Solution 

It took an engineer to show that the seeming failure of Cardano’s method was, let us say, imaginary. 

In doing so, Rafael Bombelli (1526-1572) introduced a whole new world of numbers. 

a) the quadratic puzzle 

Cardano had considered this question: Find two numbers whose sum is 10 and whose product is 40. 

To satisfy the first condition, represent the numbers by x and 10 – x. To meet the second, write 

 x(10 – x) = 40,  and rewrite 

 x
2
 – 10x + 40 = 0. 

The discriminant is 10
2
 – 4(40) = -60. We conclude that there is no solution. (See the graphical 

evidence in Exercise 1.) 

Ignore the negative discriminant, and apply the quadratic formula anyway. Write 

 x = (10  -60)/2. 

Cardano “toyed” with such expressions (Boyer’s word), but called them “sophistic”. Recall that this was 

a man who was unhappy when forced to use negative numbers, which he called “fictitious.” Bombelli 

chose instead to treat them like numbers. 

Assume they do work like numbers. Then their sum is 

 (10 + -60)/2 + (10 – -60)/2  =  20/2  =  10, 

because they have a common denominator, the like terms 10 and 10 add up, and the like terms -60 

and --60 cancel. Also their product is 

 [(10 + -60)/2] [(10 – -60)/2]  =  [10
2
 – (-60)

2
]/4  =  [100 – -60]/4  =  40, 

because sum times difference is always the difference of squares, and squaring the square root gives 

the radicand. Therefore the two “numbers” do answer the question. 

http://www.archive.org/stream/AHistoryOfMathematics/Boyer-AHistoryOfMathematics#page/n330/mode/1up
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Recall now our rule (section IV.A.3): Before you get to call things “numbers,” you must specify how 

to do their arithmetic. There is no problem with, say, 

 (10 + -60)/2 – (10 – -60)/2  =  -60, 

because the radicals are like. What about -25 + -36? The answer is to make them somewhat like. 

These things are supposed to work like real numbers. That would mean  

 -25 = 25 -1 and -36 = 36 -1. 

Therefore we can at least combine 

 -25 + -36  =  5-1 + 6-1  =  11-1. 

Similarly 

 -25 + -60  =  (5 + 60)-1; 

5 + 60 is a perfectly good real number. Consequently, we do not need to work with square roots of 

all negatives, just with -1. 

b) the arithmetic of complex numbers 

Let us switch now to modern idiom. We represent -1 by i, a notation that came 200 years after 

Bombelli. Then the expression a + bi represents a complex number, a name from even later. This i is a 

creature, an entity, or finally “a number” characterized by two properties: 

1. It is not a real number. Therefore we may not combine it with real numbers. Thus, 3 + i cannot 

combine into a single term, and 3i is simply 3i; and 

2. We may multiply it by itself, and the product is -1. 

Notice that i and -i are unequal. If i = -i were true, then addition would give us 2i = 0. Those two 

numbers cannot be equal, because their squares are -4 and 0. 

Complex addition, subtraction, and multiplication are straightforward. 

We do addition and subtraction according to like terms: 

 (a + bi)  (c + di)  =  (a  c) + (b  d)i. 

Multiplication follows the distributive law: 

 (a + bi)(c + di)  =  ac + adi + bci + bdi
2
. 

The last appears to introduce a new element, but of course i
2
 = -1. The product takes the right form, 

 (a + bi)(c + di)  =  (ac – bd) + (ad + bc)i. 

We do division by a kind of rationalization. 

(We should call it “real-ization.”) Facing 

 (a + bi)/(c + di), 

multiply numerator and denominator by c – di, then simplify: 

 
𝑎+𝑏𝑖

𝑐+𝑑𝑖

𝑐−𝑑𝑖

𝑐−𝑑𝑖
  =  

(𝑎𝑐+𝑏𝑑)+(𝑏𝑐−𝑎𝑑)𝑖

𝑐2−𝑑2𝑖2   =  
𝑎𝑐+𝑏𝑑

𝑐2+𝑑2  +  
𝑏𝑐−𝑎𝑑

𝑐2+𝑑2  i. 

That produces the needed form. Notice that the final fractions are legal; c
2
 + d

 2
 is positive, unless c 

and d are both zero, in which case the original division was illegal. (See Exercise 2.) 

Given c + di, c – di is called its (complex) conjugate. (What is the conjugate of c – di?) It is 

universal to symbolize a complex number’s conjugate by use of an overbar. Thus, if z = c + di, then 

 𝑧̅  =  𝑐 +  𝑑𝑖̅̅ ̅̅ ̅̅ ̅̅ ̅  =  c – di. 

One important property of conjugation is that it is compatible with the arithmetic operations. That is, 

 𝑧 +  𝑤̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝑧̅ + �̅�, 𝑧 −  𝑤̅̅ ̅̅ ̅̅ ̅̅  = 𝑧̅ – �̅�, 𝑧𝑤̅̅ ̅̅  = 𝑧̅ �̅�, 𝑧/𝑤̅̅ ̅̅ ̅ = 𝑧̅/�̅�. 

In words, the conjugate of a sum is the sum of the conjugates, and similarly with difference, product, 

and quotient (Exercise 3). 
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Finally, there is some associated vocabulary. Given z = c + di, we call c the real part of z, d  the 

imaginary part of z. If d = 0, we say z = c is real; if instead c = 0, we say z = di is (purely) imaginary. 

Notice that the imaginary part of z = c + di is not imaginary; it is the real number d. More important, do 

not describe a real number as “not complex.” Every real r = r + 0i is a complex number with zero 

imaginary part, just as a square is a rectangle of a special type. 

b Exercises VI.B.4

1. a) Sketch the graph of 
 y = x(10 – x). 
b) Find the coordinates of the highest point on the graph, to determine that x(10 – x) cannot 
reach as high as 40. (Calculus is not needed; algebra can answer.) 

2. a) Evaluate (2 + 3i) + (4 – 5i),  (2 + 3i) – (4 – 5i),  (2 + 3i)(4 – 5i),  (2 + 3i)/(4 – 5i). 
b) Verify that your quotient times (4 – 5i) gives (2 + 3i). 

3. a) For the sum, difference, and product in Exercise 3a, show that the conjugate of the result 
is the sum, difference, or product of the conjugates. 
b) Show that the conjugate of a cube is the cube of the conjugate. 

c) extending Cardano 

Bombelli’s book Algebra presented the rules for operating with the new numbers. With the rules, he 

gave a way to interpret the cubic formula when it “failed” to work. 

View our example cubic, 

 x
3
 – 27x + 46 = 0. 

Accepting complex answers, we take from the cubic formula 

 x = √−23 + √−200
3

+ √−23 − √−200
3

. 

We will apply Bombelli’s reasoning to this example and leave to Exercise 2 the actual cubic he took up 

from Cardano. 

Write  (-23 + -200)  as  (-23 + 10i2). (Writing 10i2 is better than 102i, because the latter looks 

too much like 10[2i].) Its cube root would be a complex (a + bi) with 

 -23 + 10i2 = (a + bi)
3
 

   = a
3
 + 3a

2
bi + 3a(bi)

2
 + (bi)

3
 

   = (a
3
 – 3ab

2
) + i(3a

2
b – b

3
).   (Verify!) 

To find the cube root, we need only solve the simultaneous equations 

 -23 = a
3
 – 3ab

2
 

 102 = 3a
2
b – b

3
. 

We have made the trouble considerably worse. We need a different way. 

Bombelli made two observations. One was that 

 -23 + -200  =  -23 + 10i2  and  -23 – -200  =  -23 – 10i2 

are conjugates. It follows that their cube roots are conjugates, because by Exercise 3b above, if 

 -23 + 10i2 is the cube (a + bi)
3
, 

then its conjugate 

 -23 – 10i2 is the cube (a – bi)
3
. 

Second, and more important, he already knew that the cube roots add up to the solution x = 2. From 

 (a + bi) + (a – bi) = 2, 

he deduced a = 1. 
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Now the hunt for the cube roots is half-done. We want 

 -23 + 10i2  =  (1 + bi)
3
  =  (1 – 3b

2
) + i(3b – b

3
). 

(Verify that this result comes from the line marked “(Verify!).”) For that to happen, we need 

 -23 = 1 – 3b
2
. 

That relation allows 

 b  =  8  =  22. 

Simultaneously, we need 

 102 = 3b – b
3
. 

That one forces b = -22. (Use Exercise 3a as a check.) We therefore have 

 x  =  √−23 + √−200
3

+ √−23 − √−200
3

  =  (1 – 2i2) + (1 + 2i2)  =  2. 

Bombelli’s method, operating on these new numbers, produces the old solution to the cubic. 

d) extending Bombelli 

Of the cube roots of (-23 + 10i2)—the complex numbers (a + bi) satisfying the equation 

 -23 + 10i2 = (a + bi)
3
— 

Bombelli found the one that has real part a = 1. We saw in (c) that this one equation is equivalent to the 

real-number system 

 -23 = a
3
 – 3ab

2
 

 102 = 3a
2
b – b

3
. 

Bombelli could not solve it, and we are not about to try. Nevertheless, the degree of the system suggests 

that there might be other answers. We will eventually see that every nonzero complex number has two 

distinct square roots, three cube roots, four fourth roots, …. In fact, we will learn to approximate them. 

Here we simply state the other cube roots that those future methods will estimate (or even evaluate): 

 z = (-1/2 + 6) + i(2 + 3/2)  and  w = (-1/2 – 6) + i(2 – 3/2). 

With our current knowledge, we cannot determine those roots. Checking them, however, is just 

complicated arithmetic. The real part of z
3
 is 

 [-1/2 + 6]
3
 – 3(-1/2 + 6) (2 + 3/2)

2
 

  = [-1/8 + 36/4 – 18/2 + 66] + (3/2 – 36) (11/4 + 6) 

  = (-1/8 – 9 + 33/8 – 18) + 6(3/4 + 6 + 3/2  – 33/4) 

  = -23 + 06 = -23. 

The imaginary part is 

 3 (-1/2 + 6)
2
 (2 + 3/2) – [2 + 3/2]

3
 

  = (25/4 – 6) (32 + 33/2) – [22 + 33 + 92/4 + 33/8] 

  = 2(75/4 – 17/4)  +  3(75/8 – 27/8)  +  12(-3)  +  18(-3/2) 

  = 582/4  +  63  +  23(-3)  +  32(-3/2) = 102. 

Verifying w
3
 is the same arithmetic and just as much fun; we skip it. But consider Exercise 2d. 

Refocus on the example 

 x
3
 – 27x + 46 = 0. 

Substitute z and its conjugate for the cube roots in the cubic formula, to write 

 x  =  z + 𝑧̅  =  2(-1/2 + 6). 

 That gives us the solution x = -1 + 26, which you can check in Exercise 3b. Using w instead, we get 

 x  =  w + �̅�  =  2(-1/2 – 6). 

That spots the third solution, x = -1 – 26 (Exercise 3c). Cardano’s method is complete (it always gives 

all the solutions) when you work with Bombelli’s newfangled numbers. 
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[Struik (p. 92) makes an interesting point. In teaching algebra, we typically introduce complex 

numbers to treat quadratics with no real solutions. This is striking, given that the numbers arose in the 

treatment of cubics that were known to have real solutions.] 

d Exercises VI.B.4

1. (after Boyer) In what specific way did the solution of the cubic lead to the development of 
complex numbers? 

2. For the cubic equation 
 x3 = 15x + 4: 
a) Write the solution given by the cubic formula. 

b) Show that the two cube roots in (a) can be given by 2  i. 
c) What solution does (b) imply? Check that it solves the equation. 

d) Show that the two cube roots in (a) can also be given by (-1 – [3]/2)  (-1/2 + 3)i. 
[Hint: Skip this, unless you have excess spare time. But do (e).] 
e) What solution does (d) imply? Check that this number also solves the equation. 

3. a) Verify that 

 (1 – 2i2)3 = -23 + 10i2. 

b) Verify that (-1 + 26) solves x3 – 27x + 46 = 0. 

c) Verify that (-1 – 26) also solves x3 – 27x + 46 = 0. (Is there a shortcut?) 

5. Ferrari and the Quartic Equation 

Lodovico (or Luigi) Ferrari produced a method for solving equations of fourth degree. It had general 

elements in common with the method for the cubic. It began with a simple translation to eliminate one 

term. (For the cubic, it had been x = t + b/3 to eliminate the quadratic term; for the quartic, x = t + b/4 

eliminates the cubic term.) It needed to consider separate cases. It used manipulations, introduction of a 

second variable, and further transformations to make the solution come down to solving a cubic 

equation. We will not describe his approach, even in words. A verbal description including some algebra 

is in Boyer, and a well-detailed algebraic treatment is on Wikipedia®. 

It makes sense that Ferrari (1522-1565) reduced the quartic question down to cubic size, just as 

Cardano made solving the cubic come down to solving a quadratic. The odd thing is that the latter came 

later. Ferrari’s solution, which Cardano identified as such, was ready before the Ars Magna came out. It 

had to wait for the solution of the cubic to be published. 

 Viète and the Evolution of “Algebra” Section VI.C.
Recall that the earliest mathematical thought we could call “algebra” was tied to practical problems 

about the distribution of foods, inheritances, land, and the like. Its methods were specific, sometimes 

geometric. In the hands of al-Khwarizmi, it retained its practical use, but became oriented toward 

general methods for solution of equations. With the progression to cubic and quartic equations, it 

became less attached to everyday problems; the solution methods were all that mattered. 

You can see that the obvious next step would be solution of the quintic. With that, algebra would 

separate further from questions related to physical objects. However, we do not have to go that far. 

Already in Bombelli’s willingness to deal with complex numbers—which you could not represent even 

by directed lengths, as you can do with negative numbers—we have a completely new outlook. It would 

be three centuries before a physical use, the analysis of electrical oscillations, would appear for complex 

numbers. 

http://www.archive.org/stream/AHistoryOfMathematics/Boyer-AHistoryOfMathematics#page/n347/mode/1up
http://www.archive.org/stream/AHistoryOfMathematics/Boyer-AHistoryOfMathematics#page/n330/mode/1up
http://en.wikipedia.org/wiki/Quartic_function
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Emblematic of the emerging view of what constituted algebra was François Viète (1540-1603). 

Viète foreshadowed what was to come in a number of ways. For one thing, he was a Frenchman. For 

centuries, European mathematics had come largely from the Italian cities. (Remember that there was no 

“Italy” until 1871.) Venice was the port of entry for much of Arabic knowledge. Leonardo was from 

Pisa. Even more remarkable was the University of Bologna. Both del Ferro and Cardano taught there. So 

later would Cavalieri. Copernicus studied there. In the 1600’s, France would become preeminent in the 

development of mathematics. For another thing, Viète was a lawyer. Training in the law would begin to 

yield mathematicians, the way training for the church or medicine once did. (See Exercise 1.) 

1. Parameters vs. Variables 

Recall that Jordanus had used letters to represent quantities. Viète made extensive use of letters, but 

one thing he did was new and important. He used vowels for what we call “variables” and consonants 

for what we call “coefficients.” This achieved a separation of variables from “parameters.” 

(In ordinary discourse, “parameter” often means “limit,” in the sense of boundary or restriction. The 

parameters of a contract, for example, limit what each side is allowed to do. In math, parameters are 

unspecified numbers whose assignment decides which specific example of something is at hand.) 

The distinction made it possible to talk about or work with general categories of algebraic objects. 

We had such discussion, albeit with different letters. For example, we looked at “the general quadratic 

equation” or “general form of the quadratic equation” 

 ax
2
 + bx + c = 0. 

This (“three-parameter” form) is a simple, compact way to symbolize the whole class of quadratic 

equations. In our use, we followed the custom to “let x be the unknown.” The parameters a, b, and c 

were understood to be unspecified fixed numbers, whose specification would yield a particular equation. 

Since the parameters of a general equation fix what specific equation is under study, they decide the 

solutions. Evidently, then, they must carry all the information about the equation. Thus, in the general 

quadratic form, the specification a = 2, b = 3, c = 4 gives 

 b
2
 – 4ac  =  9 – 4(2)(4)  <  0. 

That tells us the corresponding quadratic equation 

 2x
2
 + 3x + 4 = 0 

has no real solution. Similarly, for our (“two-parameter”) transformed cubic 

 x
3
 + bx + c = 0, 

we can tell from the sign of c
2
 + 4b

3
/27 how many real solutions there are, even if we cannot find them.  

2. Relationships Between Solutions and Coefficients 

The coefficients carry all the information about the equation. Hence they must somehow be related 

to the solutions. Viète was first to write about those relationships. 

Look at the quadratic case first, because then we can explicitly write the solutions. If 

 r  =  (-b + [b
2
 – 4ac])/2a and s  =  (-b – [b

2
 – 4ac])/2a, 

then we can see that the sum and product of those solutions are 

 r + s  =  -2b/2a  =  -b/a and rs  =  (b
2
 – [b

2
 – 4ac])/4a

2
  =  c/a. 

Notice that those relations hold even if the two solutions are complex, which the coefficients are not. 

They even hold if the “two” solutions are one (double root of the polynomial; see Exercise 2b). 

The situation is more interesting for our cubic. 
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Theorem 1. If u and v are two distinct solutions of 

 x
3
 + bx + c = 0, 

then 

 u
2
 + uv + v

2
 = -b and uv

2
 + u

2
v = c. 

Viète was old-fashioned enough to confine his attention to positive coefficients. His form would 

have been x
3
 + c = dx, with positive c and d. He also eschewed negative solutions, never mind complex 

ones. But we, as usual, take on all comers as long as b and c are nonzero. 

To say that u and v are solutions is to say that 

 u
3
 + bu + c = 0  and v

3
 + bv + c = 0. 

Subtract and factor to get 

 u
3
 – v

3
 + bu – bv  =  (u – v)(u

2
 + uv + v

2
) + b(u – v)  =  0. 

Because (u – v) is not zero, we may legally divide by it to get the first relation. (See also 

Exercises 3 and 2b.)  

The subtraction eliminated c. Eliminate b by writing 

 u
3
 + c = -bu and v

3
 + c = -bv, 

then dividing. From 

 (u
3
 + c)/(v

3
 + c)  =  -bu/-bv  =  u/v  (Why are those divisions legal?), 

we cross-multiply to get 

 u
3
v + cv  =  uv

3
 + cu. 

Rearrange and factor to find  

 u
3
v – uv

3
  =  uv(u

2
 – v

2
)  =  uv(u + v)(u – v)  

      =  cu – cv  =  c(u – v). 

The second relation follows. 

Notice that in this argument, we did not employ any knowledge of what the solutions are or how to 

find them. For that matter, we did not so much as evince interest in finding them. Viète was first to 

separate algebraic thought into what we might call three phases. The first is the part in which a problem 

or verbal description is turned into one or more equations. Thus, we might turn al-Khwarizmi’s “a 

square and four times its side sum to 60” to 

 x
2
 + 4x = 60. 

Second is reasoning about how algebraic quantities are related. We did that just above to relate the 

(unstated) roots. We had done it before with, for example, arguing why you can eliminate the square 

term in a general cubic equation. This phase is important for more than its equation-solving value. It 

adds to algebra a deductive component that had not been there in, say, al-Khwarizmi, and that moved it 

closer to the methods of geometry. Third phase is the algorithmic part, in which we do whatever it takes 

to produce those values of the unknown that make the equation true. 

Still, we could use the relations—let us call them Viète‘s equations—to find the remaining 

solutions, provided we know one of them. (Check out Exercise 4.) 

Go back to our 

 x
3
 – 27x + 46 = 0  (sections VI.B.4c and d). 

We saw immediately that u = 2 is one solution. Any other solution v has to satisfy 

 2
2
 + 2v + v

2
 = 27 and 2v

2
 + 2

2
v = 46. 

The two are equivalent equations. By the quadratic formula, they yield 

 v = (-2  [4 + 92])/2 = (-2  46)/2 = -1  26. 

Those are the solutions we produced from thin air in VI.B.4d, then verified in Exercise 3 there. 
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 Exercises VI.C.2

1. Why would the law become a source of mathematicians in the seventeenth century, but not 
before? 

2. Assume that r and s are two distinct solutions of 
 ax2 + bx + c = 0. 
a) Mimic the argument from Theorem 1 to show, without explicitly writing the values of r 
and s, that they satisfy 
 r + s = -b/a and rs = c/a. 
b) Suppose r = s is a double root of the quadratic. Do 
 r + s = -b/a and rs = c/a 
still hold? (Hint: Exercise VI.B.3:4b.) 

3. Do Viète’s equations remain valid if u = v is a double root of 
 x3 + bx + c = 0? 
(Hint: Exercise VI.B.3:4a.) 

4. In Exercise VI.B.4d:2, we met Cardano’s cubic 
 x3 = 15x + 4, 
for which x = 4 is evidently a solution. Use Viète’s equations to find the other two solutions. 
Match them against the one solution given back there. 

3. Symmetry of the Relations 

Of the relations between coefficients and solutions, one feature turned out two centuries later to be 

enormously important. It is that the relations are symmetric with respect to the solutions.  

For the two solutions r and s of the quadratic equation 

 ax
2
 + bx + c = 0, 

we wrote 

 r + s = -b/a and rs = c/a. 

Observe that if we switch the order of r and s, then we write the equivalent expressions 

 s + r = -b/a and sr = c/a. 

The relations are symmetric in r and s. 

Sometimes the sum r + s is called the sum of the products of the solutions taken one at a time. In 

strictly algebraic language, it would be the sum of the first-degree terms in the solutions. The names 

extend to the sum of the products of the solutions taken two at a time, or second-degree terms. 

The second-degree term rs is simply the one that uses both solutions, without repetition. If we allow 

repetition, then r
2
 and s

2
 are the other two-at-a-time products. The sum of all of them is 

 r
2
 + rs + s

2
 = [r + s]

2
 – [rs]. 

The double-underlined expression is symmetric, and both quantities in brackets are expressible in 

terms of a, b, and c (Exercise 1a). 

The sum of the third-degree products (where repetition is inevitable) is 

 r
3
 + r

2
s + rs

2
 + s

3
  =  r

2
[r + s] + s

2
[r + s] 

    =  (r
2
 + s

2
)[r + s]  =  ([r + s]

2
 – 2[rs])[r + s], 

again symmetric and expressible in terms of the coefficients (Exercise 1c). 
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For roots of our cubic polynomials, we already have Viète’s equations. Those, however, relate the 

roots two at a time, symmetrically. Our type of cubic will have three roots: three simple real solutions, 

or one simple real and one double real, or a simple real and two non-real complex solutions. Let us 

therefore look at the solutions u, v, w of 

 x
3
 + bx + c = 0. 

We may assume v  w. Viète’s first equation gives 

 -b = u
2
 + uv + v

2
 and -b = u

2
 + uw + w

2
, 

even if u matches either of v or w. (Consult Exercise VI.C.2:3.) Subtracting, we have 

 0  =  uv – uw + v
2
 – w

2
  =  u(v – w) + (v + w)(v – w). 

Legal division by (v – w) gives us 

 u + v + w = 0, 

symmetric as always. The sum of the one-at-a-time products is zero. 

From there, we proceed to 

 0  =  2(u + v + w)
2
  =  2u

2
 + 2v

2
 + 2w

2
 + 4uv + 4uw + 4vw 

    =  (u
2
 + uv + v

2
) + (u

2
 + uw + w

2
) + (v

2
 + vw + w

2
) + 3uv + 3uw + 3vw. 

By the first Viète equation, all three expressions in parentheses equal -b. We conclude 

 0  =  -3b + 3(uv + uw + vw). 

The sum of the products of the solutions, two at a time without repeats, is 

 uv + uw + vw = b. 

That relation, together with Exercise 2a, gives us the sum of the two-at-a-time products. 

From the equation in red, we see that  

 u
2
 + v

2
 + w

2
 = -2(uv + uw + vw) = -2b. 

(Do Exercise 2a.) 

For the products of degree 3, write 

 0  =  (u + v + w)
3
  =  u

3
 + v

3
 + w

3
 + 3u

2
v + 3uv

2
 + 3u

2
w + 3uw

2
 + 3v

2
w + 3vw

2
 + 6uvw. 

(Try to see why that is true without actually multiplying out.) We get the single-variable products 

(the cubes) from the original equation (the cubic) as follows: Because u, v, w are solutions, we have 

 u
3
 + bu + c = 0, 

 v
3
 + bv + c = 0, 

 w
3
 + bw + c = 0; 

add them to write 

 u
3
 + v

3
 + w

3
 + b(u + v + w) + 3c  =  u

3
 + v

3
 + w

3
 + 3c  =  0, 

and we find 

 u
3
 + v

3
 + w

3
  =  -3c. 

We get the two-solution products by the second Viète equation: 

 (3u
2
v + 3uv

2
) + (3u

2
w + 3uw

2
) + (3v

2
w + 3vw

2
)  =  3c + 3c + 3c. 

Finally, for the three-solution product uvw, the equation in blue gives 

 0 = -3c + 9c + 6uvw,  or 

 uvw = -c. 

Put it all together in Exercise 2b. 

That is a long sequence from the deductive, theorem-proving phase. Notice that all the double-

underlined expressions are symmetric in the roots. They are also homogeneous: All the terms in each 

expression are of the same degree. Homogeneity was important to Viète. [I must confess that I do not 

understand why. His predecessors had no objection to adding “a square and four times its side”—an area 

and a length—and Descartes would soon drop forever any requirement for homogeneity.] 
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 Exercises VI.C.3

1. Let r and s be the solutions of ax2 + bx + c = 0. Express in terms of a, b, and c: 
a) r 2 + rs + s2 
b) r 2 + s2 
c) r 3 + r 2s + rs2 + s3 
d) r 3 + s3. 

2. Let u, v, and w be solutions of x3 + bx + c = 0, with v  w. Express in terms of b and c: 
a) the sum 
 u2 + v2 + w2 + uv + uw + vw 
of the second-degree products of the solutions. 
b) the sum 
 u3 + v3 + w3 + u2v + uv2 + u2w + uw2 + v2w + vw2 + uvw 

of the third-degree products. 

4. Solution Via Trigonometry 

Viète made important contributions to trigonometry in general. His work with the trigonometric 

functions gave trigonometry a deductive flavor, leading to relations divorced from the solution of 

triangles. The relations proved to be surprisingly applicable to the solution of equations.  

a) one example 

Recall the angle-sum formula 

 cos (r + s)  =  cos r cos s – sin r sin s. 

It yields the double-angle formula 

 cos 2r  =  cos
2 

r – sin
2
 r  =  cos

2 
r – (1 – cos

2 
r)  =  2 cos

2 
r – 1. 

Apply it one more time, to get a triple-angle formula: 

 cos 3r = cos 2r cos r – sin 2r sin r 

  = (2 cos
2 

r – 1) cos
 
r – 2 sin r cos r sin r 

  = 2 cos
3 

r – cos
 
r – 2 cos r (1 – cos

2 
r) 

  = 4 cos
3 

r – 3 cos r. 

In this formula, set r = 20. The substitution yields 

 1/2  =  cos 60  =  4 cos
3
 20 – 3 cos 20. 

Multiply by 2 and move everything to one side, and you see that x = cos 20  0.94 is a solution of 

 8x
3
 – 6x – 1 = 0. 

(See Exercise 2b.) 

b) many examples 

This use of the triple-angle formula may seem like a lot of work just to solve one cubic. However, 

Viète showed that every cubic equation of the bad type can be molded into the formula and solved by 

means of trigonometry. 

Recall that the “bad type” is the equation 

 x
3
 + bx + c = 0 

in which the discriminant c
2
 + 4b

3
/27 is negative. Cardano’s method hit a roadblock, and Bombelli wrote 

the solutions in terms of complex expressions he could not evaluate. Viète made the substitution 

 x = u cos v. 

(Necessarily, an infinity of combinations of u and v will give whatever value x has.) 
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The substitution turns the equation into 

 u
3
 cos

3
 v + bu cos v  =  -c. 

To start making it resemble the formula, multiply by 4/u
3
: 

 4 cos
3
 v + 4b/u

2
 cos v  =  -4c/u

3
. 

Now we need the coefficient 4b/u
2
 to be -3. That forces 

 u  =  (4[-b]/3)  =  2([-b]/3). 

(The minus sign within the radical is best attached to the b; for the discriminant to be negative, b has 

to be negative.) Take the positive choice for now. With that u, our equation becomes 

 4 cos
3
 v – 3 cos v  =  -4c/(2[-b/3])

3
  =  -c27)/(2[-b]

3/2
].  (Verify the last equality.) 

The expression on the left is undeniably cos 3v. For the method to succeed, the fraction on the right 

has to be the cosine of something. For the fraction to be a cosine, it has to be between -1 and 1, 

inclusive. That means its square has to be at most 1. The square is 27c
2
/(4[-b]

3 
). That fraction is 

(strictly) less than 1, because the numerator is smaller than the denominator: 

 0 < 27c
2
 < -4b

3
  follows from  c

2
 + 4b

3
/27 < 0. 

Therefore x = u cos v solves the equation as long as 

 u = (-4b/3)  and  v is any angle with cos 3v =  -4c/u
3
. 

Reconsider our example 

 x
3
 – 27x + 46 = 0. 

The method calls for 

 u  =  (108/3)  =  6 and  cos 3v  =  -184/6
3
    -.8519. 

One angle answering to that cosine is 3v  148.42, from which v  49.47.  One solution is then 

 x  =  u cos v  =  6 cos 49.47    3.90. 

That matches the solution x = -1 + 26 from VI.B.4d. 

(These numbers are from a scientific calculator. Viète, lacking such a tool, could nevertheless have 

worked at 0.01 precision. He published tables of all the trigonometric functions with 1-minute 

precision. A minute is 0.01666…. Interpolating to 3/5 of that would have been easy. [Using minutes 

was a concession to tradition, plus astronomy; Viète himself always espoused calculation in decimal 

fractions.] Separately, if you think of that earlier symbolic solution as “exact” and 3.90 as only 

approximate, remember that our current solution also has exact, symbolic form: 

 x  =  (-4 [-27]/3) cos (1/3 cos
-1

 [-446/6
3
]).) 

If we had chosen the negative u, u = -(-4b/3) = -6, then cos 3v = -4c/u
3
 would have taken the 

opposite sign: cos 3v  +.8519. That would give 3v  31.58, then v  10.53. Notice that cos v does 

not change sign; you cannot predict the sign of cos v from that of cos 3v. Now we have the solution 

 x  =  u cos v  =  -6 cos 10.53    -5.90. 

That one matches the earlier solution -1 – 26. 

What about the solution we saw by inspection, x = 2? Go back to 

 cos 3v  -.8519. 

The angle 148.42 = 180 – 31.58 is not the only one with that cosine. There is also 

 180 + 31.58  =  211.58. 

(Treat others in Exercise 1.) With that value of 3v, we have v = 70.53 and 

 x  =  u cos v  =  6 cos 70.53    2.00. 

Viète’s substitution finds all three solutions trigonometrically, without venturing into complex 

numbers. (See Exercise 2c.) 
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  Exercises VI.C.4

1. We found cos 3v  -.8519 for two angles 3v, namely 148.42 and 211.58. 
a) Find four other angles with the same cosine. 
b) Show that for each of them, cos v is one of the three values we already found: 

cos 10.53 or cos 49.47 or cos 70.53. (You can avoid calculating the cosines by matching 
up the reference angles.) 

2. a) Justify this statement: 
 8x3 – 6x – 1 = 0 
has three distinct real solutions. 
b) The polynomial has value -1 when x = 0 and +1 when x = 1. Therefore it must have a 
root between x = 0 and x = 1. Use calculation to approximate it to within 0.01. How does 

your approximation compare with cos 20, which we know to be the one positive root? 
c) Find trigonometrically the other two real solutions. 

3. Solve trigonometrically Cardano’s 
 x3 = 15x + 4. 
Match the solutions against Exercise VI.C.2:4. 

4. a) Use cos 4r  =  cos (22r) to show that 
 cos 4r  =  8cos4 r – 8cos2 r + 1. 
b) Use trigonometry to find all solutions of 
 -1/2  =  8x4 – 8x2 + 1. 
c) Solve the same equation using the quadratic formula. Do the answers agree with (b)? 

5. We assumed in this subsection that the discriminant is negative. Does Viète’s substitution 
still give the solutions in the case where the discriminant is zero? 
a) Try it with the example 
 x3 – 27x – 54 = 0, 
which we solved in VI.B.3a. 
b) Show that it works in general. (Refer to Exercise VI.B.3:4a.) 

5. Trigonometric Formulas 

Viète’s development of trigonometry outside of triangles took two other surprising turns. One was in 

calculation, the other in multiple-angle formulas. 

a) calculation 

Viète showed how to use precise tables, like his, of trigonometric functions to turn multiplications 

and divisions into additions and subtractions. His discovery came just ahead of the discovery of 

logarithms, and both had the same purpose: to facilitate calculations needed in astronomy. The 

trigonometry-calculation connection was based on relations like 

 sin A + sin B  =  2 sin ([A + B]/2) cos ([A – B]/2). 

(See Exercise 1. See also Boyer for details of the calculation method.) 

b) multiple-angle formulas 

Viète created formulas for cosine and sine of multiples of an angle, in a way that combined 

combinations and trigonometry. 

To understand the formulas, we need to look back at Pascal’s triangle (section IV.B.3). 

http://www.archive.org/stream/AHistoryOfMathematics/Boyer-AHistoryOfMathematics#page/n355/mode/2up
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Denote entry #r in row #n by 𝐶𝑟
𝑛. (Remember that the top row is row #0, and the leftmost entry in 

any row is entry #0.) We said back there that the pattern—the recursion—in the triangle is that each 

entry is the sum of those just above it, left and right. In this new notation, the recursion is 

 𝐶𝑟
𝑛  =  𝐶𝑟−1

𝑛−1 + 𝐶𝑟
𝑛−1  if r is from 1 to n – 1, with  𝐶0

𝑛  =  𝐶𝑛
𝑛  =  1. 

(The 𝐶𝑟
𝑛 notation fits the arrangement of the entries in the triangle as binomial coefficients. 

However, it actually owes to the connection between them and combinations (subsets). We will not 

explore the connection.) 

Write the familiar double-angle formulas 

 cos 2  =  cos
2
  – sin

2
  sin 2  =  2 sin  cos . 

The cosine formula has (forgetting the minus sign) coefficients 1, 1. The sine has coefficient 2. The 

three coefficients 1, 2, 1 form the #2 row in the triangle. Hence we may write 

 cos 2  =  𝐶0
2 cos

2
  – 𝐶2 

2  sin
2
 ,  sin 2 =  𝐶1

2 sin  cos . 

Now apply the sum formulas to get 

 cos 3 =  cos  (𝐶0
2 cos

2
  – 𝐶2

2 sin
2
 ) –  sin 3 =  sin  (𝐶0

2 cos
2
  – 𝐶2

2 sin
2
 ) + 

   sin  (𝐶1
2 sin  cos )     cos  𝐶1

2 sin  cos  

  =  𝐶0
2 cos

3
  – (𝐶2

2+ 𝐶1
2) cos  sin

2
    = (𝐶0

2+ 𝐶1
2) sin  cos

2
  – 𝐶2

2 sin
3
  

  =  𝐶0
3 cos

3
  – 𝐶2

3 cos  sin
2
     = 𝐶1

3 sin  cos
2
  – 𝐶3

3 sin
3
 . 

(Do Exercise 3 to reconcile the cos 3 formula with the one from VI.C.4a.) 

You can see the pattern beginning to emerge. The pairs of formulas have an odd resemblance to a 

separation of the binomial expansion 

 (cos  + sin )
n
  =  𝐶0

𝑛 cos
n
  + 𝐶1

𝑛 cos
n–1

  sin  + 𝐶2
𝑛 cos

n–2
  sin

2
  +  𝐶3

𝑛 cos
n–3

  sin
3
  + … 

into two sums, one adding the even-numbered terms, the other adding the odd-numbered, each sum then 

supplied with alternating signs. Thus, from term to term in each formula, the sign changes, the 

coefficient skips one place in the triangle (with the sine formula holding the entries missing from the 

cosine), and the powers of cos  and sin  decrease and increase, respectively, by 2. 

We extend the pattern by using the sum formula for the next level. (Beyond that, see Exercise 4.) 

 cos 4 =  cos (𝐶0
3cos

3
  – 𝐶2

3cos  sin
2
 ) –  sin 4 =  sin (𝐶0

3cos
3
  – 𝐶2

3cos  sin
2
 ) + 

          sin (𝐶1
3sin  cos

2
  – 𝐶3

3sin
3
 )           cos (𝐶1

3sin  cos
2
  – 𝐶3

3sin
3
 ) 

  =  𝐶0
3cos

4
 – (𝐶2

3+ 𝐶1
3)cos

2
  sin

2
  +   =  (𝐶0

3+ 𝐶1
3) sin  cos

3
  – 

   𝐶3
3 sin

4
              (𝐶2

3+ 𝐶3
3) sin

3
  cos  

  =  𝐶0
4cos

4
  – 𝐶2

4cos
2
  sin

2
  + 𝐶4

4sin
4
   =  𝐶1

4 sin  cos
3
  – 𝐶3

4 sin
3
  cos . 

Recall that we used a triple-angle formula to solve some cubic equations (section VI.C.4b) and a 

quadruple-angle formula to solve a quartic (Exercise VI.C.4:4). Read Boyer on how Viète adapted 

the (45)-formulas to answer a (publicly announced) challenge to solve an equation of degree 45. 

 Exercises VI.C.5

1. Prove the following relations. (Hint for both: A = [A + B]/2 + [A – B]/2.) 
a) sin A + sin B  = 2 sin ([A + B]/2) cos ([A – B]/2). 
b) cos A + cos B = 2 cos ([A + B]/2) cos ([A – B]/2). 

2. Prove that 

 c sin A + d cos A  =  (c2 + d 2) sin (A + tan-1 [d/c]). 
(Hint: Pretend c and d are positive, and draw a right triangle with legs c and d. This formula 
comes up in description of electrical signals.) 

http://www.archive.org/stream/AHistoryOfMathematics/Boyer-AHistoryOfMathematics#page/n357/mode/1up
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3. Show that 

 𝐶0
3 cos3  – 𝐶2

3 cos  sin2   =  4cos3  – 3cos   (both equal to cos 3). 

4. Prove by induction that 

 cos n  = 𝐶0
𝑛 cosn  – 𝐶2

𝑛 cosn–2  sin2  + 𝐶4
𝑛 cosn–4  sin4  + …, 

 sin n  = 𝐶1
𝑛 sin  cosn–1  – 𝐶3

𝑛 sin3  cosn–3  + 𝐶5
𝑛 sin5  cosn–5  + …. 

Each sum stops before the exponents turn negative, at (sinn ) or (n cos  sinn–1 ). 

 The Astronomers Section VI.D.
It is coincidence that this part is ending like the first, with discussion of the work of astronomers. 

Aside from the nice symmetry, though, the work leads naturally into developments beyond the 

Renaissance. [I have never read a better account of what follows than the Ferris chapters on Copernicus, 

Kepler, and Galileo, pages 61-101.] 

1. Copernicus 

The phrase “paradigm shift” is overworked nowadays, used by those with things to sell to brag that 

their wares spring from revolutionary thinking. The classic paradigm shift is the introduction to Europe 

of the heliocentric model proposed by Copernicus (Mikolai Kopernik?, 1473-1543).  

a) man and mathematics 

Recall that Aristarchus proposed heliocentrism around the time Archimedes was born. It was not 

accepted then—even Aristarchus reasoned in Earth-centered terms—but it is appropriate to link him 

with Copernicus. Each was an outstanding mathematician. Indeed, Copernicus was an extraordinary 

polymath: He was an expert in civil law, Church law, government finance, astronomy, medicine, and 

languages. Numerous leaders sought his advice. We have alluded to his trigonometry book. That book 

was actually part of De Revolutionibus Orbium Celestium (Of the Revolutions of the Heavenly Spheres), 

which Copernicus hesitated to publish. It took his student Georg Joachim (Iserin) de Porris (1514-1576), 

the physician who took the place-name “Rheticus,” to encourage him to publish the trigonometry part. 

Rheticus then produced in 1540 a kind of introduction to Revolutions, called Narratio Prima (First 

Account). (His …De Triangulis came later.) The success of the trig book and Narratio persuaded 

Copernicus to allow publication of Revolutions, which actually appeared in the year he died. 

(“Copernicus” is, like “Rheticus,” a Latinized toponym [from the Greek roots for “place” and 

“name”]. Copernicus was born in a copper-rich region.) 

To see some of his mathematics, consider the motion of a circle within a second circle twice as big, 

the interior circle rolling without slipping along the bigger. Copernicus derived a result attributed to the 

Persian astronomer Nasr al-Din al-Tusi (1201-1274): A point affixed to the interior of the smaller circle 

will trace out an ellipse as that circle rolls. 

In the figure at left, we have a stationary circle (filled in white) with center O, 

rightmost point A, and radius OA = 2. A circle (shaded blue) of radius 1 starts out 

internally tangent to the bigger circle at A. Its center is C. Point P is attached to 

the blue disk, distance t from C, lying at first along OA. The smaller circle is 

going to rotate clockwise, so as to roll counterclockwise around the larger circle. 

In doing so, the smaller one causes C to trace out a circle and P some path through 

the interior of the larger circle.  
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At right, the blue circle has rolled around to put the point of 

tangency at B. Segment CP has rotated to the position shown, and we 

have extended it to meet the blue circle at D. Finally, we want to use 

our modern tools: We add coordinate axes with the origin at O. 

Radii OB of the big circle and CB of the small one must lie along 

the same line. (Why?) Let  be the (radian) measure of angle BOA. 

Then C has arrived at coordinates 

 x = cos , y = sin . 

This is not a surprise; we knew that C traces out the circle of radius 1 centered at O. What is important is 

that we can use those coordinates to locate P. 

In the larger circle, 

 arc AB = 2. 

In the smaller, 

 arc BD = 1(angle BCD). 

But arc AB and arc BD are equally long; they both equal the “rolling distance” of the inner circle. 

Therefore angle BCD = 2. Since the angle between CB and the (dotted green) horizontal at C must 

match  (Why?), we conclude that the angle between CP and that same horizontal is likewise . That 

means P is (t cos ) further right than C, (t sin ) lower than C. The coordinates of P are therefore 

 x  =  cos  + t cos   =  (1 + t) cos ,  y  =  sin  – t sin   =  (1 – t) sin . 

Observe that if t is 1—if P is actually on the small circle—then y is constantly 0. In that case, P just 

patrols the diameter from A to (-2, 0). (The figure shows D close to the x-axis. It actually has to be 

right on the axis.) In the expected situation, with 0 < t < 1, the coordinates of P satisfy 

 x
2
/(1 + t)

2
 + y

2
/(1 – t)

2
  =  cos

2
  + sin

2
   =  1. 

The point traces out an ellipse. 

b) the solar system model 

Copernicus proposed that the planets travel along circular orbits 

surrounding the Sun, arrayed in the order shown in the figure at 

right. He had the orbital speeds (suggested by the lengths of the 

arrows) decreasing toward the outside: Mercury moving fastest, 

Venus second fastest, and so on. Such a model is consistent with—

in fact, it explains—a number of our observations. 

1. Venus in our sky is always close to the Sun. Mercury is even 

closer, so much so that Mercury is hard to spot in the twilight. 

2. Mercury orbits so fast that it completes multiple 

observational cycles during one (Earth) year. 

To understand “observational cycles,” note that in the figure, 

the Earth-Mercury line is tangent to the Mercury orbit. With that position, Mercury stands in our 

view as far rightward (west) from the Sun as it can seem. The situation is called “greatest westward 

elongation.” Those elongations recur three or four times each year, on average about 116 days apart. 

Venus completes the same cycle in about 584 days (1.6 years). It completes more than one orbit in 

our year, but less than one observational cycle. 

3. Even more important is that the model can explain the motion of the outer planets without 

resorting to the epicycles of Apollonius, Hipparchus, and Claudius Ptolemy (section III.C.4a). 
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In the next figure, we spin our view counterclockwise at the orbital 

rate of Earth. That rotating frame of reference makes Earth appear to 

be stationary at the top of its orbit. We have Mars (or Jupiter or 

Saturn) at what is called “opposition,” when the planet and the Sun 

stand in opposite directions in our sky. Our rotating reference frame 

also causes the starry background seemingly to rotate clockwise, at 

Earth’s rate: once around in a year. At the same time, Mars appears to 

revolve clockwise, because 

 revolution rate of planet – revolution rate of Earth 

is a negative number; but the complete revolution takes more than a year, because that negative 

number has smaller absolute value than its second term. 

Those rotation rates mean that on average, the apparent clockwise angular speed of Mars is lower 

than that of the stars. On the average, therefore, we see Mars drifting counterclockwise (eastward) as 

viewed against the starry background. But for a period (months for Mars, weeks for the others) 

surrounding opposition—when the planet is closest to Earth for that year—the planet is so close to 

Earth that its angular speed exceeds the angular speed of the stars. Consequently during that period, 

the planet advances clockwise (westward) relative to the stars. Explaining that westward 

(“retrograde”) drift was the whole point of the epicycle model. 

However, Copernicus could not do away with the epicycles entirely. There are mismatches between 

the circular model and observation. For one, if the planets actually revolved in circular orbits centered at 

the Sun, then at every opposition of a given planet, it would stand at the same distance from Earth. The 

distance would be the difference between the orbital radii. Assuming the planet does not have variable 

reflectivity, it would have to appear equally bright at each opposition. For Jupiter and Saturn, the oppo-

sition brightness is reasonably constant. For Mars, the variation is unmistakable. At opposition in 2003, 

Mars was more than twice as bright as Sirius, the brightest (nighttime) star. In 2010-12, it was about 

83% as bright as Sirius. For the 2016-18-20 oppositions, it will considerably outshine Sirius again. 

(Those will not reach 2003. That was a historically brilliant apparition; see NASA’s article. But the 15-

year cycle is real.) In this phenomenon, the Copernican model was in conflict with the God of War. 

You could reconcile the circles and the evidently variable opposition distance via a modification: 

Give the circles unequal centers. Unfortunately, that begins to complicate the model, and still does not 

fully account for the observed positions of the planets. Copernicus could not completely abandon the 

epicycles (along circles surrounding the Sun instead of surrounding Earth). 

2. Kepler 

During the last quarter of the sixteenth century, an eccentric Dane named Tycho Brahe established 

and ran an observatory at Uraniborg (in what is now Sweden). He compiled a fantastic record of precise 

astronomical measurements, all by naked-eye observation. Based on those, he proposed a solar system 

ruled by an odd hybrid of Copernican and Ptolemaic elements. 

A German named Johannes Kepler (1571-1630) wanted to analyze the record. He believed the 

Copernican model, not Tycho’s hybrid, and figured the data would validate Copernicus. He became a 

sort of apprentice to Tycho after the latter moved to Prague. (Tycho treated him more like a slave.) At 

Tycho’s death, Kepler finally got his hands on the planetary data. He set out to reconcile them with the 

Copernican model. 

They would not fit. For years, he tried to squeeze Tycho’s observations into circular orbits, without 

success. The positions were more suggestive of ellipses. 
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a) man and mathematics 

Kepler was qualified to know a conic section when he saw one. He applied to conics a marvelous 

intuition with the infinite and the infinitesimal; see Boyer 354-357. 

Recall our treatment of the conic sections (section III.A.7). Kepler thought of the horizontal section, 

the circle, as the extreme case in which the two foci coincide. Tilting the cutting plane separates the 

foci, to create the ellipse. Further tilting moves one focus farther out, until the inclination of the 

plane matches that of the element of the cone; at that stage, the remote focus reaches infinity. 

Continued tilting makes the remote focus come back from infinity, in the half of the cone opposite 

the near focus. Finally, shifting the plane so that it crosses the vertex of the cone produces the other 

extreme case, two intersecting straight lines (at whose intersection the two foci again coincide). 

He thought in infinitesimal terms to measure the area of the ellipse. 

At right we have a circle (red) of radius a and an ellipse (blue) with 

semiaxes a  b, both centered where we now put the origin of a 

coordinate system. Kepler thought of the circle’s area as composed 

of an infinity of infinitesimals, the (dashed red) vertical chords. 

Similarly, the area of the ellipse is composed of the blue chords. 

In our terms, the circle and ellipse have equations, respectively, 

 x
2
 + y

2
 = a

2
 and x

2
/a

2
 + y

2
/b

2
  =  1. 

Therefore the vertical chords at a given x-value have lengths 

 2y  =  2(a
2
 – x

2
) and 

 2y  =  2(b
2
[1 – x

2
/a

2
])  =  2 b/a (a

2
 – x

2
). 

The height of each constituent chord of the ellipse is b/a times the height of the corresponding chord 

of the circle. Hence the area of the ellipse is b/a times the area of the circle. The area of the ellipse is 

 A = b/a (a
2
) = ab. 

b) the planetary laws 

Failing to match the orbit of Mars with a circle, Kepler decided to try to fit an ellipse to the orbit. 

The match was nearly perfect. By about 1602, he discerned the first two of the laws that govern the 

motion of the planets. He published those two in 1609. 

Kepler’s First Law: Each planet orbits the Sun along an ellipse … 

That is half the First Law. Symmetry-minded as we are, we might expect the Sun to be at the center 

of the ellipses. The second half of the Law says: 

 … with the Sun at one of the foci. 

That principle takes care of the varying opposition brightness. We now know that Earth’s orbit is 

nearly circular, with an eccentricity of 0.017. For Mars, the eccentricity is 0.093. That is still nearly 

circular; see Exercise III.A.7: 5b. What is more salient with the greater eccentricity is the offset of 

the Sun from the center of the ellipse. Earth’s distance from the Sun varies roughly from 91.4M 

(when Earth is at “perihelion,” the orbit’s major vertex closer to the Sun) to 94.5M miles 

(“aphelion,” the remote major vertex); see Exercise 2. The corresponding Mars distances are 128M 

and 155M. Those numbers imply that when Earth brings Mars to opposition under the latter’s 

perihelion, the distance between us and Mars is around 128M – 93M = 35M miles. With Mars at 

aphelion, the distance is about 155M – 93M = 62M. If Mars is equally reflective of the Sun’s light at 

both stations, then the brilliance of Mars to our eyes drops to (35/62)
2
  32% from a close opposition 

(like 2003) to a distant one (2010). 

Having dispensed with circular paths, Kepler then did away with uniform speeds. 
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Kepler’s Second Law: Each planet moves so that the focal radius from it to the Sun sweeps out 

equal areas in equal times. 

In the figure at right, we have a planet, say Mars (orange), tracing the arc 

PQ (solid blue) along its orbit (dotted), in a time t. In that time, the focal 

radius sweeps out the blue-shaded region of area A. The Second Law states 

that the sweep rate A/t is constant throughout the orbit. It dictates the relative 

speed of each planet at different points of its orbit. 

If t is small, then arc PQ is indistinguishable from its chord. (For example, if t is one hour, then the 

Mars arc is a mere 54000 mi (average) long. That means it spans an angle 

 54000/(140 million average)    0.02.) 

Moreover, if P is at either of the major vertices of the ellipse, then the region is indistinguishable 

from a right triangle. At those places, the tangent to the ellipse (and therefore the direction of PQ) is 

perpendicular to the major axis. 

At aphelion, we said, the focal radius for Mars is about 155M mi. Denote the planet’s speed PQ/t 

by va. Then the sweep rate is 

 (area of right triangle)/t  =  (1/2 PQ 155M)/t  =  1/2 (155M) va. 

At perihelion, the focal radius is about 128M. Call the speed there vp. The sweep rate there is 

 (1/2 PQ 128M)/t  =  1/2 (128M) vp. 

Setting the rates equal, we have 

 va /vp  =  128M/155M. 

At those places, the planet’s speed is inversely proportional to distance from the Sun. 

Kepler first thought that the last relation applies at all points of the orbit. It was later that he realized 

that the relation fails at the other points, where the planet’s direction is not perpendicular to the focal 

radius. It is area swept per unit time that remains constant, and not the product of speed and distance.  

The Third Law unifies the system, fixing the speed of each planet in comparison with the others. 

Kepler’s Third Law: The square of the orbital period of a planet is proportional to the cube of its 

major axis. 

More simply[?], the period is proportional to the 3/2 power of the major axis. Thus, Earth’s orbit has 

major axis 186M, Mars 283M. Therefore the period of Mars is (283/186)
3/2

  1.88 times the period 

of Earth. In 1.88 years, there are roughly 687 days. 

The Third Law had a momentous consequence. It showed us the scale of the solar system. The 

period of a planet is something we can observe, by plotting it against the stars. From the periods, we 

deduce the relative sizes of their orbits, compared to Earth’s (Exercise 4). 

 Exercises VI.D.2

1. At its elongations, Venus (seen from Earth) stands between 45 and 48 from the Sun. 

Mercury, with a more eccentric orbit, varies from 18 to 28. (Copernicus made his own 
accurate observations. He could have obtained measurements like these.) Assume that 
each planet’s greater number goes with its aphelion, smaller number with perihelion, and 
pretend that Earth’s distance from the Sun is always 93M mi. 
a) Find the length of each planet’s major axis.(Hint: Remember that at elongation, the 
Earth-planet line is tangent to the planet’s orbit, and that aphelion and perihelion are the 
major vertices of the orbits.) 
b) Find each planet’s orbital period. (Modern values for them are 224.7 and 88.0 days.) 
c) Find their orbits’ eccentricities. (Modern: 0.007 and 0.205) 
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2. Given that the orbital eccentricities of Earth and Mars are 0.017 and 0.094 and the major 
axes 186M and 283M miles respectively: 
a) Show that the distances from the Sun to the two major vertices of Earth’s orbit are 
roughly 91.4M and 94.5M miles. 
b) Show that the corresponding Mars distances are 128M and 155M miles. 

3. Use the data given in Exercise 2. 
a) For Earth, perihelion comes each revolution around January 4. How much more 
insolation (solar energy) does Earth receive then, compared to what it receives around 
aphelion near July 4? (Insolation rate drops with the square of distance from the Sun.) 
b) By coincidence, the perihelion of Mars happens during the northern hemisphere’s winter, 
just as on Earth. How much more insolation does the planet get at perihelion than it gets at 
aphelion? 
c) Assume that the (linear) speeds of Mars at perihelion and aphelion are 1.45M/day and 
1.2M mi/day. What are its corresponding angular speeds (degrees per day) around the 
Sun? (These speeds and the insolation rates from (b) imply that for the southern hemi-
sphere of Mars, winter is bad news; it is both colder and longer than for the northern.) 

4. a) Jupiter takes about 12 years to orbit the Sun. How long is the major axis of its orbit? 
b) Saturn takes about 29 years. How long is the major axis of Saturn? 

3. Galileo 

a) man and mechanics 

Galileo (1564-1642) became professor of mathematics at Pisa. There, he angered the faculty by his 

open disdain for ideas of Aristotle, which of course prevailed among his colleagues. Shown the door by 

those colleagues, he gladly accepted appointment at Padua. That was near Venice, and therefore a step 

up in prestige. Hunger for recognition and fame defined Galileo’s life, and substandard deference to the 

authority of authorities nearly ended it. 

(i) falling objects 

One time at chapel during his short-lived medical training, Galileo watched the chandeliers swaying 

with the occasional breeze. He decided to time their swings by counting his pulse. He made a striking 

observation: As long as a chandelier did not swing too far, the period of its oscillation was independent 

of the amplitude. In shorter words, the time it took to swing back and forth was the same, no matter 

how far it swung. 

The observation led Galileo to experiment with pendulums, something you can try yourself. Tie a 

heavy “bob,” like a bolt or nut, to a length of string. Hold the other end of the string with your fingers, 

and brace that hand. (The ideal is that the thickness of the string and dimensions of the bob should be 

insignificant compared to the length of the string, the bob much heavier than the string, and the braced 

support stationary.) Then displace the bob an inch or so, and count how many swings the bob makes in 

30 seconds. Do the same with an initial displacement of four inches or so. You should find roughly the 

same number of oscillations for the two displacements. It is easy to see that the pendulum makes the 

longer swings with greater speed. It turns out that the greater speed exactly offsets the bigger distance. 

Separately, make the hanging string either a quarter or four times as long. It is obvious that the 

longer string creates a higher period. Counting the oscillations will give you a good idea of the quan-

titative relation between period and length, a relation that must have been known since ancient times. 
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Then Galileo made a more important observation. Measure the hanging string and count again the 

oscillations. Then replace the bob with a significantly heavier one, or with two bobs, and match the 

length of the string. Your count should point to the same period. You get the like result by switching 

instead to a lighter bob. For a given length of string, Galileo discovered, the pendulum's period is 

independent of the bob’s weight. 

Galileo realized that the pendulum bob is falling, its fall arrested by the string. From further 

experimentation with falling objects—none involving the Tower of Pisa—he drew a conclusion that 

contradicted Aristotle: 

Except for the effect of air resistance, light objects and heavy objects fall at the same rate. 

(About that air-resistance proviso: Tear one third from an ordinary sheet of paper. Crumple the 

smaller piece into a ball. Then drop the flat two-thirds and the crumpled piece from the same height. 

You can see that the air slows the heavier piece’s fall. Alternatively and in modern terms, consider an 

airplane dropping food packages on a relief mission. The crew slows the descent of the packages by 

adding to them the weight of parachutes.) 

Galileo argued for this principle by means of thought experiments, which we now associate more 

with Einstein. Imagine a heavy ball dropped from some height. It will fall at the rate of a heavy object. 

Now imagine cutting the ball into halves, then connecting the two halves by means of a small string. The 

halves will fall together at the rate of light objects. But surely the halves are not conscious of no longer 

constituting a single ball. The ball-string-ball combination must therefore fall as though it had remained 

the one heavy ball. It must be that the rate of fall for one half ball equals the rate for the doubly heavy 

whole ball. 

[Centuries later, David Letterman added evidence. He was videotaped on a rooftop dropping a six-

pack of light beer together with a six-pack of regular beer. The simultaneous splats demonstrated the 

equal falling rates.] 

(ii) speed of fall 

Galileo then experimented to investigate actual speed of fall. Our own experience tells us that 

objects fall way too fast to allow timing with anything but electronics. Galileo slowed the fall by letting 

objects roll down inclined planes. Naturally, steeper inclines led to faster falls, but Galileo noticed a 

consistent pattern: Whatever distance the object rolled in the first time interval, it rolled three times as 

much in the second (equal) time interval, five times as much next interval, …. You can instead look at it 

in terms of the total distances covered, 

 1, 1 + 3 = 4, 1 + 3 + 5 = 9, …. 

Thus, speed increases with time at constant rate, distance covered increases as the square of the time. 

Recall that Oresme (section V.B.3c) had described that connection. Galileo made no reference to 

Oresme, but he must have been aware of the latter’s work. 

(iii) independence of components 

Galileo had a knack for tinkering. His designs for experimental apparatus were brilliant, and none 

more so than a gizmo that is a staple of our school physics labs. (See it advertised at UniScience 

Laboratories.) The device has a spring-

loaded rod, shown yellow and in the cocked 

position in the figure at left. In that position, 

its left end holds up a ball (shown red) 

through a hole in the ball. Its right end 

adjoins a similar ball (green). When the rod 

is triggered, it pops rightward, 

 

http://www.unisciencelab.com/unisciencelab/mechanics/falling_body.php?PHPSESSID=8441b424b59334c2f615f2b426b60dc7
http://www.unisciencelab.com/unisciencelab/mechanics/falling_body.php?PHPSESSID=8441b424b59334c2f615f2b426b60dc7
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simultaneously dropping the red ball vertically and propelling the green one horizontally to the right. If 

the device and the floor are both level, then the falling red ball and the flying green ball hit the floor at 

the same time, irrespective of the height of the device. In addition, the horizontal distance covered by the 

green ball is proportional to the square root of the device’s height.  

Multiple conclusions follow. First, the coincident impacts say that the falling rate of the green ball is 

unaffected by the fact that it is moving horizontally as well. It next follows, in view of Galileo’s 

discovery that the red ball’s falling distance is as the square of the time, that the green’s horizontal 

distance is a multiple of the time. That multiple is evidently the initial horizontal speed times the time. 

Therefore the horizontal motion is unaffected by the vertical falling. Thus, in the language of physics, 

the green ball’s vertical and horizontal components of velocity are independent.  

Galileo proceeded to describe the path of the green ball. If v0 is the imparted horizontal speed, then 

the horizontal distance covered in time t is v0t. The vertical speed increases at a constant rate, the 

acceleration a (which Galileo could not conveniently measure). After time t, the acquired vertical 

speed is at. By Oresme’s argument, the average speed is half that,  at/2. Therefore the distance fallen 

is  (at/2)t. If we establish our kind of coordinate system at the top of the flight, then we locate the 

green ball at coordinates 

 x = v0t,  y = at
 2

/2. 

Accordingly, the path of the flying ball is the parabola given by  

 y  =  a(x/v0)
2
/2  =  -a/(2v0

2
)  x

2
. 

Arguing from symmetry, Galileo predicted that any object in free fall—an object subject during 

flight only to the influence of its weight—traces a predictable parabolic trajectory (Exercise 2). Always 

alert for opportunities to turn his ideas into money, he produced tables and devices by which an artillery 

crew could calculate the muzzle velocity of its cannon, then calculate the angle at which to elevate the 

gun to hit (or as the Pentagon says, “service”) a target at given distance. 

b) the solar system 

In 1609, Galileo started to hear reports of telescopes. They were an Arabic invention, conveyed to 

Europe by the Dutch (section V.A.4a). Always alert for opportunities …, Galileo looked into their 

design, built his own models, and began to sell them as spotting instruments for commercial and military 

lookouts. He gave some to influential people who might further his sales and career. Then he turned his 

telescope to the night sky. 

There he saw contradictions to Aristotle. For one, the Moon was not a perfect sphere. It was rough, 

strewn with craters and jagged peaks. Behind it, there were stars revealed by the telescope that were 

invisible to the naked eye. Galileo took them as evidence that the stars are not fixed to one sphere, but 

are instead scattered throughout depths of space. (Tycho had also spotted evidence against Aristotle’s 

model of the universe; see Ferris, pages 69-73.) 

In 1610, he aimed his telescope at the planets. There, he found support for Copernicus. Looking at 

Jupiter, he found that it had star-like companions. They visibly shifted position over the course of hours; 

they clearly were not stars. Observing them night by night, he realized that the satellites (Kepler’s later 

word for them, from the Latin for “attendant” or “follower”) dance around Jupiter. He had found the 

first evidence of a system of celestial objects in orbits centered at another one, not at Earth. The system 

was a miniature of the Copernican solar system. Later that year, Galileo looked at Venus. He detected 

the planet’s phases. He read them correctly: Venus orbits the Sun. When Venus is beyond the Sun, we 

can see most of its sunlit face and it looks nearly “full”. At its elongations, we see half the illuminated 

face, and it looks like our quarter moon. When it comes around to our side of the Sun, we see a fraction 

of its lit face, and it appears as a crescent. 
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[Galileo (remember “Always alert …”) came up with a way to apply his astronomy to the problem 

of determining longitude.  The moons of Jupiter sometimes hide behind the planet, and sometimes they 

disappear in space by entering its shadow. When a moon slides behind the right-hand (westerly) edge of 

Jupiter as seen from Prague, it is still visible by parallax from places further right, like Paris. Not so with 

an eclipse; when a moon enters the shadow, its disappearance is at once visible (ignore light speed) from 

every place on Earth whose view is not blocked. Galileo figured that he could produce an accurate table 

of eclipse times, say for Venice. Suppose an observer saw a disappearance two hours earlier, according 

to his own clock, than the predicted time. He could judge that he was two hours west of Venice, in the 

Atlantic at a longitude 2/24  360 = 30 to the west. The idea was scientifically unimpeachable, 

practically worthless. Galileo did not describe how to overcome the problem of trying to train a 

telescope from the rocking deck of a ship, nor how to keep accurate time at sea. The latter problem 

proved to be the key. You should read the story of its solution in Longitude: The True Story…, by Dava 

Sobel. Her other books include Galileo’s Daughter.] 

c) deference to authority 

Galileo published his discoveries in Siderius Nuncius (The Starry Messenger). He then launched a 

campaign to spread the word that Copernicus was inarguably correct, and that the Roman Church had to 

admit its error and renounce its Scripture-based picture of the sky. In 1616, the Church responded by 

putting Of the Revolutions … on the Index of Forbidden Books. Scientific minds did not praise Galileo 

for persistence; they decried his stubbornness. He had managed to render largely unavailable a classic 

book that had circulated freely for seventy years. 

Galileo pressed on in his insistence on dismissing Ptolemy. By 1632, he had published the Dialogue 

Concerning the Two Chief World Systems. In the book, he put defense of the Copernican system into the 

arguments of a reasonable, learned man, and defense of the Ptolemaic (and Church) system into those of 

a jackass named “Simplicio.” (It was especially dangerous that the book was in Italian, and therefore not 

limited to those educated in Latin.) 

The Church had seen enough. It tried him for heresy and ordered him to recant his false theories or 

face burning at the stake. In 1634, he “abjured [his] heresies.” He spent his last eight years under house 

arrest. From his house, he published Dialogue Concerning Two New Sciences, which included the 

mechanics principles he had discovered in the 1590’s. It appeared after he went blind, probably owing to 

his dreadful habit of putting his telescopes directly on the Sun. (His discovery of sunspots had been 

further argument against the celestial perfection postulated by the Aristotelians.) 

[It took until 1980 for the Catholic Church to announce that it had erred in persecuting Galileo. By 

contrast, Of the Revolutions … came off the Index in the 1750’s. 

I must have read the following somewhere, but cannot remember the source. Investigation into 

heresy is made by the Vatican’s guardians of doctrine, now generally called the Holy Office (which 

sounds gentler than “Roman Inquisition”). Its head is an important Cardinal; the 2005 incumbent, Joseph 

Ratzinger, became Pope Benedict XVI. When Of the Revolutions … appeared, the question of its 

suitability was put to the Office. The leader had an interesting reaction. To declare that the Earth moves 

is plainly contrary to Scripture, he said, and therefore heretical. But to pretend that the planets circle the 

Sun, for the sake of explanation—to use heliocentrism as a hypothetical teaching device—is not merely 

acceptable, it is felicitous. It argues to the elegant, powerful simplicity of the Creator’s design.] 

  Exercises VI.D.3

1. The Church would have put Galileo to the fire for espousing heliocentrism, but Kepler’s 
Laws were twenty years old by then. Why did the Church not threaten to smoke Kepler? 
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2. Suppose a cannon discharges its ball with a speed V feet per second. Imagine it fired at an 

angle of elevation  above level ground. 

a) Show that the projectile has an initial horizontal speed of V cos  and initial vertical 

speed V sin . (Use geometric reasoning, not “components.”) 
b) Assume that the horizontal speed remains constant. Assume further that the vertical 
speed decreases by 32 ft/sec every second, and has an average during any time span 
equal to its value at the midpoint of the span. Find an equation for the trajectory. (Choose 
where to put your coordinate system.) 
c)  Under the assumptions of (b), show that the ball takes the same time going up to its 
high point as it does descending to the ground. 
d) How far does the ball travel horizontally before landing? 
e) What is the range of the cannon (the greatest horizontal distance its ball can go)? (This 
is important to an artilleryman. It is how close he must allow the enemy to come, or how 
close he must approach, for his cannonballs to reach the enemy before bouncing. [They 
are useful to our man after they bounce, too].) 

 Practical Men, Contemplative Men Section VI.E.
Merzbach has some wonderful lines about mathematical progress. Their context is the development 

of geometry, but you can see their enduring relevance. Beginning on page 8, Dr. Merzbach writes: 

“The debate, extending well beyond the confines of Egypt, about whether to credit progress in 

mathematics to the practical men (the surveyors, or “rope-stretchers”) or to the contemplative 

elements of society (the priests and philosophers) has continued to our times. As we shall see, the 

history of mathematics displays a constant interplay between these two types of contributors.” 

Viète and Galileo span both groups. Judge for yourself where in the two groups you might put any of 

the contributors we have met, from Brahmagupta through the astronomers. 
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 The Road to Calculus Chapter VII.
We have reached 1600. Europe begins to look the way we think of it now. The national states have 

mostly formed. Spain is the most powerful of them. Its New World empire covers half of South 

America, all of Central America, and the North American expanse from Mexico into Oregon, plus 

Florida. In 1585, Spain had held much of Italy, along with Holland and the Philippines. Three years 

later, it sent a giant armada to conquer England. The failure of that venture was the dawn of England’s 

dominion of the seas, and inspired the Dutch to break free. Both England and Netherlands then set about 

making their own conquests in the Americas and Asia. France had come together under a strong central 

government; the Bourbon line began in 1589, and the three-quarter-century reign of Louis XIV would 

start in forty years. 

The state of mathematics was mixed. The extant geometry would have been recognizable to the 

Greeks. Algebra, however, had advanced into a theory of equations much different from what al-

Khwarizmi studied (or would have considered useful). The most important discoveries in number theory 

were Greek, Indian, and Chinese, all of them transmitted to Europe through the world of Islam. 

Still, by 1600 Europe had become undisputed leader in scientific and mathematical inquiry. The 

three mathematicians we called “astronomers” in Section VI.D were more than examples. They 

introduced a revolution in scientific thought. The revolution extended to the relation between math and 

science, as the latter began to drive mathematical progress. 

 Areas and Tangents Section VII.A.
In the seventeenth century, the ancient geometric studies of quadratures and tangents accelerated. 

They evolved from geometric to algebraic approaches. The geometers were willing to make intuitive, 

heuristic arguments, especially in using infinitesimals. The algebraists made more precise, rigorous 

arguments. Interestingly, Struik (pages 100-101) describes both philosophies as reflective of 

Archimedes. The rigor was characteristic of the writings of Archimedes, as in the argument in 

section III.A.6c(ii) that the volume of the cone is greater than any number below (1/3  height  base) 

and smaller than any number above. The intuition was what the Syracusan, in The Method, espoused as 

the mother of discovery. The distinction is striking, because Latin versions of the writings had existed 

for centuries, but The Method had disappeared and was not rediscovered until around 1900.  

1. Cavalieri 

Two geometers were students of Galileo. The first was Buonaventura Cavalieri (1598-1647). 

Cavalieri studied with Galileo, but adopted the methods of Kepler. His influential Geometria 

Indivisibilibus Continuorum (Geometry [via] Indivisibles of [Continuous Objects]) appeared in 1635, 

when he was professor at Bologna. He was as willing to add up infinitesimals (“indivisibles”) as Kepler 

had been. Recall Kepler’s argument (section VI.D.2a) for the area of the ellipse. Extending another 

argument of Kepler—picturing a circle as the sum of an infinity of infinitesimal triangles with common 

apex at the center—Cavalieri viewed the sphere as the sum of an infinity of pyramids or cones having 

apex at the center. For each such solid, the height matches the radius of the sphere. Each has volume 

 1/3  height  base = 1/3  radius  base. 

Summing those indivisibles, Cavalieri said the volume of the sphere is 

 1/3  radius  (sum of bases) = 1/3  radius  (area of sphere). 

(Check that against our formulas for the volume and area. Notice also the resemblance to the relation 

 area of circle = 1/2  radius  circumference 

from section III.A.4a.) 
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To see his indivisibles in action, view the figure at right. It shows the region 

(green) under the graph of y = x
2
 between x = 0 and x = a. For Cavalieri, the 

region was composed of an infinity of vertical indivisibles, the one (red) at x 

having length x
2
. To add those (x

2
)’s, he drew the square-based pyramid 

in the figure below. At the level x below the apex, x
2
 is the area of the square 

cross-section. Therefore the sum of the lengths x
2
 is the same as the sum of the 

like-valued areas. Those areas are the indivisibles that constitute the volume 

of the pyramid. Hence the area under the graph is the volume of the pyramid,  

 1/3 a (a
2
) = a

3
/3.  

[Boyer calls Cavalieri’s indivisibles “quasi-atomic” entities. Struik 

(page 48) notes that The Method, which was a letter from Archimedes to 

Eratosthenes, has been construed as opposing a school associated with 

Eudoxus and Democritus. It was Democritus, of course, who proposed the 

existence of atoms.] 

Notice that thinking of the solid as the sum of its horizontal cross-

sections leads immediately to what we now call Cavalieri’s principle: If two solids have the same 

height (vertical extent), and have at each horizontal level cross-sections of equal areas, then the two 

solids have equal volumes. 

Cavalieri also squared other power-curve regions, and eventually drew the conclusion that the area 

under the graph of y = x
n
, from x = 0 to x = a, is a

(n + 1)
/(n + 1). Read Boyer 363-4 to see a generalization 

of Cavalieri’s method by which he squared the spiral of Archimedes. 

2. Torricelli 

Evangelista Torricelli (1608-1647) met Galileo toward the end of the old man’s life. Torricelli had 

been impressed by the Dialogue Concerning Two New Sciences (section VI.D.3c), which sparked his 

interest in the sciences. It is there that his name is better known. He explained, measured, and used air 

pressure. He put a hollow column into a bath of mercury and exhausted the air in the column, above the 

mercury. He found that the pressure of the atmosphere, on the mercury in the bath, would push up into 

the column about 30 inches of mercury. That was the first barometer. With it he discovered, among 

other things, that atmospheric pressure varies from day to day. Those 30 inches are about 760 mm. A 

pressure 1/760 of that—enough to support 1 mm of mercury—is called a torr.  

a) tangents 

Torricelli described the tangent to the parabola in a way that harked back 

to Archimedes for the spiral (section III.A.6c(i)) and to Galileo for 

trajectories (section VI.D.3a(iii)). Recall that a parabola is a locus whose 

points are equidistant from a focus and a directrix. Therefore a particle P 

moving along the parabola (black) at right moves away from the focus F with 

the same speed as it moves vertically away from the directrix. As physics 

puts it, the vertical component (green) of the velocity is as long as the 

component (blue) in the direction FP. The combined motion (“resultant” 

velocity) is along the diagonal (red) of the parallelogram determined by the 

components. Since the parallelogram is a rhombus, the diagonal bisects the 

angle between the components. That means the direction of motion, and therefore the tangent, bisects 

the angle between the upward vertical and the extension of FP. 

   
y = x

2
 

O a x    

a 

a 
x 

   

focus 

P 
F 

directrix 

http://www.archive.org/stream/AHistoryOfMathematics/Boyer-AHistoryOfMathematics#page/n376/mode/1up
http://www.archive.org/stream/AHistoryOfMathematics/Boyer-AHistoryOfMathematics#page/n379/mode/2up
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Notice that the tangent’s orientation explains the parabola’s reflection property. A ray striking the 

parabola at P (from the side that has the focus) gets reflected along a line making the same angle with 

the tangent as the ray. [Never mind that the Law of Reflection always refers instead to the normal and 

the complements of those angles.] Therefore if a ray comes to P along FP, then it is reflected vertically 

up, which means parallel to the parabola’s axis. Similarly in reverse, if a ray comes down to P parallel to 

the axis, then it gets reflected toward F. 

A like argument describes the tangent to the hyperbola and explains its reflection property. For the 

tangent, start with the figure at left. The black curves are the two branches of a 

hyperbola whose foci are F1 and F2. What characterizes the points P of the 

hyperbola is that the difference between the focal radii, F1P – F2P in the figure, 

is constant. Accordingly, if P is moving along the lower branch as shown, then 

for every inch it adds per unit time to F1P, it must add a like inch to F2P. In 

other words, its component of velocity away from F1 (green arrow) must be as 

long as the component away from F2 (blue). Therefore the tangent (red) must 

bisect the angle between the focal radii. (Apollonius knew that.) 

For the reflection property, think of the hyperbola as a mirror. Then a ray headed for one focus 

reflects so as to head for the other; and a ray originating at one focus reflects off the hyperbola so as to 

appear to be coming from the other. To see it in the figure, extend F2P beyond P. Imagine a ray of light 

incoming along the extension toward P (opposite of the blue arrow). Because the tangent bisects angle 

F1PF2, the incoming ray and PF1 make equal angles with the tangent. Such a ray, which unimpeded 

would continue to F2, is reflected at P toward F1. From the opposite side of the hyperbola, a ray 

originating at F2 and hitting P gets reflected along the extension (green arrow) of F1P, so as to appear to 

be coming from F1. 

b) area 

Torricelli used indivisibles to square the cycloid. A cycloid is the path followed by a point pinned to 

a circle that is rolling along a baseline. As the circle rolls, the point traces a series of arches, symmetric 

about their midlines, with cusps at either end. [See a nice animation of it at Wikipedia®.] In the figure at 

right, the fixed baseline is AM. Initially, the circle sits with 

the pinned point (black dot) at position A. As the circle rolls 

to the right, the dot goes right and up (arrow), tracing out 

the black curve. After half a rotation, the dot arrives at its 

high point, position H. There half the arch ends. We may 

relocate M to put it vertically under H. The dot continues 

right and down, to complete the arch. We want the area of 

the arch. 

Part of the area is the inscribed triangle (outlined in 

blue), whose vertices are H, A, and the other end of the 

arch. Its height HM is clearly the diameter 2a of the circle. 

Its base is what the circle rolls out over a complete turn, namely the circumference 2a. Therefore its 

area is 

 1/2  2a  2a, 

twice the area of the circle. 

For the remaining area, outside the triangle, Torricelli turned to indivisibles.  
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http://en.wikipedia.org/wiki/Cycloid
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Imagine in the previous figure that the circle has rotated through an acute angle of  radians. That 

puts the circle in the position shown at right, with 

the dot at B, the point of tangency at E, and the 

angle BOE (O being the moving center) equal to . 

Draw the vertical (diameter) at E and the 

horizontal at B. EO crosses the horizontal at D, 

at height 

 ED  =  EO – DO  =  a – a cos . 

EO crosses side AH of the inscribed triangle 

at F, at a height EF given by similar triangles: 

 EF/AE  =  MH/AM  =  2a/a. 

Because AE is the distance rolled by the circle, 

it matches arc BE. Therefore 

 EF =  (2/) AE 

  =  (2/)  length of arc  =  (2/) a. 

That implies that EF exceeds ED, and the picture is right. 

[Draw for yourself, on one set of axes, the graphs of 

 y = (2/)x  and  y = 1 – cos x. 

Use them to see that 

 (2/)ax  >  a – a cos x 

for x between 0 and /2, and the opposite for x between /2 and . The “opposite” part will be 

important below.] 

Having verified the figure, let C be where BD crosses side AH of the inscribed triangle. BC is an 

infinitesimal of (half) the area outside the triangle, BD is an infinitesimal of the semicircle, and 

 BC =  BD – CD  =  BD – (/2) FD   (the last by similarity) 

  =  BD – (/2) (EF – ED) 

  =  BD – (/2) ([2/]a – [a – a cos ]). 

Now roll the circle a total of  –  radians, to the 

(green) position at right. The dot is at P, the point of 

tangency at T, and angle TOP is  – . 

The diameter at T meets AH at S, at height 

 TS =  (2/) AT  (by similarity) 

  =  (2/) (arc PT)  (distance = arc) 

  =  (2/) a( – ). 

It meets the horizontal from P at R, at height 

 TR =  a + a cos   =  a – a cos ( – ). 

By the “opposite” remark above, R is higher 

than S. 

Extend PR to meet AH at Q. Then PQ is an 

infinitesimal of half the outside area, PR is an infinitesimal of the semicircle, and 

 PQ =  PR + RQ  =  PR + (/2) RS 

  = PR + (/2) (TR – TS) 

  = PR + (/2) ([a – a cos ( – )]  – [2/] a[ – ]). 
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The sum of the infinitesimals of the outside half-area is then 

 BC + PQ  =  BD + PR.  (The other terms cancel; do Exercise 3). 

The equation says that the sum of the outside indivisibles equals the sum of the semicircle 

indivisibles. Torricelli concluded that the part of the arch above AH has the area of the semicircle. It 

follows that in the whole arch, the area outside the inscribed triangle equals the area of the circle. Hence 

the area of the arch is three circles, or 1.5 times the area of the inscribed triangle. 

[It is important that the indivisibles be “corresponding.” In the semicircle, BD and PR correspond: 

They are symmetrically located, the same distance 

 OD  =  OR  =  a cos  

below and above the center. Struik (page 102) notes that Torricelli 

warned Cavalieri about the following paradox: In the triangle ABC at 

right, for each infinitesimal (green) to the left of the altitude CD, there is 

an equal one (red) to the right; conclude that the altitude separates ABC 

into two triangles of equal area.] 

Bad year, 1647: Cavalieri died aged 49, Torricelli 39. 

c) Roberval 

Gilles Personne (1602-1675), called “de Roberval” after his birthplace, actually anticipated results of 

Torricelli, and some of Cavalieri’s. For example, Roberval described the tangent to the cycloid in terms 

of motion.  

In the cycloid figure, focus on the vicinity (magnified at right) of the tracing 

point P. The point is on a circle moving rightward. That motion imparts to the 

point a horizontal component  (blue) of velocity equal to the rightward speed of 

the circle. At the same time, the circle is rotating. The rotation imparts a 

component (green) along the tangent to the circle. 

The speed of P along the tangent is the rate at which the arc from the bottom 

of the circle clockwise around to P is increasing. But the arc’s length equals 

the horizontal distance rolled by the circle. Therefore the rate at which the 

arc increases is the rate at which the horizontal distance is increasing. In other words, the speed of P 

along the circle’s tangent equals the circle’s speed to the right. 

Since the tangential and horizontal components are equally long, the velocity of P bisects the angle 

between them. That gives the direction of the (red) tangent to the cycloid: halfway between the 

clockwise tangent and the rightward horizontal. 

You must read Boyer for the remarkable reason why Roberval did not publish his results, thereby 

leaving the credit for their discovery to the Italians. 

 Exercises VII.A.2

1. What will be the weight of a column of mercury 30 inches tall with constant horizontal 
cross-sections of area 1 square inch? 

2. a) Adapt Torricelli’s argument for the parabola to describe the tangent to an ellipse at one 
of its points, in terms of the focal radii to that point. 
b) What reflection property does that imply for the ellipse? 

3. Verify that 

 –([2/]a – [a – a cos ]) + ([a – a cos ( – )]  – [2/] a[ – ]) = 0. 
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http://www.archive.org/stream/AHistoryOfMathematics/Boyer-AHistoryOfMathematics#page/n405/mode/1up
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4. In our second figure above of the cycloid arch, put the x-axis of a coordinate system along 
the baseline AM, with the origin at A. 

a) When the circle reaches the red position, the dot at B is (a sin ) to the left of the center 

and (a cos ) lower. Show that the dot’s coordinates (x, y) are given by (the “parametric 
equations”) 

 x = a – a sin , y = a – a cos . 
b) Use geometry (as opposed to calculus) to express the slope of the tangent at (x, y) in 

terms of . 
c) (Calculus) Use parametric differentiation to confirm the answer in (b). 
d) Use either (b) or (c) to show that the arch does have a cusp at each end. 

3. Descartes 

René Descartes [day-CART] (1596-1650) was a lawyer and philosopher. Philosophy may owe more 

to him than math does. His Discours sur la Méthode … (Discourse on the Method [to Reason Well and 

Seek Truth in the Sciences]) tried to set forth a program by which scientific discovery could be rendered 

algorithmic. For our purposes, his most important contribution established a bridge between the 

languages of geometry and algebra. 

a) the Cartesian plane 

The suggestion of the Cartesian plane appeared in La Géométrie, now a famous book on its own, but 

which originally was an appendix to the Discours. Descartes did not develop the coordinate plane to the 

extent we know it now. In fact, he thought more in terms of lengths than of coordinates. Oresme’s 

“graph” for constant acceleration (section V.B.3c) and Galileo’s description of trajectories (section 

VI.D.3a(iii)) are closer to the way we work with coordinates and graphs. Still, his application of existing 

algebra to the ancient questions of geometry was a major factor in the rise of coordinate geometry. 

b) Descartes’s rule 

One thing that came out of his work with the plane was a purely algebraic principle. We can use it to 

give elementary evidence to some statements for whose earlier justifications we had to invoke calculus. 

 [Half of] Descartes’s Rule of Signs. A polynomial has either as many positive roots as it has changes 

of sign, or else an even number fewer. 

Put Fibonacci’s cubic equation into the standard form 

 x
3
 + 2x

2
 + 10x – 20  =  0. 

The rule requires the powers to be in order, either decreasing or increasing. The coefficient signs are 

 +, + (no change), + (no change), – (change #1). 

One change, the rule says, implies that the equation has one positive solution, or an even number 

fewer. That forces one positive solution. 

Look next at 

 0  =  8 – (x – 1)
3
  =  9 – 3x + 3x

2
 – x

3
. 

The signs are 

 +, – (change #1), + (change #2), – (change #3). 

The rule says that the equation has three or one positive solutions. Observe that the middle form 

makes clear what the rule cannot see, that x = 3 is the only solution. (See Exercise 1.) 
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For a last example, take 

 0  =  (x + 3) (x – 1)
2
  =  x

3
 + x

2
 – 5x + 3. 

From the two changes of sign, the rule predicts two or no positive solutions. From the factored form, 

we see that x = 1 is the only positive solution, but it is double. The rule counts multiplicity. 

The other half of the rule addresses negative roots. Instead of writing it separately, we will replace x 

by -x and apply the positive-roots half. 

For the polynomial p(x) = 9 – 3x + 3x
2
 – x

3
, we have 

 p(-x)  =  9 – 3(-x) + 3(-x)
2
 – (-x)

3
  =  9 + 3x + 3x

2
 + x

3
. 

[Hereafter, we must make much use of function notation. Review at dummies.com, which includes 

how to read the notations p(x), p(-x).] In p(-x), there are no changes of sign. By the positive half of 

the rule, p(-x) has no positive roots. Therefore p(x) has no negative roots (as Exercise 1 attests). 

For q(x) = x
3
 + x

2
 – 5x + 3, we have 

 q(-x) = -x
3
 + x

2
 + 5x + 3. 

That is one change of sign, one positive root for q(-x), one negative root for q(x). 

Now go to our standard cubic equation, 

 0  =  r(x)  =  x
3
 + bx + c. 

Assume first that b is positive. Then either c is positive, r(x) has no change of sign, and r(-x) has 

one; or c is negative, and the situation is left-right reversed. Either way, there is necessarily one root 

to one side of x = 0 and none to the other (Exercise 4a). Suppose instead b is negative. If c is 

positive, then r(x) has two changes, r(-x) has one. (Check that it is again opposite for negative c, so 

that we need not consider it separately.) In that case, a single negative root is inevitable. There are 

either two or no positive roots, and either number is possible (Exercise 4b). 

 Exercises VII.A.3

1. Factor 9 – 3x + 3x2 – x3 to verify that x = 3 is the lone real root. 

2. Judging by Descartes’s Rule, how many negative roots does Fibonacci’s cubic have? 

3. For each equation, how many positive solutions does the rule predict, and how many 
negative? 
a) x3 – 27x – 54 = 0.  (See the analysis in section VI.B.3a.) 
b) x3 – 27x – 90 = 0.  (Section VI.B.3b.) 
a) x3 – 27x + 46 = 0.  (Section VI.B.3c.) 

4. a) Sketch the two possible graphs, corresponding to positive or negative c, for 
 y = x3 + 27x + c. 
b) Sketch the three possible graphs of 
 y = x3 – 27x + c  with c > 0, 
one of them having no positive x-intercept, one having just one intercept, one having two. 
Why does the “just one” intercept not violate Descartes’s Rule? 

4. Fermat and the Synthesis of Algebra and Geometry 

Pierre de Fermat [fair-MAH] (1601-1665) was another lawyer. He made epochal discoveries in 

mathematics, but treated the subject as a hobby. Almost none of his discoveries appeared in the form of 

books. Rather, he wrote of them to friends and mathematicians, who brought them to general attention. 

It was Fermat who began to cast coordinate geometry into our form (albeit largely in Quadrant I, with 

negative coordinates not allowed) and who created what is now analytic geometry. 

http://www.dummies.com/how-to/content/how-to-use-function-notation.html
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a) geometry via algebra 

We already studied geometric questions by applying coordinate thinking (ahead of its time). The 

best example is from Copernicus, the circle in the circle (section VI.D.1a). To see implications of 

Fermat’s work on the connection suggested by Descartes, recall the ancient locus of Apollonius (from 

Exercise III.A.7:1). 

The locus is the set of points in a plane whose distance from one fixed point is a constant multiple of 

their distance from a second fixed point. Put the origin at the fixed point Q and the x-axis through 

fixed point R, giving it coordinates (a, 0). For the generic point P(x, y) to have PR = k PQ, its 

coordinates must satisfy 

 ([x – a]
2
 + [y – 0]

2
)  =  k ([x – 0]

2
 + [y – 0]

2
)  (distance formula). 

We can simplify that to 

 -2ax + a
2
  =  (k

2
 – 1) x

2
 + (k

2
 – 1) y

2
. 

If k = 1, then the last reduces to 

 x = a/2. 

We recognize that as the equation of the perpendicular bisector of QR. 

If instead k > 1—the treatment is analogous if k < 1—then we recast the equation as 

 (x + a/[k
2
 – 1])

2
 + y

2
 = a

2
/[k

2
 – 1] + a

2
/[k

2
 – 1]

2
 

    = a
2
k

2
/[k

2
 – 1]

2
. 

(Verify: Exercise 1.) Since that rightmost quantity is necessarily positive, we recognize that the 

equation describes a circle. 

We could determine the center and radius of the circle from the equation. Let us instead check 

geometrically, based on knowing that the locus is a circle. 

It is easy to name two points that fit the bill. In the figure at right, 

break up the segment QR into k + 1 equal parts. The first partition 

point is a/(k + 1) to the right of Q, distance 

 a – a/(k + 1) = k a/(k + 1) 

to the left of R. Hence (a/(k + 1), 0) is one point on the circle. Next, look a/(k – 1) to the left of Q. 

That point is 

 a + a/(k – 1) = k a/(k – 1) 

leftward from R. Hence (-a/(k – 1), 0) is also on the circle. Because the locus must be symmetric 

about QR, we conclude that those two points are the ends of a diameter. Therefore the center is at the 

midpoint, where 

 x  =  1/2 (a/[k + 1] + -a/[k – 1])  =  -a/(k
2
 – 1), y = 0, 

and the radius is 

 1/2 (a/[k + 1] – -a/[k – 1])  =  ak/(k
2
 – 1).  (Reconcile with the equation.) 

Look at what we say in each language, and how we implicitly slide from one to the other. We used 

the distance formula, which attaches numbers to segments by means of the Pythagorean theorem. (The 

formula therefore depends on the axes’ being perpendicular, which Descartes had not insisted on.) We 

used the midpoint formula, which matches the geometric notion of midpoint with the numerical notion 

of average. We worked the equation of the circle into a standard form related to the distance formula. 

We ended up connecting an equation (something algebraic) and a locus (geometric). Fermat enlarged on 

that connection. (Descartes had not. However, by viewing an equation in two variables as giving a 

relation between two lengths, Descartes enabled the development of the connection. ) 

   

a/(k+1)  
 Q 

R  
x = a 

 
-a/(k–1) 
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a Exercises VII.A.4

1. Assuming k  1, transform 

 ([x – a]2 + [y – 0]2)  =  k ([x – 0]2 + [y – 0]2) 
into 
 (x + a/[k2 – 1])2 + y2  =  a2k2/[k2 – 1]2. 

2. Exercise VI.A.2:2 asked for a triangle with one side 5, the altitude to that side 3, and the 

remaining sides in the ratio 2:1. Construct the triangle in the coordinate plane: 
a) Put vertices at (0, 0) and (5, 0). Based on the text’s discussion, sketch accurately the 

circle whose points are 2 as far from (5, 0) as they are from the origin. 
b) Where on the circle is the triangle’s third vertex? The answer shows that there are two 
noncongruent triangles that fit the description. 
c) What are the (two possible pairs of) coordinates of the third vertex? 

b) loci and equations 

Fermat made the association between two-variable equations and loci, in a systematic way. He 

matched general first-degree equations 

 ax + by = c  (at least one of a and b nonzero)  

with lines. (Note how making “linear equation” a synonym for “first-degree equation” mixes geometric 

and algebraic language.) He matched general second-degree equations 

 ax
2
+ bxy + cy

2
 + dx + ey + f  =  0 

with conic sections. He went on to try to classify higher degrees. 

To see some of the association, take the simplest quadratic graph, given by y = x
2
. Without reference 

to conic sections, we can see that it has a low point at (0, 0). From there, it rises symmetrically to right 

and left. We habitually call it a parabola. Is it really a parabola?  

For it to be one, it must meet the parabola’s characterization: Its points must be equally distant from 

a focus and a directrix. Since the parabola’s axis would have to be the y-axis, the focus has to 

be (0, f), some distance f above the low point. The directrix has to be the line y = -f , the same 

distance below the origin. To find f, just take another point on the locus, like (1, 1). Its distances are 

1 + f  above the line, ([1 – 0]
2
 + [1 – f ]

2
) from the proposed focus. From 

 ([1 – 0]
2
 + [1 – f ]

2
)  =  1 + f, 

we conclude f = 1/4. Exercise 1 asks you to show that the graph of y = x
2
 is precisely the locus of 

points equidistant from the point (0, 1/4) and the line y = -1/4. The graph really is a parabola. 

In similar fashion, we classify the graph of y = 1/x as a hyperbola. (Writing y = x
-1

 allows us to think 

of it as a power graph; writing xy = 1 puts it into the second-degree family.) Does it meet the criterion? 

For a hyperbola, the transverse axis bisects the angle between the asymptotes. Hence the 45-line 

would have to be the axis, and the points (1, 1) and (-1, -1) the two vertices. Their separation is 22, 

and that would be the constant difference between any given point’s focal radii. The foci would have 

to be on the axis, say at (f, f ) and (-f, -f ). 

We can find f  by algebra, beginning with 

 [distance from (2, 1/2) to (f, f )]  =  [distance from (2, 1/2) to (-f, -f )] – 22. 

Too much work: Let us instead recall that if a hyperbola is rectangular (asymptotes perpendicular), 

then its foci are 2 as far from the center as the vertices are. That puts the foci at (2, 2) 

and (-2, -2). Exercise 2 asks you to verify that our graph is indeed a hyperbola. 
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Those uncomplicated examples belie the difficulty in linking second-degree equations with conics. 

(The difficulty is there without even considering their degenerate forms: xy = k gives a hyperbola 

whether k is positive or negative, but not if k = 0.) Remember that turning 

 ax
2
+ bxy + cy

2
 + dx + ey + f = 0 

into a standard form requires rotation of the axes, which Fermat demonstrated. (Compare Exercise 3.) 

b Exercises VII.A.4

1. a) Show that if a point (x, y) is equally distant from the point (0, 1/4) and the line y = -1/4, 
then it satisfies y = x2. 
b) Show conversely that if a point (x, y) satisfies y = x2, then it is equidistant from the 
point (0, 1/4) and the line y = -1/4. 

2. a) Show that if the distance from (x, y) to (2, 2), minus the distance from (x, y) 

to (-2, -2), is 22, then (x, y) satisfies y = 1/x. (This is a variation on a standard 
demonstration in textbooks covering analytic geometry.) 

b) Show conversely that if (x, y) satisfies y = 1/x, then its distances to (2, 2) 

and (-2, -2) differ by 22. 

3. Suppose you set up the vw-coordinate system at the same origin as the xy-system, with 

the v-axis going up to the right, the w-axis up to the left, at 45 angles to the xy-axes. Then 
(we accept that) the coordinates (v, w) of a point relate to the (x, y) coordinates by 

 v = x2/2 + y2/2,  w = -x2/2 + y2/2. 
a) Solve those equations for x and y in terms of v and w. 
b) Substitute the result of (a) to turn xy = 1 into (the now standard form of hyperbola) 
 v2/2 – w2/2  =  1. 

c) algebra via geometry 

We applied coordinate geometry to algebra as early as section IV.B.3, on Zhu Shijie’s (“Horner’s”) 

method. Now we draw conclusions about the solutions of cubic equations from the geometry of graphs. 

In Section VI.B, studying cubics algebraically, we reduced the most general cubic to the form 

 x
3
 + bx + c = 0. 

Assume that c is negative; if it is positive, the argument needed is the mirror-image of that below. We 

may then write c = -a
2
/2 and rewrite the equation as 

 x
2
 + b  =  a

2
/2x. 

Therefore the solutions to the cubic are given by the intersections of the two graphs 

 y = x
2
 + b and y = a

2
/2x.  

(i) the possibilities 

Adapting the discussion from (b), we see that the graph of y = x
2
 + b is a parabola with low point 

at (0, b), focus (0, b + 1/4), directrix y = b – 1/4. The graph of y = a
2
/2x is a hyperbola with vertices 

at (a/2, a/2), which imply foci at (a, a). The focal radii from any of its points differ by the 

distance between those vertices, 2a.  

The hyperbola has origin-symmetric halves, black in the figure below, in Quadrants I and III. The 

Quadrant I half starts indefinitely high indefinitely close to the y-axis, then drops indefinitely to the right 

to approach indefinitely close to the x-axis. That means it starts above and left of the parabola, ends up 

below and right, no matter what b and a are. It is intuitively clear—without reference to theorems from 

calculus —that the graphs must meet in the quadrant. Also, they diverge to left and right of the meeting, 

so the intersection is unique. We conclude that the original cubic has exactly one positive solution. 
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If b is positive or not too negative, then the left half of the parabola (blue 

curve in the figure) is entirely above the Quadrant III part of the hyperbola 

(black). In that case, the cubic has no negative solutions. If b is sufficiently 

below zero, then the left half of the parabola is low enough (green) to cross 

the hyperbola twice in the quadrant. That situation implies that the cubic has 

two negative solutions to go with the one positive. 

Somewhere between no intersection and two intersections, we have the 

possibility that the two graphs have a single common point in Quadrant III. 

That means the parabola (red in the figure) is tangent to the hyperbola. We 

will look for common tangents, to characterize the situation when there is a lone (double) negative 

solution. (Later we will discuss Fermat’s algebraic characterization of the tangents, but here we call 

upon the geometry of Apollonius and Torricelli.)  

(ii) tangent to the parabola 

Remember Torricelli’s statement (section VII.A.2a) that the tangent at point P bisects the angle bet-

ween the line (PF in the figure at right) to the focus and the perpendicular 

(PB) to the directrix. We fix the tangent in terms of slopes. 

By the definition of the parabola, PF and PB are equal distances. 

Therefore the base BF of the isosceles triangle PBF is perpendicular 

to the bisector of the angle at P. The slope of BF is 

 (b + 1/4 – [b – 1/4])/(0 – x)  =  -1/2x, 

assuming P is not at the vertex (0, b). We conclude that the slope of 

the tangent at P is 2x. 

Notice that the slope happens to be 2x even when P is at the vertex and x = 0. 

(iii) tangent to the hyperbola 

Our two sources say that the tangent to a hyperbola bisects the angle between the focal radii. 

In the figure at right, we see the focal radii (solid green) 

from P(x, y) to F1(a, a) and F2(-a, -a), as well as the (red) 

tangent at P to the hyperbola. Put Q along PF1 to make PQ = 

PF2. Triangle PQF2 is isosceles. Hence the tangent, bisector of 

the angle at P, is perpendicular to QF2. 

We need to spot Q. Begin with the fact that 

 2a  =  PF1 – PF2   =  PF1 –PQ  =  QF1. 

Assume that Q is h to the left and v down from F1. From the 

right triangles with dotted black legs, we see that 

 h/2a = (a – x)/PF1 and v/2a = (a – y)/PF1. 

Therefore the coordinates of Q are 

 xQ  =  a – h  =  a – 2a(a – x)/PF1, 

 yQ  =  a – v  =  a – 2a(a – y)/PF1. 

We then conclude that the slope of QF2 is 

 [a – 2a(a – y)/PF1 + a]/[a – 2a(a – x)/PF1 + a] 

  = (2aPF1 – 2a
2
 + 2ay)/(2aPF1 – 2a

2
 + 2ax). 

Consequently the tangent at P has slope 

 -(2aPF1 – 2a
2
 + 2ax)/(2aPF1 – 2a

2
 + 2ay). 
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Write the relation PF2 = PF1 – 2a as 

 ([x + a]
2
 + [y + a]

2
) = ([x – a]

2
 + [y – a]

2
) – 2a. 

Square to the form 

   ([x + a]
2
 + [y + a]

2
) =   ([x – a]

2
 + [y – a]

2
) – 4a PF1 + 4a

2
, 

and simplify to find 

 PF1 = -x – y + a. 

Then we can substitute to rewrite the slope of the tangent at P(x, y) as 

 -(2a[-x – y + a] – 2a
2
 + 2ax)/(2a[-x – y + a] – 2a

2
 + 2ay) 

  =  (2ay)/(-2ax)   =  -a
2
/2x

2
. 

[Yes, you do have to check that simplification. Remember that y = a
2
/2x, with x never zero.] 

(iv) the common tangents 

For the parabola and hyperbola to be tangent at (x, y), we need 

 2x  =  -a
2
/2x

2
,  forcing 

 x  =  ∛(-a
2
/4)  =  -∛(a

2
/4). 

In terms of the original c = -a
2
/2, that means the cubic’s solution is at x = -∛(-c/2). That finding 

agrees with the section VI.B.3a placement of the double root. Because the parabola and hyperbola 

have the corresponding point in common, we know 

 y = x
2
 + b = (-c/2)

2/3
 + b = c

2/3
2

-2/3
 + b 

must be the same as 

 y = -c/x = c(-c/2)
-1/3

 = -c
2/3

2
1/3

. 

Therefore the original cubic must have had 

 b  =  -c
2/3

2
-2/3

 – c
2/3

2
1/3

  =  -c
2/3

2
-2/3

[1 + 2], or 

 b
3
  =  -c

2
2

-2
[3]

3
  =  -27c

2
/4. 

It must have had the discriminant c
2
 + 4b

3
/27 equal to zero. 

Except for our use of coordinates (and therefore slopes), this argument is the kind Omar Khayam 

brought to bear in his analysis of cubics. See the end of Section V.A.3, especially Exercise 5 there. 

b Exercises VII.A.4

1. Recall Apollonius’s result (section III.A.6a(iii)) that on a parabola with a given chord, the 
place where the tangent is parallel to the chord is halfway (horizontally in our situation) 
between the ends of the chord. Pick a point of the parabola y = x2 + b to the right of (x, y) 
and a second point equally far left. Find the slope of the chord joining the points, to verify 
that the slope of the tangent at (x, y) is 2x. 

d) tangents to power graphs 

Fermat’s algebraic (coordinate) geometry gave him the tangents to the whole class of power graphs. 

His method is precisely the way we introduce tangents for polynomial graphs in beginning calculus.  

Let us work the example y = x
4
; the extension to general positive integer powers will be obvious. 

To describe the tangent at the point (a, a
4
), Fermat took the nearby point ([a + h], [a + h]

4
), with 

some small positive number h. He examined the slope of (what we call) the secant joining them. 

That would be 

 ([a + h]
4
 – a

4
)/([a + h] – a) =  (4a

3
h + 6a

2
h

2
 + 4ah

3
 + h

4
)/h 

  =  4a
3
 + 6a

2
h + 4ah

2
 + h

3
. 

Setting h = 0 (Fermat could not have thought in terms of “limits”) makes the fraction meaningless, 

but not the last expression. It becomes 4a
3
, which Fermat was happy to call the slope of the tangent. 
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The method works for negative exponents also; see Exercise 1. For all integers, the tangent to the 

graph of y = x
n
 at (a, a

n
) has slope na

n – 1
. 

This method arose, not in the investigation of tangents per se, but in locating the turning points of 

polynomial graphs. In the book Method [for] Finding Maxima and Minima (published, of course, after 

Fermat died), he described the equivalent of what we sometimes call Fermat’s theorem: The maxima 

and minima of polynomials are to be found among the places where the slope of the tangent is zero. 

(See Exercises 2 and 3.) 

d  Exercises VII.A.4

1. Apply Fermat’s method to find the slope of the tangent to y = x -3 at the point (a, a -3). 

2. a) Apply the method to y = x(10 – x). 
b) Use the slope to find the maximum possible value of x(10 – x). (Compare 
Exercise VI.B.4b:1.) 

3. a) Apply the method to y = x3 – 27x – 54. 
b) Use the slope to find the graph’s high point to the left of the y-axis, and the low point to 
the right. 

e) areas under power graphs 

(i) positive powers 

Fermat proceeded to the areas under power graphs. His method there had elements of our approach 

in elementary calculus, but used an ingenious twist. 

Consider the region under the graph of y = x
3
 from x = 0 to x = a, pictured 

at right. Partition it into vertical strips. From right to left, make each strip 

cover the same fraction of the width not yet taken. 

For example, use the fraction 0.01. The first strip spans the rightmost 1% 

of the region, the part lying between x = .99a and x = a. At the right edge 

of the strip, the graph has height a
3
. Therefore its circumscribed rectangle 

(filled in blue in the figure) has area 

 (a – .99a) a
3
 = .01 a

4
. 

The second strip spans 1% of what remains from x = 0 to x = .99a. That 

is, it covers x = .99(.99a) = .99
2
a to x = .99a. At its right edge, the graph has height (.99a)

3
. 

Accordingly, its circumscribed rectangle (green) has area 

 (.99a – .99
2
a) (.99a)

3
 = (.99

4
) .01 a

4
. 

For the third strip, the span is x = .99
3
a to x = .99

2
a. That implies a rectangle with area 

 (.99
2
a – .99

3
a) (.99

2
a)

3
 = (.99

8
) .01 a

4
.  (Check the algebra.) 

The pattern is clear. 

The areas of this infinity of rectangles add up to 

 .01 a
4
 + (.99

4
) .01 a

4
 + (.99

8
) .01 a

4
 + … 

  = .01 a
4
 [1 + .99

4
 + .99

8
 + …] 

  = (1 – .99) a
4
 1/(1 – .99

4
) 

  = a
4
/(1 + .99 +.99

2
 +.99

3
).   (Explain them all!) 

Now replace the fraction 0.01 by 0, pushing .99 to 1.00. That shrinks the rectangles to infinitesimals 

that exactly cover the region under the graph. We judge the region’s area to be a
4
/4. 

   

a 
.99a 

…  .99
2
a 

y = x
3 

O 
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Our rectangles obviously overestimate the area: They use the maximal height, on the right. Fermat 

does not seem to have shared Archimedes’s wish to squeeze the area between the “upper estimate” and 

the lower. Do Exercise 1 to see that using the minimal heights, on the left, leads to the same area. 

(ii) negative powers 

With negative exponents, Fermat argued even more cleverly. He turned the question inside out: To 

study the region under y = x
 -4

 from x = a to x = b, examine instead the infinitely long region to its right. 

Partition the part rightward of x = b geometrically (“fractionally”). 

Using 1% again, we put the breaks at x = 1.01b, x = 1.01
2
b, …. Out 

there, the first strip (blue in this figure) extends from x = b 

to x = 1.01b. Consequently the circumscribed rectangle has 

width (1.01b – b), height b
-4

 on the left, area 

 (1.01b – b) b
-4

   = .01 b
-3

. 

The next rectangle (green) has width (1.01
2
b – 1.01b), height (1.01b)

-4
 

on the left, area 

 (1.01
2
b – 1.01b) (1.01b)

-4
 = (1.01

-3
) .01 b

-3
. 

For the one after that, it is base (1.01
3
b – 1.01

2
b), height (1.01

2
b)

-4
, area 

 (1.01
3
b – 1.01

2
b) (1.01

2
b)

-4
 = (1.01

-6
) .01 b

-3
.  

(Check the last two!) We conclude that the rectangle areas add up to 

 .01 b
-3

 + (1.01
-3

) .01 b
-3

 + (1.01
-6

) .01 b
-3

 + … 

   = .01 b
-3

 [1 + 1.01
-3

 + 1.01
-6

 + …] 

   = b
-3

 (1.01 – 1) 1/(1 – 1.01
-3

) 

   = b
-3

 1.01
3
/(1.01

2
 + 1.01 + 1).  (Explain.) 

Replace 1.01 by 1.00 to conclude that the area beyond x = b is b
-3

/3. 

The area beyond x = a must be a
-3

/3. Therefore the area between x = a and x = b is a
-3

/3 – b
-3

/3. [In 

elementary calculus, we would write it as b
-3

/-3 – a
-3

/-3.] 

(iii) the special case 

The argument in (i) for y = x
3
 adapts easily to rational exponents (Exercise 2), including negative 

fractions exceeding -1. The argument for y = x
 -4

 (ii) adapts to negative fractions below -1 (Exercise 3). 

However, each argument lands on its face if the exponent is -1. For the graph of y = x
 -1

, the crucial sums 

(the sums in red) are infinite, either 

 [1 + .99
0
 + .99

0
 + …] or [1 + 1.01

0
 + 1.01

0
 + …]. 

Still, the specific case y = x
 -1

 has a peculiar interest. It ends up relating to logarithms. 

Apply Fermat’s scheme to the graph of y = 1/x from x = a to x = b. The strip with the rightmost 1% 

of the region starts at x = a + .99(b – a) and ends at x = b. Of the remaining expanse from x = a 

to x = a + .99(b – a), the rightmost 1% starts at x = a + .99
2
(b – a) and ends at x = a + .99(b – a). The 

third strip covers x = a + .99
3
(b – a) to x = a + .99

2
(b – a), and we see the pattern. 

With those endpoints, the strips have widths 

 b – [a + .99(b – a)]   = .01 (b – a), 

 [a + .99(b – a)] – [a + .99
2
(b – a)] = .99 (.01) (b – a), 

 [a + .99
2
(b – a)] – [a + .99

3
(b – a)] = .99

2 
(.01) (b – a), …. 

Using the minimal heights, at the endpoints on the right, we establish inscribed rectangles of heights 

 1/b, 1/[a + .99(b – a)], 1/[a + .99
2
(b – a)], …. 

Therefore the areas of the rectangles add up to 

 .01(b – a)/b + (.99).01(b – a)/[a + .99(b – a)] + (.99)
2
.01(b – a)/[a + .99

2
(b – a)] + …. 

 

O 

1.01b 

y = x
-4 

a b 1.01
2
b 
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Those terms are not in any familiar progression. We have no easy way to sum them. However, the 

sum has one reasonable feature: It has a and b in first degree throughout, with no powers or roots. 

We can divide all the numerators and denominators by a. Thereby the sum becomes 

    .01(b/a – 1)/(b/a) + (.99).01(b/a – 1)/[1 + .99(b/a – 1)] + (.99)
2
.01(b/a – 1)/(1 + .99

2
(b/a – 1) + …. 

Observe that the .01’s and .99’s stayed put. This new sum has the same structure as the previous, 

except that b/a replaced b and 1 replaced a. In other words, the 1% approximation for the area 

from x = a to x = b is the same as the 1% approximation would be for the area from x = 1 to x = b/a. 

The conclusion is inescapable: The area from x = a to x = b equals the area from x = 1 to x = b/a. 

Use the function notation L(t) to denote the area under y = 1/x from x = 1 to x = t. The area 

from x = 1 to x = b/a is L(b/a). We just argued that this matches the area from x = a to x = b. Draw a 

figure to convince yourself that the latter area is L(b) – L(a). The function L has the property that 

 L(b/a) = L(b) – L(a). 

Among our functions, the only kind that turns division into subtraction that way is the logarithm. Let us 

accept that L(t) is the logarithm of t to some base, which we can only estimate; see Exercise 4. 

[Bear in mind that Fermat would not have thought this way. Logarithms were invented around 1600 

as devices for multiplication. Except in some work by Torricelli (see Boyer), the idea of a log function 

developed after Fermat. It had been like that with trigonometry. Trigonometry was a measurement tool 

for thousands of years, then under Viète a device for calculation (Boyer). It was long after Fermat that 

the idea of trigonometric functions came under study.] 

e Exercises VII.A.4

1. Referring to the figure in (i) of the graph of y = x3: Show that if we use the minimal height (at 
the left) of each strip to approximate the total area, then we are still led to the area a4/4. 
(Shortcut: By exactly how much does the upper estimate exceed the lower?) 

2. Try the area argument for y = x5/2. You will easily find that the rectangles sum up to 
 a7/2 (1 – .99) 1/(1 – .997/2). 
To factor numerator and denominator, set c = .991/2. Simplify the fraction, replace c 
by 1, and lead to area = a7/2/(7/2). 

3. Use the “area rightward” argument to evaluate the area under the graph of y = x-5/2 
between x = a and x = b. 

4. When we let L(t) denote the area under y = 1/x, we concluded that L(t) = log t, to an 
unnamed base.  Leonhard Euler gave that base the designation “e.” Then L(e) = loge e has 
to be 1. Sketch the graph of y = 1/x from x = 1 to x = 3, approximate areas under it in some 
simple way, and use the approximation to estimate e. 

5. Suppose we revolve the region under y = 1/x, rightward from x = 1, about the x-axis. We 
produce an infinitely long solid of revolution. The figure below right shows some of it, 
outlined in red. It is nicknamed “Torricelli’s trumpet,” because he found the results below. 
a) In the figure, the dotted black outline is the inscribed cylinder 
between x = 1 and x = 2. The surface area of the trumpet 
surrounding it is clearly greater than the curved area of the 
cylinder. (Think of the trumpet as consisting of infinitesimal round 
bands of bigger diameter than the cylinder’s.) Show that the 
surface area of the whole trumpet is infinite, by summing the 
areas of the inscribed cylinders from 1 to 2, 2 to 3, …. (Hint: You 
need Oresme’s deduction, section V.B.3b, that the harmonic 

   

O 

y = x
-1 

1 2 3 4 

http://www.archive.org/stream/AHistoryOfMathematics/Boyer-AHistoryOfMathematics#page/n408/mode/1up
http://www.archive.org/stream/AHistoryOfMathematics/Boyer-AHistoryOfMathematics#page/n355/mode/2up
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series adds up to infinity.) 
b) The solid black outline is the circumscribed cylinder between x = 2 and x = 4. Clearly the 
volume of the contained part of the trumpet is smaller than the volume of the cylinder. 
Show that the whole trumpet has finite volume, by summing the volumes of the 
circumscribed cylinders from 2 to 4, 4 to 8, …. [This was a strange finding: a finite volume, 
despite the solid’s infinite extent. I once heard this description: You can fill the trumpet with 
a finite amount of paint, but you cannot paint its inside.] 

f) number theory 

Fermat’s number theory is worth a detour off the road to calculus. He had a knack for discerning 

number patterns. Here we study four that inspired fruitful research and beautiful results in the theory. 

(i) Fermat’s Little Theorem 

Theorem 1. If p is a prime that does not divide a, then a
 p–1

 – 1 is divisible by p. 

Fermat extrapolated the statement from many examples. We could give his elementary proof, but it 

would be clumsy with our current arithmetical language. Later, we will write two nice proofs, an 

elementary one from Euler and an elegant one in the language introduced by Carl Gauss. [“Our current 

arithmetical language” sometimes forces us to use remainders. We could put the theorem thus: If p is a 

prime that does not divide a, then a
 p–1

 has remainder 1 on division by p.] 

Look at examples. 

Let p = 7. We have 

 1
6
 – 1 = 0,   2

6
 – 1  =  63  =  9  7,    3

6
 – 1  =  728  =  104  7. 

Instead of calculating 4
6
, 5

6
, 6

6
, observe that the binomial theorem gives 

 4
6
 – 1  =  (7 – 3)

6
 – 1  =  7

6
 – 6(7)

5
3 + … – 6(7)

1
3

5
 + 3

6
 – 1. 

The red terms are all multiples of 7, and we already know that 3
6
 – 1 is another multiple. Therefore 

 4
6
 – 1  =  (multiplier)  7, 

and analogously with 5 and 6. 

The theorem is not confined to the numbers below p. We have 

 60
6
 – 1  =  (8  7 + 4)

6
 – 1  

    =  (8  7)
6
 + 6(8  7)

5
4 + … + 6(8  7)

1
4

5
 + 4

6
 – 1 

    =  multiple of 7 + another multiple of 7. 

Checking is harder with bigger primes, but we can use remainders here and there to save calculation. 

Take p = 43, a = 9. For the powers of 9, write first 

 9
2
  =  43 + 38. 

Let us stretch “remainder” and write 

 9
2
  =  2  43 – 5. 

Then 

 9
4
  =  (i)43 + 25, 

  9
8
  =  (j)43 + 625  =  (j + 14)43 + 23, 

   9
16

  =  (k)43 + 529  =  (k + 12)43 + 13,  

    9
32

  =  (l)43 + 169  =  (l + 3)43 + 40  =  (l + 4)43 – 3. 

(We are as willing to tweak the division algorithm of the Greeks [section III.B.1b] as we are to adapt 

the multiplication-by-doubling of the Egyptians [section II.A.2].) Finally, 

 9
42

  =  9
32 

9
8 
9

2
  =  ([l + 4]43 – 3) ([j + 14]43 + 23) (2  43 – 5) 

    =  (m)43 + (-3)(23)(-5)  =  (m + 8)43 + 1. 

Therefore 9
42

 – 1 is divisible by 43. (Gauss’s language will make such calculations much easier.) 
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(ii) sum and difference of squares 

Proposition. If p is a prime whose remainder on division by 4 is 1, then there is a unique pair of natural 

numbers whose squares add up to p. 

Again, Fermat generalized from a multitude of examples. For this statement, he did not have a proof. 

The first known proof was by Euler. 

To give examples: 

 13 = 3
2
 + 2

2
, 61 = 6

2
 + 5

2
. 

The theorem is silent about 21 and 65, because they are composite. You can see that no two squares 

sum to 21, whereas 65 = 7
2
 + 4

2
 = 8

2
 + 1

2
. It is likewise silent on primes whose remainder is 3. We 

will confirm later that no such number, prime or not, can be the sum of two squares. (Compare 

Exercise II.B.1:1a-b) 

Boyer says that Fermat knew that any prime is the difference of just one pair of squares. We can 

improve on that with the following theorem. 

Theorem 2. A number can be written as the difference of nonnegative squares in as many ways as it can 

be written as the product of two factors of the same parity. In symbols: Given a natural k, the number of 

pairs m  n  0 with k = m
2
 – n

2
 equals the number of pairs u  v  1 of the same parity with k = uv. 

For an example, remember that the j’th and (j – 1)’th squares differ by the j’th odd number: 

 j
2
 –  (j – 1)

2
 = 2j – 1. 

That means every odd number is the difference of consecutive squares. Thus, 

 21 = 11
2
 – 10

2
,  47 = 24

2
 – 23

2
. 

We know 47  1 is the only factoring of 47. By Theorem 2, we infer that 24
2
 and 23

2
 form the only 

pair whose difference is 47. On the other hand, 21  =  21  1  =  7  3. That is two factorings; there 

must exist some other pair of squares whose difference is 21. (What is that other pair?) 

Similarly, if k is double an odd number, the way 2 and 62 are, then k = m
2
 – n

2
 is impossible. In this 

case, in any factorization of k, one factor has the 2 and the other does not. In other words, the two 

factors are necessarily of opposite parity; no squares differ by k. 

To prove the theorem, we will match up differences of squares and same-parity factorizations. 

Suppose k has a difference-of-squares expression 

 k  =  m
2
 – n

2
,   m  n  0. 

The two natural numbers 

 u = m + n and v = m – n 

differ by the even number 2n. They therefore have the same parity, and clearly k = uv. In that 

manner, each expression of k as difference of squares yields an expression of k as the product of two 

factors of like parity. 

Different difference-of-squares expressions yield different like-parity factorizations. Suppose k has a 

second difference-of-squares expression 

 k  =  M
 2

 – N
 2

,  with say M > m. 

Let 

 U = M + N,  V = M – N. 

Then k = UV has to be a new same-parity factoring. We cannot have U = v, because U  M > m  v. 

We also cannot have U = u, because that would force V = v, so that 

 M  =  (U + V)/2 would equal  (u + v)/2  =  m. 

Thus, each difference yields a factoring, and different differences yield different factorings. It 

follows that there are at least as many factorings as there are differences. (See also Exercise 3.) 

http://www.archive.org/stream/AHistoryOfMathematics/Boyer-AHistoryOfMathematics#page/n403/mode/1up
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Finally, every factoring comes from a difference. If k = U V is such a factoring, then each of 

 M  =  (U + V)/2  and  N  =  (U – V)/2 

is a nonnegative integer, because U + V and U – V are both even. We have 

 k  =  M
 2

 – N
 2
  and  U  =  M + N, V  =  M – N.  (Verify!) 

Those say that U V comes from M
 2

 – N
 2

. Since every factoring comes from a difference, and each 

difference yields just one factoring, there must be at least as many differences as there are factorings. 

Doubtless you can see the pigeonhole principle at work in that argument. In basic form, it says that 

if you try to put n + 1 objects into n pigeonholes, then at least one pigeonhole will get more than one 

object. [I don’t know if the name comes from actual birds, or from the British use of “pigeonhole” for 

mailbox. If you try to stuff n + 1 letters into n mailboxes, ….] It implies that if you stuff letters into 

mailboxes, different letters in different boxes, using up all the boxes, then the number of letters must 

have been the same as the number of mailboxes. That is how we matched differences and factorings. 

(iii) Fermat’s primes 

Fermat guessed that every number of the form 2
2

n

 + 1 is prime. We verify the first three examples 

immediately:  2
2

0

 + 1 = 3,  2
2

1

 + 1 = 5,  2
2

2

 + 1 = 17. 

To check 

 2
2

3

 + 1  =  256 + 1  =  257, 

we need only divide by primes 257 = 16+ or less. None of 2, 3, 5, 7, 11, 13 divides 257; it is prime. 

The next one, 

 2
2

4

 + 1  =  2
16

 + 1, 

happens to be prime, but takes long to check. Remember that 2
10

  10
3
. That means 

 2
16

 + 1  =  2
6 

2
10

 + 1    64,000. 

The square root of that number is 2
8
+ = 256+. That makes for a good few primes to try. 

Fermat was mistaken. It turns out that 

 2
2

5

 + 1  =  2
32

 + 1    4  10
9
 

is composite. But no human could have tried dividing by all the primes below its square root, just 

over 2
16

. A better approach was required. [Guess who provided it.] 

(iv) Fermat’s Last Theorem 

Fermat guessed that the Diophantine equation 

 x
n
 + y

n
  =  z

n
 

has no natural-number solutions if n  3. The statement is called “Fermat’s Last Theorem.” Remember 

that we characterized the solutions for n = 2, namely the Pythagorean triples. Fermat took care of n = 4; 

he proved that x
4
 + y

4
 = z

4
 is impossible. In fact, he proved that you cannot solve even x

2
 + y

4
 = z

4
. 

Theorem 3. The equation 

 x
2
 + y

4
  =  z

4
 

has no natural solutions. 

Assume x = A, y = B, z = C is a solution. Let d be the greatest divisor of B and C. Then d
 4
 

divides C
4
 – B

4
 = A

2
. It follows that d

 2
 divides A (Exercise 4a). From 

 (A/d
 2

)
2
 + (B/d)

4
  =  (C/d)

4
, 

we see that a = A/d
 2

,  b = B/d,  and  c = C/d  make 

 a
2
 + b

4
 = c

4
. 
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We have produced another solution, one in which b and c are relatively prime and the numbers are 

no bigger than before. 

Because 

 a
2
 + (b

2
)
2
 = (c

2
)
2
, 

we know a, b
2
, and c

2
 form a primitive Pythagorean triple. Therefore (Theorem 1 in section II.B.1) 

there exist relatively prime u and v, of opposite parity, such that one of a and b
2
 is u

2
 – v

2
, the other 

is 2uv, and c
2
 = u

2
 + v

2
. (Remember that a and b do not have symmetric roles.) 

Suppose first that 

 a = 2uv, b
2
  =  u

2
 – v

2
.  Then 

 b
2
c

2
  =  (u

2
 – v

2
)(u

2
 + v

2
) = u

4
 – v

4
, or 

 (bc)
2
 + v

4
  =  u

4
. 

We have another solution, and it has a smaller number on the right: u
4
  =  (u

2
)
2
  <  (c

2
)
2
. 

Suppose instead that 

 a = u
2
 – v

2
, b

2
 = 2uv. 

The product 2uv is a square, with u and v relatively prime. That can happen only one way 

(Exercise 4b): In its prime factorization, one of u and v has an odd number of 2’s and even numbers 

of all its other prime factors; and the other has even numbers of primes, all those primes odd and 

different from the previous. In other words, there are relatively prime m and n, the latter odd, such 

that u = 2m
2
 and v = n

2
, or vice-versa. Therefore 

 c
2
  =  u

2
 + v

2
  =  (2m

2
)
2
 + (n

2
)
2
. 

We now have 2m
2
, n

2
, and c forming a primitive triple. That means there exist relatively prime U 

and V such that 

 2m
2
  =  2UV,  n

2
  =  U

 2
 – V

 2
,  c  =  U

 2
 + V

 2
. 

(There is no question which one, 2m
2
 or n

2
, is even.) From m

2
 = UV, we conclude (Exercise 4c) that 

each of U and V is a square, say U = s
2
, V = t

 2
. The middle equation has 

 n
2
  =  (s

2
)
2
 – (t

2
)
2
, or 

 n
2
 + t

 4
  =  s

4
. 

We have another solution whose right side is smaller than in the previous: s
4
 = U

 2
 < c < c

4
. 

In the detailed algebra above, nothing is by itself contradictory. It merely says that if you name one 

solution, then it is possible to construct another with a smaller right side. But a contradiction is inherent 

there. The contradiction underlies the method of “infinite descent,” which Fermat used often. The 

argument above is recursive; you can apply it repeatedly. Accordingly, one solution to 

 x
2
 + y

4
 = z

4
 

leads to a smaller one, which leads to a smaller one, ad infinitum. That is impossible: You cannot 

descend indefinitely through the natural numbers. Therefore no solution is possible. 

Theorem 3 has an odd geometric consequence: The area of a right triangle with integer sides cannot 

be a square. 

Suppose a right triangle has sides a, b, and c, and its area  ab/2  is  j
2
. Write 

 a
2
  =  c

 2
 – b

 2
, 

and let d be the GCD of b and c. Then d divides a (Exercise 4d), and 

 (a/d)
2
 + (b/d)

2
  =  (c/d)

2
 

names a primitive triple. Its corresponding triangle’s area (a/d)(b/d)/2  =  j
2
/d

 2
  is still a square. 
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We again have relatively prime u and v with (say) 

 a/d  =  u
 2

 – v
 2

,  b/d  =  2uv,  c/d  =  u
 2

 + v
 2

. 

Then 

 (j/d)
2
  =  (a/d)(b/d)  =  (u

 2
 – v

 2
) uv. 

Each of u and v is relatively prime to u
 2

 – v
 2

. After all, any divisor of both u and u
 2

 – v
 2

 would 

divide u
 2

 – (u
 2
 – v

 2
) = v

 2
; and similarly with v. By Exercise 4c, each of u

 2
 – v

 2
, u, and v has to be a 

square. But then, u = k
2
, v = l

 2
, u

 2
 – v

 2
 = m

2
 give 

 m
2
 = u

 2
 – v

 2
 = k

4
 – l

 4
. 

That contradicts Theorem 3. The area cannot be a square. 

Fermat had the “Last Theorem” right, but it took the world of mathematics 350 years to prove it. 

(Boyer, writing in 1968, said “the problem remains unsolved.” Merzbach, on page 328 from 2011, 

writes “the problem remained unsolved until the 1990s.”[sic]) The statement’s relative elementariness 

and durable resistance to proof would by themselves have made it one of the most famous number 

conjectures of all time. What made it irresistible was that Fermat said he proved it, presumably easily. 

(Remember that Fermat’s “easily” included arguments like Theorem 3’s above.) Fermat had the habit of 

writing in the margins of his books. He made the statement—in his language, “to divide a … power into 

two powers of the same denomination above the second is impossible”—in the margin of a translation 

of, appropriately enough, Diophantus. Then he added that he had found for it an “admirable” proof, 

which lamentably “the margin is too narrow to contain.” The challenge to find such proof was catnip to 

investigators until the end of the twentieth century. 

f  Exercises VII.A.4

1. Why did France become the center of European mathematics around 1650? 

2. From 360 = 23 32 5: In how many ways can 360 be written as the difference of squares?  

3. To show that different factorings give different difference-of-squares expressions, draw the 
Quadrant I branch of the graph of xy = k. Place onto the graph the points (u, v) to the right 

of (k, k) and (s, t) to the right of (u, v). 
a) Use the lines x + y = constant to show that s + t > u + v. The inequality guarantees that 
for the different factorings k = uv and k = st, 
 k  =  ([s + t ]/2)2 – ([s – t ]/2)2  and  k  =  ([u + v ]/2)2 – ([u – v ]/2)2 
are two different expressions of k as difference of squares. 

b) (Calculus) Show that rightward from x = k, x + y increases with (increasing) x. That 
forces s + t > u + v. 

4. Use prime factorization to show that: 
a) If d 4 divides A2, then d 2 divides A. 
b) If 2uv is a square and u and v are relatively prime, then one of them has to be 2m2 and 
the other n2, with n an odd number relatively prime to m. 
c) If a product uvw… (any finite number of factors) is a square, and the factors are pairwise 
relatively prime, then each of the factors has to be a square. 
d) If d 2 divides a2, then d divides a. 

5. Pascal 

Blaise Pascal (1623-1662) is best known in mathematics for his pioneering work, some of it with 

Fermat, on probability. In that area, he showed the importance of the number triangle (section IV.B.3) 

that now bears his name. However, he also worked on quadratures and tangents, especially with the 

cycloid. That was the trouble: He flitted from topic to topic, making brilliant contributions but too soon 

http://www.archive.org/stream/AHistoryOfMathematics/Boyer-AHistoryOfMathematics#page/n404/mode/1up
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abandoning one interest for the next (including a long retreat into religion). Chasing one interest, he built 

calculating machines. In the sciences, he advanced the study of fluid pressures, including Torricelli’s 

discoveries in air pressure and the principles of hydraulics. 

Our target just now is not his areas and tangents. We need instead another of his interests, using the 

principle of mathematical induction to prove statements about the natural numbers.  

Imagine a sentence, which we will abbreviate by P(n), that claims something about the natural 

number n. A perfect example is 

 1 + 3 + 5 + … + (2n – 1)  =  n
2
. 

It says that the sum of the first n odd natural numbers is the n’th square.[This was the first relation to 

which the principle was applied explicitly, 80 years before Pascal used it. See Kline, page 272.] The 

idea is that you can prove P(n) to be true for all natural n by doing two things: 

1. Prove that P(1) is true. 

2. Assume that P(m) is true. Based on that assumption and other knowledge, prove that P(m + 1) is true. 

Usually #1 (the base case)is an easy task. The key to #2 (the inductive step) is the crucial first 

word. You begin, not by proving something, but by assuming something (the induction hypothesis). 

Then you use that information to prove something related. The reason the method works is, in step #1 

you prove P(1). Because step #2 says that the truth of one instance implies the truth of the next one, it 

follows that P(2) is true. Because that one is true, P(3) is true, …. 

We will give a complicated example, in the next section, of proof by induction; try the simple 

sentences in the exercises. 

 Exercises VII.A.5

1. Prove by induction that for every natural number n: 
a)  1 + 2 + … + n  =  n(n + 1)/2. 
b) 2n > n. 
c) The powers of 2 add up to 1 less than the next power: 
 20 + 21 + 22 + … + 2n  =  2n+1 – 1. 

2. Look at the sentence below, and judge the induction proof that follows it. 
Sentence: In a set of n horses, all of the horses are of the same color. 
Proof: 
Step 1. Clearly in a set of 1 horse, all of the (equine) members are of one color. 
Step 2. Assume that in every set of m horses, all of them are of one color. Consider now a 
set consisting of m + 1 horses. Among those, horses #1 through #m constitute a set of m 
horses. By the induction hypothesis, they are of one color. At the same time, horses #2 
through #(m + 1) make up a set of m horses. Hence they all have the same color. 
Therefore all m + 1 horses are of the same color as horses #2 through #m. That completes 
the proof required in the inductive step. 

6. Wallis 

We move to two professional mathematicians. John Wallis (1616-1703) was a cleric, but came to a 

prestigious mathematical post, Savilian Professor at Oxford. Like Cavalieri, he worked with infini-

tesimals. Like Fermat, he brought algebra to quadratures and tangents. He would have called the process 

“arithmetizing” the questions; the title of his 1655 Arithmetica Infinitorum was an illustrative choice. 

a) area under power graphs 

To study the area under the graph of y = x
k
, fixed integer k  0, Wallis first needed a number result. 

http://en.wikipedia.org/wiki/Pascal's_law
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He extrapolated from cases suggesting that 

 1
k
 + 2

k
 + … + n

k
 = n

k + 1
/(k + 1) + lower powers of n 

for all natural numbers n. Recall the familiar cases 

 1
1
 + 2

1
 + … + n

1
 = n(n + 1)/2  = n

2
/2 + n/2,  

 1
2
 + 2

2
 + … + n

2
 = n(n + 1)(2n + 1)/6 = n

3
/3 + n

2
/2 + n/6. 

Less familiar is k = 3, but it happens that 

 1
3
 + 2

3
 + … + n

3
 = n

2
(n + 1)

2
/4  = n

4
/4 + n

3
/2 + n

2
/4. 

We will indicate the proof by induction of the following general result. 

Theorem 1. Let k  1 be a fixed integer. Then for every natural number n, 

 n
k + 1

/(k + 1) < 1
k
 + 2

k
 + … + n

k
 < (n + 1)

k + 1
/(k + 1). 

You can see that “lower powers of n” come from the binomial expansion of (n + 1)
k + 1

. The proof is 

easy after you know calculus; see Exercise 4. 

To give evidence for the theorem, fix k = 6. The extension to general k will be evident, and fixing k 

makes it clearer that the induction is on n. 

The base case (step #1) is immediate: 

 1
7
/7  <  1

6
  <  (1 + 1)

7
/7. 

To do the inductive step, assume that 

 n
7
/7  < 1

6
 + 2

6
 + … + n

6
  < [n + 1]

7
/7. 

Then 

 n
7
/7 + (n + 1)

6
 < 1

6
 + 2

6
 + … + n

6
 + (n + 1)

6
 < [n + 1]

7
/7 + (n + 1)

6
. 

On the right, we have 

 [n + 1]
7
/7 + (n + 1)

6
 = ([n + 1]

7
 + 7(n + 1)

6)/7 

    < ([n + 1] + 1)
7
/7  (by the binomial theorem) 

    = (n + 2)
7
/7. 

On the left, we have 

 n
7
/7 + (n + 1)

6
  = n

7
/7 + (n

6
 + 𝐶1

6n
5
 + … + 𝐶5

6n + 1) 

    = (n
7
 + 7n

6
 + 7𝐶1

6n
5
 + … + 7𝐶5

6n + 7)/7. 

There we have used the binomial (or combinatorial) coefficients 𝐶1
6, …, 𝐶5

6. (We mentioned them in 

section VI.C.5b.) Multiply those by 7 to find 

 7𝐶1
6 = 7  6/1  > (76)/(12) =  𝐶2

7. 

  … 

 7𝐶5
6 = 7  (65432)/(12345) 

  > (765432)/(123456) =  𝐶6
7. 

(About these inequalities, see the next paragraph.) We therefore have 

 n
7
/7 + (n + 1)

6
  = (n

7
 + 7n

6
 + 7𝐶1

6n
5
 + 7𝐶2

6n
4
 … + 7𝐶5

6n + 7)/7 

    > (n
7
 + 7n

6
 + 𝐶2

7n
5
… + 𝐶6

7n + 1)/7 

    = (n + 1)
7
/7. 

From the inductive hypothesis, we have concluded that 

 (n + 1)
7
/7 < 1

6
 + 2

6
 + … + n

6
 + (n + 1)

6
 < (n + 2)

7
/7. 

That establishes the theorem for k = 6 by mathematical induction. 

You can view those 7𝐶𝑘
6 inequalities in terms of Pascal’s triangle. They amount to the statement that 

the numbers on line #7 of the triangle, except for 𝐶1
7 = 7 at the second spot, are less than 7 times the 

line #6 numbers to their upper lefts. 
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The lines are 

 #6   1 6 15 20 15 6 1 

 #7        1       7       21       35       35       21       7       1. 

For example, the second 35 is 20 + 15, which is less than 7  20 because on line #6, 

 15  =  (6543)/(1234)  <  6 (654)/(123)  =  6  20. 

With the numerical relation in hand, Wallis gives the area under the power graph.  

Theorem 2. The area of the region under the graph of y = x
6
, from x = 0 to x = a, is a

7
/7. 

In the figure at right, the verticals (green) under the graph at x = a/n, 2a/n, …, na/n are infinitesimals 

of the region under the graph. Their heights are 

 (a/n)
6
, (2a/n)

6
, …, (na/n)

6
. 

Their extensions (red) to the top of the enclosing rectangle are all a
6
 tall. 

Therefore the ratio of the sum of the region’s infinitesimals to the sum of 

the rectangle’s infinitesimals is 

 rn = (1
6
a

6
/n

6
 + 2

6
a

6
/n

6
 + … + n

6
a

6
/n

6
) / (n

 
a

6
) 

  = (1
6
 + 2

6
 + … + n

6
) / n

7
. 

From Theorem 1, 

 1/7  <  rn  <  (n + 1)
7
/(7n

7
) 

   =  1/7 + 𝐶1
7/(7n) + … + 𝐶6

7/(7n
6
) + 1 /(7n

7
). (Verify.) 

Now substitute n = . (Wallis actually did that; he was the first to use “” to symbolize infinity, and 

he wrote 1/ = 0.) Wallis concluded that the ratio of the region’s area to the rectangle’s area is 1/7, 

and the region has area (1/7)aa
6
. 

7. Barrow 

Isaac Barrow (1630-1677) was, like Wallis, a Cambridge-educated cleric. For him, the prestigious 

post was the Lucasian chair at Cambridge. He was oriented toward geometry, somewhat like the Italians, 

but he also exercised the algebra of Fermat and Wallis. He applied the algebra to seek tangents by 

almost exactly the method of modern introductions to them. That is, he added a tiny change to x (what 

we now call x), causing a corresponding tiny change to y (y), and looked at their ratio.  

Look at the graph of y = x
3/4

 near the point (a, a
3/4

). Add, as Fermat did, a small (infinitesimal?) 

change h to x = a. A new y-value results, which Fermat’s method could not relate to h, because of 

the fractional power. Barrow called the new y-value a
3/4

 + v. 

The original point satisfies 

 y
4
 = x

3
. 

The new point (a + h, a
3/4

 + v) has to meet the same condition. That means 

 [a
3/4

 + v]
4
  =  [a + h]

3
. 

Multiply out by the binomial theorem, then cancel the common a
3
 to write 

 4a
9/4

v + 6a
6/4

v
2
 + 4a

3/4
v

3
 + v

4
  =  3a

2
h + 3ah

2
 + h

3
. 

Factor v on the left and h on the right, and put their ratio as 

 v/h  =  (3a
2
 + 3ah + h

2
)/(4a

9/4
 + 6a

6/4
v + 4a

3/4
v

2
 + v

3
). 

Barrow then said we may ignore those remaining terms with infinitesimal factors. Thus, the slope of 

the tangent at (a, a
3/4

) is 

 3a
2
/(4a

 9/4
)  =  3/4 a

 -1/4
.  

   

a a/n 

y = x
6 

O 2a/n  … 
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Being partial to geometry, Barrow insisted upon determining the tangent by means of a second point. 

If the tangent is not horizontal, then it is easy to locate its x-intercept. 

Say the intercept is H leftward from a. From the figure at right, we get 

 a
 3/4

/H  =  slope of the tangent  =  3/4 a
 -1/4

. 

Therefore 

 H = 4/3 a, 

and another point on the tangent is (-a/3, 0). 

A similar argument gives the slope when the exponent is a negative 

fraction; see Exercise 2. 

In our example, we had the y-value a
3/4

 in terms of x = a. However, the method will produce the 

tangent even if the original equation does not allow us to express y “explicitly” in terms of x. It operates 

very much the way our “implicit differentiation” does. Thus, 

 y
3
 – 7xy  =  x

3
 

describes some locus, but with an equation difficult to solve for either x or y. With Barrow’s changed 

values x + h and y + v, we have 

 (y + v)
3
 – 7(x + h)(y + v)  =  (x + h)

3
, 

and we may proceed to characterize the tangent (Exercise 3). 

  Exercises VII.A.7

1. We saw that the conic with vertex at (0, 0), focus at (0, f ), and eccentricity  has equation 

 x2  =  (2 + 2) fy + (2 – 1)y2. 
a) Show that the latus rectum (the width of the horizontal chord through the focus) is 

 L = (2 + 2) f. 

b) Assume that  < 1, so that we are dealing with an ellipse (which might be a circle). Show 

that the center of the ellipse must be at (0, a), with a = f /(1 – ). 
c) In the ellipse from (b), show that the ratio L/(2a) of the latus rectum to the long axis of the 

ellipse is 1 – 2. 

2. Apply Barrow’s method to find the slope of the tangent to y = x -2/3 at the point (a, a -2/3). 

3. a) Apply Barrow’s method to find the slope of the tangent to the curve given by 
 y3 – 7xy  =  x3 
at the point (2,4). 
b) Characterize the tangent by finding a second point on it. 

4. (Calculus) Use integration to prove that if integer k > 0, then for natural n, 
 nk + 1/(k + 1) < 1k + 2k + … + nk < (n + 1)k + 1/(k + 1).  

 The Calculus Section VII.B.

1. The State of the Art 

We have arrived at about 1660. We have seen plenty of work on the problems of tangents and 

quadrature (of the region under a graph). Fermat must have seen, but never mentioned, the inverse 

relation between the answers: The slope at (x, y) of the tangent to the graph of y = x
n
 is nx

n-1
, and the 

area up to (x, y) under the graph of y = nx
n-1

 is basically x
n
. Boyer says that Barrow “recognized” the 

relation. Struik (page 105) states that Barrow explained it “in a difficult geometrical form,” certainly to 

be expected given Barrow’s preference. To develop a clear proof—it would mark what we consider to 

be the invention of the calculus—therefore fell to mathematicians who could integrate [no pun intended] 

   

a 

y = x
3/4 

O H 

a
3/4 

http://www.archive.org/stream/AHistoryOfMathematics/Boyer-AHistoryOfMathematics#page/n442/mode/1up
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the geometric and algebraic approaches into one infinitesimal analysis. (Those last two words sometimes 

serve to name the calculus.) We turn next to such men. 

[Only the calculus carries “the,” which we will sometimes skip. Nobody says “the algebra” or “the 

geometry.” Similarly, I live in the Bronx, which nobody describes as being east of “the Manhattan” or 

north of “the Brooklyn.”] 

We said that Europe had become the center of mathematical discovery. We should note that the 

contributors during 120 years had been an international lot. Copernicus was Polish; Kepler German; 

Galileo, Cavalieri, and Torricelli Italian; Viète, Descartes, Fermat, and Pascal French; and Wallis and 

Barrow English. (Why were there no Spaniards or Russians in that group?) 

2. Leibniz 

Gottfried Wilhelm Leibniz [LYPE-nits] (1646-1716), another German, contributed significantly to 

philosophy and logic as well as math. Like Descartes, he sought to create a general (algorithmic?) 

method for producing knowledge in the sciences and for deciding the validity of logical argument. 

In 1672, as a government official, he traveled to Paris. There he came under the influence of the 

Frenchmen and Christiaan Huygens (about whom more later). The next year he traveled to London, and 

began to read Wallis and Barrow. 

In the style of Barrow, he approached the tangent problem by adding 

infinitesimals he called differentials dx and dy (drawn at right) to x and y on 

the graph of y = f(x). Then dy/dx would be the slope of the tangent. From this 

viewpoint, Leibniz chose the name differential calculus for the part that 

deals with the slope of the tangent. 

Differentials also served for the area problem. In the similar lower figure, the 

infinitesimal of area under the graph of y = f(x) is the strip (shown orange) 

whose height on the left (dotted) is f(x) and whose width is dx. For the area 

under the graph, Leibniz summed the areas of multiple strips, 

 A  =  f(x1)dx1 + f(x2)dx2 + f(x3)dx3 + …. 

He named the process integration and called the sum the integral of the 

function. Those things are the subject of integral calculus, a name that came 

later. (He called it, naturally, “summation calculus.”) Then he invented a notation for them, 

 ∫ 𝑓(𝑥) 𝑑𝑥, 

in which the elongated “s” (for “summation”) came to be called the integral sign. (The sign “=” for 

equality is likewise his invention.) 

To those formulations, not in themselves new, Leibniz added some elements. For the tangent 

problem, he thought of the slope of the tangent to the graph of y = f(x) at the point (x, y) as itself a 

function. We could substitute into dy/dx to write df(x)/dx, but let us use the convenient (much later) 

notation f (x). This new function f  is called the derivative of f. For the area problem, the new wrinkle 

was that the formulation allowed the integrated function to be negative. Clearly, if f(x1) < 0, then the 

infinitesimal of area is [-f(x1)]dx1. Therefore on intervals where f is negative, the integral 

 I  =  f(x1)dx1 + f(x2)dx2 + f(x3)dx3 + … 

accumulates the negative of the area above the graph. We will allow ourselves to continue referring to 

the “area below the graph,” with the convention that the integral’s value is the area under the part of the 

graph above the x-axis minus the area above the part of the graph below the axis. 

   

x 

 y = f(x)
 

O 

dx
 

dy
 

   

x 

 y = f(x)
 

O 

dx
 

dy
 

ds
 

f(x)
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[Don’t let the calculus language confuse you. You can always think in the familiar geometric terms: 

“derivative of” as an abbreviation for “varying slope of the tangent to the graph of”; “integral of” as 

abbreviating “area under the graph of.”] 

a) the Fundamental Theorem 

Leibniz created, in the years 1673-76, the following result:  

Proposition. (The Fundamental Theorem of Calculus) The integral of the derivative of a function is 

the change in the function; and if we turn the integral of one function into a new function by making the 

right endpoint variable (the way it looks in the last figure), then the derivative of that new function is the 

original function. 

Naturally “terms and conditions apply.” The conditions are too technical for us to detail, given our 

orientation. The concise statement above hides the conditions, and hides also its power. 

To put the statement into English—to render it in our tangent-area language—we need an example. 

The best kind uses a polynomial, because every polynomial meets the technical conditions. Take a 

polynomial we have met before, like 

 f (x)  =  x
3
 – 27x + 46. 

We can find the slope of its tangent term by term, 

 f (x)  =  3x
2
 – 27(1) + 0 

(Exercise 1). For the first part of the Theorem,  f  is the “function” and f  is the “derivative.” 

In the figure at right, view the graph of the derivative (red), placed 

below the graph of the function (blue). Areas related to the lower 

graph are easy to find, because it is a parabola. The region shaded 

green has heights (from parabola up to x-axis) 

 -f (0) = 27 on the left,  -f (1) = 24 in the middle, 

  -f (2) = 15 on the right. 

Relying on Archimedes, we deduce (section III.A.6a) that its area is 

 width  weighted-average height  = 

  2  ([1/6]27 + [4/6]24 + [1/6]15)  =  46. 

Therefore the integral of f (x) from x = 0 to x = 2 is -46 (the 

negative of the area above the parabola). 

The message of the first half of the Fundamental Theorem is that 

this integral equals the change in the function. That “change” is 

 f (2) – f (0)  =  0 – 46  =  -46. 

For the second half of the Theorem, turn the roles around. 

Define our “original function” by 

 g(x) = 3x
2
 – 27. 

To avoid complication, we restrict ourselves to the region rightward from x = 3, where g is positive. 

The region under the graph from x = 3 to a variable value x has area given by the same width-height 

formulation. Denote by m the value halfway between 3 and x. Then the area is 

 width  weighted-average height  =  (x – 3)([1/6]0 + [4/6][3m
2
 – 27] + [1/6][3x

2
 – 27]). 

Substituting m = (3 + x)/2 and simplifying, we find the area to be 

 A(x)  =  (x – 3)(x
2
 + 3x – 18)  =  x

3
 – 27x + 54.   (Verify!) 

This is the variable integral, the new function. 

   
 y = x

3
 – 27x + 46

 

O 
-3

 
3

 

 y = 3x
2
 – 27

 

O 
-3

 
3

 

2
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According to the second half of the Theorem, the derivative of A(x) should be the original g(x). 

Fermat’s method confirms that 

 A(x)  =  3x
2
 – 27  =  g(x). 

b) one calculus lesson 

The derivative carries information about change. 

Let a and b > a be any two values between x = 0 and x = 3, and as above let 

 f (x)  =  x
3
 – 27x + 46. 

By the first half of the Theorem, the change f (b) – f (a) is the integral of f  from x = a to x = b. That 

integral is negative, we have noted, because f  is negative there. From 

 f (b) – f (a)  <  0,  we get   f (b) < f (a). 

The function has smaller values toward the right. 

We conclude that as long as the derivative is negative, the function decreases (as x increases). 

By a similar argument, after x = 3 the integrals of f  are positive, the changes in f are positive, the 

values of f get larger toward the right. In other words, while the derivative is positive, the function 

increases. (Compare Exercise 4. See also Exercise 3.) 

In between, we have the place x = 3 where the derivative is zero. There, the function changes from 

decreasing to increasing: Its graph has a low point. That illustrates Fermat’s theorem that maxima and 

minima are found among the places where the tangent has zero slope. (Compare Exercise 5.) 

b Exercises VII.B.2

1. Use Fermat’s method (add h to a, as in section VII.A.4d) to show that: 
a) The derivative of a sum is the sum of the derivatives. In symbols: If f and g are functions, 
then at the place where x = a, the slope of the tangent to the graph of 
 y  =  f(x) + g(x) 

is f (a) + g(a). 
b) The derivative of a multiple is that multiple of the derivative: The slope where x = a for 
 y = k f(x), k a fixed number, 

is the multiple [k f (a)] of the slope for f. 

2. Show that 
 f(x) = x3 – 27x + 46  and  g(x) = x3 – 27x + 54 
have the same derivative. 

3. For what value of x beyond x = 3 has 
 f(x) = x3 – 27x + 46 
increased back to f(0)? 

4. Suppose a and b are two values with b > a  3. For 
 f(x) = x3 – 27x + 46: 
a) Show algebraically (not using the Theorem) that f(b) > f(a) (the function increases). 
b) Show that the area under the graph of the derivative 

 f (x) = 3x2 – 27, 
between x = a and x = b, equals the change f(b) – f(a). 

5. The figure in subsection (a) shows the graph of 
 y = x3 – 27x + 46 
with a high point (maximum) in Quadrant II. Does such a maximum really exist? 
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c) the historical import 

Step back now, and see how the Theorem puts the ancient geometric problem of quadrature into the 

machinery of the tangent problem, where we process it using souped-up algebra. Leibniz—and as we 

will see, Newton—synthesized the geometric and algebraic approaches of their predecessors. 

Indeed, the Theorem shows that the two problems “are inverses.” 

Suppose we start with the graph of y = F(x) and find the slopes of its tangents. Then by the Theorem, 

the area under the graph of the slopes is F(x), almost. That is, it is the change F(x) – F(a) from whatever 

value a we use as the left-hand border. Find first the tangent slope, then take area under the graph of the 

slope, and you get the function to within the fixed value f(a). 

  

In the opposite order, start with the graph of y = G(x), in the top half of the 

figure at right. Look at area under it. Thus, let A(x) denote the area (shown 

orange) under the graph of G from x = a to an unspecified x. The graph 

of A(x) is in the bottom half of the figure. In that half, Leibniz added the 

differential dx (red horizontal) to x, resulting in dA (red vertical) added 

to A(x). The slope of the tangent to that graph is dA/dx. 

But we can also see dA and dx in the graph of G(x). Add dx to x in the top 

graph. The resulting increase in A(x) is the green strip. It has width dx, 

height G(x) on the left and G(x) + dy on the right. Therefore 

 dA = G(x)dx + some fraction of dxdy. 

That means 

 dA/dx = G(x) + some fraction of dy. 

In the style of Barrow, we ignore the remaining differential. We conclude that 

the slope of the tangent to the graph of y = A(x) is the original function G(x). The “tangent to the 

area” gives the original function. 

d) two more calculus lessons 

[Indulge me.] 

(i) antiderivatives 

Suppose f is the derivative of the function F. We then say that F is an antiderivative of f. 

The difference in expression—the derivative versus an antiderivative—is deliberate. The derivative 

of F is unique, determined by F: f(x) = F (x) is the slope of the tangent to the graph of y = F(x). 

Antiderivatives are not unique. 

We saw in Exercise 2 above that each of 

 G(x) = x
3
 – 27x + 46  and  H(x) = x

3
 – 27x + 54 

is an antiderivative for g(x) = 3x
2
 – 27. That exercise does, however, specify how antiderivatives are 

related: If G and H are both antiderivatives of g, then G(x) and H(x) must differ by a fixed number. 

In that case, G(b) – G(a) and H(b) – H(a) have to be equal for any given a and b; by the 

Fundamental Theorem, each is the integral of g(x) between x = a and x = b. From 

 G(b) – G(a)  =  H(b) – H(a), 

we infer 

 G(b) – H(b) = G(a) – H(a). 

Their difference stays whatever it was at x = a. In the example of 
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 G(x) = x
3
 – 27x + 46  and  H(x) = x

3
 – 27x + 54, 

we see that G(x) – H(x) has the fixed value -8. 

It is implicit in the Fundamental Theorem that the problem of determining integrals amounts to that 

of finding antiderivatives. If F is any antiderivative of f, then the integral—the area under the graph— 

of f from x = a to x = b is F(b) – F(a). (Remember that these discussions are predicated on the 

assumption that the functions involved satisfy those technical conditions of the theorem.) 

(ii) the logarithm and exponential functions 

The other lesson returns to our exceptional case. Recall our decision (section VII.A.4e(iii)) that the 

area under the graph of y = 1/x, from x = 1 to an x = t, is log t to an unknown base. In 

Exercise 4 of that section, we symbolized the base by e and put its value between 2 and 3. 

At right, we draw the graph (red) of y = loge x. Let us examine the 

slope of its tangent at a general point (a, loge a). (We will allow a to be 

between 0 and 1. See Exercise 2.) 

In Fermat’s language (mathematically, not French), 

 slope = (loge [a + h] – loge a)/h, 

with h infinitesimally small. There, all we can do algebraically is use 

two properties of logarithms. They let us rewrite 

 slope = (1/h) loge ([a + h]/a) 

  = loge (1 + h/a)
1/h

. 

On the other hand, in the language of the Fundamental Theorem, the slope is the derivative of the 

integral of 1/x. Therefore the slope is 1/a. Those two unlike answers must match. 

To match that last logarithm expression and 1/a, write 

 1/a = slope 

  = 1/a [a loge (1 + h/a)
1/h

] 

  = 1/a [loge (1 + h/a)
a/h

] 

  = 1/a [loge (1 + H)
1/H

], 

where now H is infinitesimally small. It must be the case that 

 loge (1 + H)
1/H

 = 1. 

Consequently (1 + H)
1/H

 has to be e. 

In view of their equality, we may approximate e with reasonable calculations. Thus, 

 H = 1/128  gives  e  (1 + 1/128)
128

  2.71, 

a calculation we can execute by repeated squaring. 

Now interchange the roles of x and y. The graph of y = loge x turns into 

the graph of  x = loge y (shown green at right). That equation is not how we 

usually describe graphs; write instead 

 y = e
x
. 

Clearly the green graph is the reflection of the red one about the 45 

line (dashed black). Therefore the tangent slope at a point on the green 

graph is the reciprocal (not negative) of the slope at the corresponding 

point on the red. At (a, loge a) on the red, the slope is 1/a. Accordingly, at (loge a, a) on the green, 

the slope is a. Call that last point (b, e
b
). Then at the point (b, e

b
) on the graph of y = e

x
, the slope of 

the tangent is e
b
. The exponential function h(x) = e

x
 is its own derivative. 
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d  Exercises VII.B.2

1. A bank says that it pays interest to deposit accounts at an annual rate of 1% “compounded 
daily.” That means that every day, it adds 1/365 of 1% to your balance: It multiplies your 
account’s balance by (1 + 0.01/365). 
a) Show without calculating that a deposit of $100 will grow in one 365-day year to 
approximately $100e0.01. 
b) Use a scientific calculator to figure out the “effective rate,” meaning the total interest for 
the year divided by the original $100. (Banks call it the APY). 

2. We have stated that the area under the graph of y = 1/x from x = 1 to x = a is loge a. That 
assumes a > 1. Does the statement remain true if 0 < a < 1? What convention allows us to 
keep the statement as written? 

3. Huygens 

It pays to elaborate the discoveries of Christiaan Huygens (1629-1695). He was one of the most 

important figures in the history of science. In physics, his contributions include the wave theory of light.  

He used it to explain refraction—the explanation is inherent in Exercise V.A.4:1—and polarization. In 

astronomy, he discovered Saturn’s “ring” (singular) and the big moon Titan. For our subject, he made 

extensive study of curves, especially (like Pascal) the cycloid. He introduced a way to determine their 

lengths, along with the concept of curvature (Boyer). He also published the first book (On Reasoning in 

Games of Chance) on the newly-born probability.  

[Huygens was Dutch, but many of his accomplishments came during his years in Paris. We usually 

say his name HY-ggens, because English lacks the sound of the Dutch “g.” It is slightly guttural. In 

writing, the usual way to suggest the sound is with the combination “khee.” With that approximation, we 

would say HOOKH-yens.] 

a) rectification 

“Quadrature” is our Latin-based name for finding area. It reflects “squaring,” the Greek idea of 

determining area by constructing an appropriate square. In the same way, rectification is our Latin-

based name for finding length, reflecting the idea of “straightening” a curve to measure it. Let us study 

rectification in general and in two specific cases. 

(i) differential of arc length 

We noted that Leibniz introduced the differentials dx and dy. At right, we 

see them (red) in a magnified view of the figure from section VII.B.2. 

Maybe Huygens suggested them, but one thing that is definitely his idea is 

the hypotenuse ds (green) of their right triangle. Huygens called it the 

differential of arc length. It is an old idea that at the infinitesimal level, you 

cannot distinguish the curve from its chord. Therefore rectifying the curve 

amounts to summing the differentials of arc length. In the language of 

Leibniz, it comes down to integrating ds. 

(ii) integrating the differential 

From the right-triangle description, we have 

 (ds)
2
 = (dx)

2
 + (dy)

2
. 

[Henceforth we leave out those parentheses.] 

To add up those things, it helps to rewrite 

 ds
2
 = (1 + dy

2
/dx

2
) dx

2
 

   

x 

 y = f(x) 

O 

dx 

dy 

ds 

http://www.archive.org/stream/AHistoryOfMathematics/Boyer-AHistoryOfMathematics#page/n429/mode/2up
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  = (1 + [dy/dx]
2
) dx. 

The last suggests that if you can write the derivative function dy/dx—the slope f (x) of the tangent to 

the graph of y = f (x)—then rectifying the graph of f is a matter of integrating the function 

 (1 + [f (x)]
2
). 

Look at the most elementary example that is not already straight, and you see immediately that the 

task is easy to describe and hard to do. 

Take f (x) = x
2
. We know f (x) = 2x. To find the length of a part of the graph of f, we must integrate 

 g(x) = (1 + 4x
2
). 

There is no obvious geometric way to find areas under the graph of g. The only alternative we know 

is to fall back upon the Fundamental Theorem: If G is an derivative of g, then the integral of g from 

x = a to x = b is G(b) – G(a). Finding an antiderivative for (1 + 4x
2
) is beyond our level. 

You learn early in the study of integrals that antiderivatives are mostly hard to find. In fact, they are 

very much like constructions. That is, even some elementary ones are demonstrably impossible to give 

in reasonable terms. To do a nontrivial rectification, we need to pick our target with care. 

For us, finding the area under the graph of  

 y  =  (1 + [f (x)]
2
) 

is possible only if f (x) = x. In that case, what we have to integrate is (1 + x). We can do that 

integration in terms of area under a parabola. 

From either Fermat’s work on areas (section VI.A.4e) or Barrow’s method for derivatives (VII.A.7), 

we know that the (simplest) function with that derivative is 

 f(x) = 2/3 x
3/2

. 

In the near half of the figure at right, we draw 

the graph (heavy black) of 

 y = 2/3 x
3/2

. 

[It is the upper half of the graph of 

 9y
2
 = 4x

3
, 

which is unfortunately sometimes called the 

“semi-cubical parabola.” Fermat actually 

managed a non-integrating rectification for it.] 

The length of its arc from (0, 0) to (9, 18) is the integral of 

 (1 + [f (x)]
2
)  =  (1 + x). 

That integral is the area, shaded green in the right panel of the figure, under the graph of 

 y = (1 + x) 

from x = 0 to x = 9. But the latter graph is just the graph of y = x, shifted one unit to the left. 

Therefore the green area is simply the area under y = x from x = 1 to x = 10, namely 

 10
3/2

/(3/2) – 1
3/2

/(3/2)  =  2/3(10
3/2

 – 1)    20.4. 

(Compare that against the estimates in Exercise 1.) 

(iii) rectifying the cycloid 

The first known rectification of the cycloid was given by Christopher Wren, architect of London’s 

iconic St. Paul’s Cathedral. Huygens later rectified the cycloid by a largely geometric method.  Our 

approach will follow the way Roberval (section VII.A.2c, to which we will refer below) described the 

tangent to the cycloid, in terms of motion. We will integrate a speed. (Boyer says that Roberval 

produced a rectification ahead of Wren, but left it unpublished. Recall Roberval’s secretiveness.) 
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At right, we reproduce the figure from the Roberval section, with slight 

modification. We label the angle through which the circle has rotated . The point 

tracing the cycloid (gray curve) has reached position P, and we label R the 

point where the horizontal through P meets the vertical through center O. At P, 

the tangent (along the green arrow) to the circle makes angle  –  counter-

clockwise from PR. (Verify that, by using the angles in right triangle ORP. Our 

figure has  between  /2 and , but what we say here holds before and after that 

interval. For example, when  > , the expression  –  is negative, reflecting that 

the green arrow points downward to either right or left.) 

We observed in VII.A.2c that the point’s speed (blue arrow) owing to the circle’s rightward motion 

equals its speed (green) owing to the circle’s rotation; the green and blue arrows are equally long. The 

equal speeds accounted for Roberval’s conclusion that the tangent  to the cycloid (red arrow) bisects the 

angle between the circle tangent and the (rightward) horizontal. 

Imagine that the rolling circle rotates through 1 radian per second. Then it rolls over its circum-

ference 2a in 2 seconds; it has horizontal speed a (/sec). In 

the magnified view at right, we indicate that same speed for 

the tracing point to the right (blue) and along the circle 

tangent (green). 

Therefore we have a speed a at an angle of ( – )/2 on either 

side of the cycloid tangent, as drawn at right. Each speed 

contributes its projection, the solid red segment, in the 

cycloid tangent’s direction. Those projections are 

 a cos [( – )/2]  =  a sin (/2). 

In the direction perpendicular to the cycloid tangent, each speed cancels the other. [That’s not news; 

the motion of P has to be along the tangent to its path.] As a result—actually, as a resultant—at 

time t, the tracing point is covering distance along the cycloid at speed 

 2a sin (/2)  =  2a sin (t/2). 

(You can derive that speed somewhat differently. Think of velocity in the more familiar way, in 

terms of vertical and horizontal components. The circle’s rotation gives the tracing point speed a 

along the circle tangent. The tangent is inclined at angle  –  to the horizontal. Therefore the 

rotation gives the point an upward speed 

 a sin ( – )  =  a sin  

per second. (Accordingly, when  is between  and 2, the tracing point is going downward.) The 

rotation also imparts a rightward speed 

 a cos ( – )  =  -a cos . 

At the same time, the circle’s translation to the right adds to the point speed a rightward. The point’s 

rightward component is therefore [-a cos  + a]. (Hence at the ends of the arch, when  = 0 or 2, 

both components of the velocity are zero; the point is stationary for an 

instant.) An upward component [a sin ] and a rightward [a – a cos ], drawn 

at right, yield a resultant speed v (length of red arrow) given by the 

Pythagorean theorem: 

 v = ([a – a cos ]
2
 + [a sin ]

2
). 

Now do Exercise 2.) 
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We have the point P tracing the cycloid with a speed 

 v = 2a sin (t/2). 

Huygens and Leibniz would now say that in an infinitesimal time dt, the point covers infinitesimal 

distance 

 ds  =  speed  time  =  2a sin (t/2) dt. 

To sum those differentials, we have to integrate 2a sin (t/2). [If you know calculus, then by all means do 

the integral (Exercise 3).] Lacking an antiderivative for the sine function, we will find the total distance 

covered by the point the way Oresme would have three hundred years before (section V.B.3c), as the 

area under the graph of the speed. 

In the left half of the figure below is the graph (solid curve) of 

 v = 2a sin (t/2). 

In the manner of Wallis (section VII.A.6a), raise the verticals at t = 0.2, 0.6, 1.0, …, 359.8. (We 

have deliberately marked the abscissas by degrees, the more familiar measure. Count them; there 

are 900 of them. The number is not important, except for being big and convenient.) The sum of the 

green verticals, which reach up to the graph, is 

 2a sin 0.1 + 2a sin 0.3 + … + 2a sin 179.9. 

The sum of the red verticals, reaching the top of the circumscribed rectangle (white), is 

 2a + 2a + … + 2a = 900 (2a). 

By the reasoning of Wallis, the area A of the sine arch has the fraction 

 2a (sin 0.1 + sin 0.3 + … + sin 179.9)/(2a 900) 

of the area (2)2a of the rectangle. 
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To evaluate the sum of sines, look at the right panel of the figure. There, we use solid green radii to 

divide the Quadrant I quarter of the unit circle (blue) into 450 equal central angles of 0.2. The first 

angle is A0OA2. Since the angle is (for us) infinitesimal, chord A0A2 has the same length as arc 

A0A2, namely (/2)/450. Let B2 be the point vertically above A0 and horizontally right of A2. The 

angle between A0A2 and A0B2 is the same as the angle between the (dotted black) bisector of angle 

A0OA2 and the horizontal, which is 0.1. Therefore 

 A2B2  =  A0A2 sin 0.1  =  (/900) sin 0.1. 

(Compare that argument to the Archimedes argument, section III.A.6d, for the area of the sphere.) 

By similar reckoning, if A2OA4 is the second angle, then the horizontal distance A4B4 from A4 to the 

vertical at B2 is 

 A4B4  =  A2A4 sin 0.3  =  (/900) sin 0.3. 

The pattern continues until, at the top of the quarter circle, the horizontal A450B450 is 

 A450B450  =  A448A450 sin 89.9  =  (/900) sin 89.9. 

All of those horizontals add up to 

 A2B2 + A4B4 + … + A450B450  =  (/900) (sin 0.1 + sin 0.3 + … + sin 89.9). 
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On the other hand, what they add up to is just the horizontal separation between A0 at (1, 0) and A450 

at (0, 1); it is 1. For the sum on the right, 

 sin 0.1 + sin 0.3 + … + sin 89.9  =  1/2 (sin 0.1 + sin 0.3 + … + sin 179.9), 

because the obtuse-angle sines match those of their acute supplements. Therefore 

 sin 0.1 + sin 0.3 + … + sin 179.9  =  2 (900/) 1. 

From the area proportion 

 A/4a  =  (sin 0.1 + sin 0.3 + … + sin 179.9)/ 900, 

we conclude A = 8a. The length of the cycloid arch is eight radii. 

There is an odd symmetry here. To sum the cycloid’s infinitesimals of length, we turned the question 

into that of finding an area, which we evaluated by summing lengths. At the start of the chapter, we had 

Cavalieri seeking the area under a power graph (section VII.A.1), which problem he turned into one of 

summing lengths, whose sum he evaluated by turning them into areas. Sometimes in math, reversing the 

tool suits it better to the job at hand. 

a Exercises VII.B.3

1. We found the arc length of the graph of y = 2/3 x3/2, from (0, 0) to (9, 18), to be about 20.4. 
a) Calculate the distance between the two points. Does it provide a lower or upper estimate 
of the arc length? Is it close? 
b) Calculate the length of the L-shaped path from (0, 0) to (9, 0) to (9, 18). Why is it an 
overestimate? Why is it so far off? 

2. Show that for  between 0 and 2, 

 ([a – a cos ]2 + [a sin ]2)  =  2a sin (/2). 

(Why is 0    2 essential?) 

3. (Calculus) Evaluate ∫ 2𝑎 𝑠𝑖𝑛(𝑡/2)𝑑𝑡
2

0
. 

4. a) Let c and d be two angles between 0 and 90, c < d. Use our quarter-unit-circle figure to 
argue that the area under the graph of y = sin x, from x = c to x = d, is cos c – cos d. 
b) Why does (a) imply that -cos x is one antiderivative of sin x? 
c) In view of (b), what is the derivative of f(x) = cos x? 
d) Do as in (a) for the graph of y = cos x, use the answer to decide an antiderivative 
for cos x, and name the derivative of g(x) = sin x. 

b) circular motion and curvature 

Huygens made a discovery in mechanics, describing acceleration in circular motion, that related to 

the important mathematical idea of curvature.  

(i) acceleration in circular motion 

Huygens discovered that an object traveling at constant speed v around a circle of radius r sustains 

an acceleration of magnitude v
2
/r in the direction of the center of the circle. 

In the figure at right, we start with the object at the top P of the circle, circling 

counterclockwise. Its velocity (red) is leftward with speed v. An instant 

(infinitesimal time) dt later, the object is at the point Q, an arc PQ = v(dt) further 

left. The central angle POQ, labeled d, measures 

 d = arc/radius = v(dt)/r. 

At this later time, the object’s velocity (green) has the direction of the circle’s 

tangent, d below the horizontal. Consequently the object now has a downward 
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speed v sin d. Since d is infinitesimal, it equals its sine: 

 sin d = d. 

Therefore in time dt, the object has acquired a downward speed 

 v sin d  =  v (v[dt]/r). 

That is a rate of gain per unit time—a component of acceleration toward the center—of 

 v (v[dt]/r)/dt  =  v
2
/r. 

That same green velocity gives the object a leftward speed (v cos d). The horizontal speed has gone 

from v at P to (v cos d) at Q, a change of (v cos d – v). By the half-angle formula 

 sin
2
 (d/2)  =  (1 – cos d)/2, 

we write the change in speed as 

 v(cos d – 1)  =  -2v sin
2
 (d/2)  =  -2v (v[dt]/2r)

2
. 

Therefore the rate of gain of horizontal speed is 

 -2v (v[dt]/2r)
2 

/dt  =  -v
3
dt /2r

2
. 

That surviving infinitesimal is zero. [Ask Barrow.] The acceleration has zero horizontal component. 

We conclude that the acceleration is directed toward the center and has magnitude v
2
/r. 

In case these heuristics with infinitesimals give you a nagging suspicion [as they do with me and did 

with Bishop Berkeley (later)], here is more precise argument. 

Look back at the Huygens argument. The important thing there is not simply that 

 sin d  d. 

Of course they are nearly equal; they are both almost zero. The key relation is that they are so nearly 

equal that 

 [sin d]/d  =  [sin (v[dt]/r)]/(v[dt]/r)    1. 

It is for that reason that we write the downward acceleration as 

 gain/time = v sin d/dt 

   = v [sin (v[dt]/r)]/(v[dt]/r)  (v[dt]/r)/[dt] 

   = v 1   v/r. 

To see the relation, look at the figure at right. It has a magnified view of the top 

of the circle. The arc PQ has length (r d) (provided  is measured in radians) 

and the perpendicular QR to OP has length r sin d. We know that the 

perpendicular is a shorter path than the arc; that is, 

 r sin d  <  r d, and  sin d  <  d. 

Next, let S complete the rectangle with sides PR and RQ. The sector OQP of 

the circle is covered by triangle OQR and rectangle RPSQ. Therefore the 

sector’s area is less than the sum of the triangle and rectangle: 

 1/2 r
2
 d <    1/2 [OR] RQ     +  [RP] RQ 

    = 1/2 [r cos d] r sin d +  [r – r cos d] r sin d. 

That simplifies to 

 d < sin d [2 – cos d].     (Verify.) 

Our inequalities combine to give 

 1/[2 – cos d]  <  [sin d]/d  <  1. 

That means, for example, that if d is within 0.01 (about 0.57) of 0, then 

 [sin d]/d  is between  1 and  1/[2 – cos 0.01] > 0.999 999 98. 

The geometric argument just above is a standard part of calculus texts. (It relates to Exercise 1.) It is 

worthwhile to note that the Huygens argument did not use calculus, our choice to use differential 
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notation notwithstanding. Its justification was the knowledge (section III.C.1a) that for a small angle, the 

radian measure (= arc/radius), sine, and chord/radius are indistinguishable. 

(ii) curvature 

At the beginning of VII.B.3b, we saw circular motion turn the tangent to a circle from horizontal to 

an angle below horizontal. The rate of change of that angle measures the circle’s tendency to deviate 

from straightness—in other words, the curviness of the circle. For that reason, we call it “curvature.” 

Huygens applied the idea to any curve, not just the circle. 

In the figure back there, the tangent to the circle—the velocity of the motion—changed direction 

by d radians in time dt. The rate of change d/dt is not a property of the circle. It depends on how fast 

the object is moving. We had 

 d = v dt/r,  giving   d/dt = v/r. 

For example, imagine driving at a steady 44 ft/sec (30 mph) around a circle of 100 ft radius. Then our 

line of sight through the windshield rotates at 

 v/r  =  (44 ft/sec )/100 ft  =  0.44 (radians)/sec. 

That agrees with the complete turn, in which our view would rotate 2 radians in 2(100)/44 seconds. If 

instead we drove twice as fast, the rotation rate would likewise double. 

However, what is a property of (“is intrinsic to”) the circle is the rate of change of direction per unit 

of distance traveled. The infinitesimal distance ds traveled in infinitesimal time dt is (v dt), so that the 

change of direction per unit of distance traveled is 

 d/ds  =  (v dt/r)/(v dt)  =  1/r. 

That rate is the curvature of the path—irrespective of whether the path is circular—at the given point. 

In view of the circle’s curvature being 1/radius, Huygens called the reciprocal (1/curvature) the radius 

of curvature of the path. The idea is that around that point, the path most closely resembles a circle of 

that radius. [Doubtless you have heard the name in reference to roadways. Where the radius of curvature 

is big, we say the road curves gently, like a big circle; where it is small, we say the curve is sharp.] 

Clearly the circle has the same curvature at every point. It is the only plane curve with that property. 

(Compare Exercise 4.) Let us look at a simple example of variable curvature. 

Recall our picture of the graph of 

 y = f(x) = 1/x 

(section VII.A.4c(iii)), for which 

 f (x) = -1/x
2
. 

The graph is curvy near (1, 1), but looks relatively straight way up or out to the right. We will 

approximate the curvature around both places. 

At (1, 1), the slope of the tangent is f (1) = -1. Therefore the tangent has inclination 

 tan
-1

 -1  =  -/4. 

At the nearby point (1.01, [roughly] 0.9901), the slope is f (1.01) = -.98030. There the inclination is 

 tan
-1

 -.98030    -0.77545. 

The change d of direction is 

 d    -.77545 – (-/4)    0.009948. 

As for the arc length, we have no hope of integrating the differential, and no need to. The points are 

so close together that we simply use their distance: 

 ds    ([1.01 – 1]
2
 + [.9901 – 1]

2
)    0.01407. 

We then estimate the curvature 

 d/ds    .009948/.01407    0.707. 
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The resemblance to 2/2 is not coincidental; the exact curvature turns out to be 2/2. Hence the 

radius of curvature is 2/2 = 2. The part of the hyperbola near (1, 1) looks just like the circle 

through there having center at (2, 2). 

We ended up with change of direction and curvature positive. If the change, and therefore the 

curvature, had turned out negative, we would simply have dropped the sign. A negative curvature simply 

indicates that the curve is turning opposite the sense in which we measure the angles. We might more 

accurately describe curvature as the absolute value of d/ds. 

To the right, near the point (10, 0.1), the graph looks pretty flat. At that point, the tangent has 

 slope  =  f (10)  =  -0.01,   inclination  =  tan
-1

 -.01  =  -0.0099997. 

Nearby, at (10.01, 0.09990), it is 

 slope  =  f (10.01)  =  -0.0099800,  inclination  =  tan
-1

 -0.0099800  =  -0.0099797. 

With the distance between the points 

 ds  =  ([10.01 – 10]
2
 + [.09990 – .1]

2
)    0.0100005, 

we estimate the curvature as 

 (-0.0099797 – -0.0099997)/.0100005    0.002000. 

The curve is as straight as a circle of radius 1/.002 = 500. (See also Exercise 3.) 

b Exercises VII.B.3

1. Combine Fermat’s method, the formula for the sine or cosine of a sum, and the discussion 
in (i) to show that if 
 f(x) = sin x  and  g(x) = cos x,  then 

 f (x) = cos x  and  g (x) = -sin x. 
Compare those with the results of Exercise VII.B.3a:4. 

2. (Scientific Calculator) Use the text’s method to approximate the curvature of the graph of 
 y = x2 
at (0, 0) and (5, 25). If our usual picture of the parabola is right, then the first curvature 
should exceed the second. 

3. (Scientific Calculator) Approximate the curvature of the graph of 
 y = 1/x 
at (0.1, 10). The hyperbola is symmetric about the line y = x. This answer, then, should 
match the curvature at (10, 0.1), in the text. 

4. Determine the curvature of the graph of 
 y = 2x + 3, 
anywhere. Only this kind of graph has that curvature. 

4. Newton 

In 1669, Isaac Barrow was called, as Wallis before him had been, to be chaplain to the King. Barrow 

told the masters of Cambridge that they should appoint to his post his student and collaborator, whom he 

recognized as his intellectual superior. Thus did Isaac Newton (1642-1727) ascend at age 27 to the 

Lucasian chair. 

a) the Fundamental Theorem 

We now know that Newton discovered the theorem before Leibniz.  In 1665, Cambridge came under 

threat of the plague. Newton spent 1665-66 home in Lincolnshire, and conceived the calculus there.  
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His descriptions point to his interest in the study of motion. He called x and y “fluents,” whose rates 

of change (“fluxions”) we denote by h and v. Then in an infinitesimal time t, x changes by ht, y by vt, 

and the tangent slope is vt/ht = v/h. (Compare those to Barrow’s changes or Leibniz’s differentials.) 

Similarly, the area under the graph of y = f(x) increases by f(x)ht. Therefore the derivative of the 

integral (the fluxion of the area under the graph) is f(x)ht/ht  =  f(x). 

b) infinite series 

Newton’s early work focused on series. He showed that you can treat some of them as if they were 

supersize polynomials, so that both algebra and calculus operate on them following simple rules. The 

best-known of his early results is the binomial series.  

Proposition.  (The Binomial Series) If a > 0 and b is between -a and a, then for every real t, 

 (a + b)
t
 = a

t
 + [t/1]a

t – 1
b + [t(t – 1)/1(2)]a

t – 2
b

2
 + [t(t – 1)(t – 2)/1(2)3]a

t – 3
b

3
 + …. 

To put the statement into context, think of the binomial theorem. It gives, for example, 

 (a + b)
5
 = a

5
 + [5/1]a

4
b + [5(4)/1(2)]a

3
b

2
 + [5(4)3/1(2)3]a

2
b

3
 + …. 

In our usual writing, the sum is not unending: It stops at 

 [5(4)3(2)1/1(2)3(4)5] a
0
b

5
 = b

5
. 

But there is nothing wrong with writing it as a series. The subsequent terms 

 [5(4)3(2)1(0)/1(2)3(4)5(6)] a
-1

b
6
 + [5(4)3(2)1(0)(-1)/1(2)3(4)5(6)7] a

 -2
b

7
 + … 

are perfectly valid as long as a  0. 

The binomial series has the same structure. The coefficients t/1, t(t – 1)/1(2), t(t – 1)(t – 2)/1(2)3 … 

mimic the binomial coefficients. You should see that the exponents for which the binomial series 

terminates—to yield a finite sum—are precisely the nonnegative integers. 

To put algebra and calculus to work on the series, let us use (1 + x) to the power t = 1/2. (Exercise 1 

has the considerably easier case (1 – x) to the t = -1.) 

The binomial series is 

 (1 + x)
1/2

 = 1 + [1/2]x + [(1/2)(-1/2)/1(2)]x
2
 + [(1/2)(-1/2)(-3/2)/1(2)3]x

3
 + … 

   = 1 + 1/2 x – 1/8 x
2
 + 1/16 x

3
 – 5/128 x

4
 + 7/256 x

5
 – …. 

First do a slightly unconventional algebraic test: Apply the square-root algorithm to 1 + x. We apply 

it as in section IV.A.2, but with no regard for place value. 

In the display box at right: 

Each of the underlined 

expressions is the double 

of what is on the top line 

at the time the expression 

acts like a divisor; each 

colored term enters 

simultaneously on the top 

line and on the corres-

ponding dashed line; and 

we multiply the single 

colored term at the top by 

the whole expression on 

the dashed line, then 

subtract. You can see the agreement so far. Exercise 2 takes the process two terms further. 

  1 + 1/2 x – 1/8 x
2
 + 1/16 x

3
 – … 

 1 1 + x  

  1 

 2 + 1/2 x        x  

         x + 1/4 x
2
  

 2 + x – 1/8 x
2
  -1/4 x

2
   

    -1/4 x
2
 – 1/8 x

3
 + 1/64 x

4
 

 2 + x – 1/4 x
2
 + 1/16 x

3
       1/8 x

3
 – 1/64 x

4
 

        1/8 x
3
 + 1/16 x

4
 – … 

        -5/64 x
4
 + … 
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A more usual test is to square the series. Write out 

 (1 + 1/2 x – 1/8 x
2
 + 1/16 x

3
 – 5/128 x

4
 + 7/256 x

5
 – …)

2
, 

using the distributive law just as if the factors were finite sums. In the product, the constant term is 

1(1) and the first-degree term is 1(1/2 x) + 1/2 x (1). That makes 1 + x so far. The next four terms are 

 x
2
[1(-1/8) +  1/2 (1/2) + -1/8 (1)] = 0, 

 x
3
[1(1/16) + 1/2 (-1/8) + -1/8 (1/2) + 1/16 (1)] = 0, 

 x
4
[1(-5/128) + 1/2 (1/16) + -1/8 (-1/8) + 1/16 (1/2) + -5/128 (1)] = 0, 

 x
5
[1(7/256) +  1/2 (-5/128) + -1/8 (1/16) + 1/16 (-1/8) + -5/128 (1/2) + 7/256 (1)] = 0. 

[That is as far as I go. If you detect the pattern that guarantees the rest of them are zero, I will be 

glad to credit you with the discovery.] 

Now try some calculus. Newton knew, and we have seen an illustration (Exercise VII.B.2b:1), that 

you can find the derivative of a sum term by term. Similarly with a series: The derivative of 

 f (x) = (1 + x)
1/2

 = 1 + 1/2 x – 1/8 x
2
 + 1/16 x

3
 – 5/128 x

4
 + 7/256 x

5
 – … 

is given by 

 f (x) = 1/2 – 2/8 x + 3/16 x
2
 – 20/128 x

3
 + 35/256 x

4
 – …. 

However, we (you, in Exercise 3) can readily check that 

 f (x) = 1/2 (1 + x)
-1/2

. 

Those two expressions have to be equivalent. The binomial series verifies the match: 

 1/2 (1 + x)
-1/2

 = 1/2 (1 + [-1/2]x + [(-1/2)(-3/2)/1(2)]x
2
 + [(-1/2)(-3/2)(-5/2)/1(2)3]x

3
 + …). 

Newton also worked on the exponential series (as well as series for sine and cosine). The 

exponential is of special interest. 

First we think once more in terms of infinitesimals. Recall that we wrote 

 e  (1 + H)
1/H

 

in terms of an infinitesimal H. For reasonable x, take H = x/1000. From 

 e  (1 + x/1000)
1000/x

,  we have 

 e
x
    (1 + x/1000)

1000
. 

By the binomial theorem,  

 (1 + x/1000)
1000

  =  1 + [1000](x/1000) + [1000(1000–1)/1(2)] (x/1000)
2
 

    + [1000(1000–1)(1000–2)/1(2)3] (x/1000)
3
 + … + (x/1000)

1000
 

       =  1 + [1]x + [1(1–1/1000)/1(2)] x
2
 + [1(1–1/1000)(1–2/1000)/1(2)3] x

3
 +  … 

    + (x/1000)
1000

 

Following Wallis, replace 1000 by  and write 

 e
x
  =  1 + x + x

2
/1(2) + x

3
/1(2)3 + x

4
/1(2)3(4) +  …. 

(Newton, Leibniz and the others never did clarify whether an “infinitesimal” was a real number, a 

quantity so small that it was less than every positive real number, or some new kind of zero. They 

simply agreed that, say, H/2 is comparable to H, so that H + H/2 = 3H/2; but H
 2

 is incomparably smaller 

than H, so that H + H
 2

 = H. Similarly Wallis did not address the question of whether 1/H was actually 

infinite. The clarification did not come until the 1820’s.) 

To work with the exponential series, try calculation first. 

The series says that 

 e
1
 = 1 + 1 + 1/1(2) + 1/1(2)3 + 1/1(2)3(4) +  …. 

Take just those first five terms: 

 1 + 1 + 1/1(2) + 1/1(2)3 + 1/1(2)3(4)  =  65/24    2.71, 

equal to our last estimate. 
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Throwing away the remaining terms does not miss much. With factorial notation, 

 1/5! + 1/6! + 1/7! + …  <  1/120 + 1/120(6) + 1/120(6)
2
 + … 

     = 0.01. 

(Justify all three steps. Compare Exercise 4.) 

Next, check that it behaves like an exponential. 

Multiplying via the distributive law, we get 

 e
s
 e

t
 = (1 + s + s

2
/2! + s

3
/3! + s

4
/4! +  ….)(1 + t + t

2
/2! + t

3
/3! + t

4
/4! +  ….) 

  = 1 + [s + t] + [s
2
/2! + st + t

2
/2!] + [s

3
/3! + s

2
t/2! + st

2
/2! + t

3
/3!] + 

    [s
4
/4! + s

3
t/3! + s

2
t
2
/2!2! + st

3
/3! + t

4
/4!] + … 

  = 1 + [s + t] + [s + t]
2
/2! + [s + t]

3
/3! + [s + t]

4
/4! + …. 

That corresponds to 

 e
s
 e

t
 = e

s + t
. 

Finally, take its derivative. 

From 

 g(x) = 1 + x + x
2
/2! + x

3
/3! + x

4
/4! +  …,  write 

 g (x) = 1 + 2x/2! + 3x
2
/3! + 4x

3
/4! +  … 

  = 1 + x + x
2
/2! + x

3
/3! + x

4
/4! +  …. 

That accords with our earlier finding that e
x
 is its own derivative. (See Exercise 5.) 

b Exercises VII.B.4

1. The binomial series for (1 – x)-1, valid for -1 < x < 1, is 
 (1 – x)-1 =  1 + -1(-x) + -1(-2)/1(2) (-x)2 + -1(-2)(-3)/1(2)3 (-x)3 + … 
   =  1 + x + x2 + x3 + …. 
The equality is inarguable; the last is a geometric series. 
a) Do the long division of 1 – x into 1 to verify the series. 
b) Use Fermat’s method (add h to x) to show that the derivative of (1 – x)-1 is (1 – x)-2. 
c) Write out the binomial series for (1 – x)-2. 
d) Use the “nxn – 1” formula to take the derivative of 
 (1 – x)-1  =  1 + x + x2 + x3 + … 
term by term, then match it to the answer in (c). 

2. In the display box for the square-root algorithm, complete the last two lines shown, 
including the blank dashed line; then fill in the two subsequent lines, to show that the 
algorithm agrees with the series through the next two terms. 

3. Use Barrow’s method (add h to x, with the result that v is added to y) to show that the 
derivative of f (x) = (1 + x)1/2 is 

 f (x) = 1/2 (1 + x)-1/2. 

4. a) Write the first four terms in the binomial series for 

 (3/4) = (1 – 1/4)1/2, 
and evaluate their sum. 
b) If you stop there, then you miss the actual root by 
 [(1/2)(-1/2)(-3/2)(-5/2)/4!](-1/4)4 + [(1/2)(-1/2)(-3/2)(-5/2)(-7/2)/5!](-1/4)5 + …. 
Estimate how small that is. 

5. a) Sketch the region under the graph of y = ex from x = 0 to x = 1, then use the sketch to 
estimate its area. 
b) Evaluate the area. (Hint: ex is its own derivative.) 

http://en.wikipedia.org/wiki/Factorial
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6. Leibniz used an ingenious method (see it at Worcester Polytechnic Institute) to produce the 
series 
 sin x  =  x – x3/3! + x5/5! – x7/7! + …. 
a) We know (Exercise VII.B.3b:1) that the derivative of sin x is cos x. Take the derivative of 
the sine series term by term to produce the series for cosine. 
b) From the same exercise, we know that the derivative of cos x is (-sin x). Take the 
derivative of the cosine series from (a) term by term to verify. 
c) Square each series, then add the squares, up to the x6 terms. What is the sum? 

c) mechanics 

Newton’s creation was essential in furthering his chief interest, the study of motion. Ancient 

mathematics had no trouble with distance covered at constant speed. Oresme and Galileo both described 

distance covered at constant acceleration (uniformly increasing speed). The calculus allowed analysis of 

variable rates. The power to relate quantities and their variable rates of change is what made calculus, 

over the centuries, the language of sciences besides mechanics, and even some social sciences. 

(i) the laws of motion 

Newton promulgated three principles that became the foundation of the physics of motion. 

The First Law crystallized an idea that Galileo had come close to seeing, and that contradicted 

Aristotle. It is inertia, the tendency of material objects to resist change in motion. 

Newton’s First Law. An object at rest will stay at rest, and an object in motion will remain in motion … 

[It is worthwhile to break up the statement of the law that way, to highlight its continuation:] 

… with constant speed along a straight line, unless acted upon by a force. 

Notice that the latter part names the agency by which change in motion comes about. The first part 

agrees with everyday experience. The second part does not. The followers of Aristotle certainly denied 

the second part, based on the experience that rolling and sliding objects will stop without continued 

pushing or pulling. 

The Second Law describes what change a force brings about. 

Newton’s Second Law. A force acts to cause acceleration in the direction of the force and proportional 

to the magnitude of the force. 

In symbols, a = kF. You see that we need to write F and a in boldface, because we have introduced 

the concept of vector (quantity). In the study of motion, a vector is a quantity whose specification 

requires both a magnitude and a direction. At the same time, the Law quantifies inertia, because m = 1/k 

measures resistance to the effect of force. We have thus the physical attribute called mass and the 

familiar form 

 F = ma 

(in which m does not need direction, is therefore “scalable,” is therefore scalar). 

Galileo probably understood this facet of inertia. He figured that a two-pound ball accelerates 

downward at the same rate as a one-pounder because, subject to twice the downward pull, it also offers 

twice the resistance. 

  

http://www.math.wpi.edu/IQP/BVCalcHist/calc3.html
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Remember also Galileo’s cannonball tracing part of a parabola, as in the 

figure at right. The only force acting on the ball is its weight w, represented by 

the black arrow. That force has no part acting horizontally. Accordingly, there is 

no horizontal acceleration. As the ball moves along the curve, in the direction of 

the tangent (either of the red arrows), the rightward part (blue) of its motion is 

unchanging; the horizontal speed is constant. Vertically, the force points down 

with magnitude w, the (scalar) weight of the ball. Therefore on the way up, the 

acceleration acts against the speed. The speed decreases, at the constant 

rate F/m = w/m, m being the mass of the ball. On the way down, the acceleration acts in the direction of 

the speed. The speed increases, at the same constant rate. (The usual description deals with the vectors 

by attaching signs to the magnitudes, say + for speed or acceleration upward, - for downward. Then on 

the rise, speed is positive and decreasing; its rate of change is the negative number -w/m. On the fall, the 

speed is negative and getting more so. Therefore it is again decreasing. Its rate of change is again 

negative, the same constant -w/m.) It now becomes clear that with rates related to motion, we have the 

same need to combine magnitude and direction as with force. We must treat the combination of speed 

and direction as a vector, which gets the technical name velocity. In turn, that forces us to think of its 

rate of change, acceleration, in vector terms as well. 

A stronger illustration comes from Huygens’s discovery. Remember that an object traveling at 

constant speed v around a circle of radius r sustains an acceleration of magnitude v
2
/r in the direction of 

the center of the circle. Combine that with the two Laws and you see that keeping an object of mass m 

circling at constant speed requires a (centripetal) force pulling toward the center with strength mv
2
/r. 

To see the force in action, tie the end of some twine or string to a reasonably small and dense load, 

like a key (or several taped together). When you hold the other end and let the string and key hang 

vertically, you feel the small tug of their weight. The key has no motion: No horizontal force acts on it, 

and the string’s tension pulling up matches the weight pulling down. Now twirl your end gently, to make 

the key trace out a horizontal circle, and focus on the string. At any instant, the string makes some 

(constant) angle, labeled  in the figure at left, with the vertical. The string is now pulling 

in two directions simultaneously. Part of its tension T is pulling upward; that component 

is drawn green. We know the magnitude of that pull: Just as before, it is the weight w of 

the key. It has to be; the key is not moving up or down. At the same time, part (drawn 

blue) of T is acting toward the axis of the cone the string is tracing out—in other words, 

toward the center of the key’s circular path. That force has to be mv
2
/r, where m is the 

mass of the key, v its speed, and r the radius of the circle. As the figure suggests, the 

magnitude T of T has increased to 

 T = (w
2
 + [mv

2
/r]

2
). 

That greater tension is the greater tug on your fingers. Spin the key faster, and you will increase mv
2
/r 

and feel still greater tug. 

That leaves the Third Law. 

Newton’s Third Law. For every action, there is an equal and opposite reaction. 

The statement does not sound quantitative, but it has enormous explanatory power, especially in 

explaining the outcome of interactions. In our age, its most important manifestation is jet and rocket 

propulsion. The Law dictates that the gas forced out of the open end of a jet engine pushes back on the 

engine with an equal force that propels the closed end in the opposite direction. (Jet propulsion is 

sometimes called “reaction” drive.) For a simpler illustration, stand facing a desk that is free to slide 

along the smooth floor, and give it a short, sharp push. The force you apply will likely slide the desk an 

   

O 

w
 

   

T
 w

 

mv
2
/r
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inch or two ahead. The reaction force upon you will move the combination of you, floor, building, and 

Earth by 10
-20

 inch or so back. The reason is that the combination has around 10
20

 times the mass of the 

desk. If that reaction is hard to spot, try instead sitting in a chair equipped with casters, then giving the 

desk the same push. The reaction force will be obvious, causing you and the chair to roll back. 

(ii) gravitation 

From the Huygens principle and Newton’s Second Law, we inferred that circular motion at constant 

speed implies the existence of a (possibly unseen) centripetal force related to the speed and circle’s 

radius. The planets orbit the Sun, but not in circles nor at constant speeds. Kepler’s laws say that planets 

orbit along ellipses, at variable distances and correspondingly variable speeds. Of necessity, some kind 

of force accounts for the planets’ curving thus around the Sun. Analyzing such motion demanded 

mathematical tools with the power to handle variable distances, velocities, and accelerations. Newton 

had created the tools. 

To make the analysis, pretend that the Sun is fixed at the origin of a coordinate system. (In reality, 

the Sun must move. By the Third Law, for whatever force it exerts on a planet, the planet tugs back 

equally hard. The Sun’s motion is negligible to the extent that the planet’s mass is negligible in com-

parison.) It is convenient to give an object’s location—any object, planet or not—in polar coordinates. 

Those, too, are Newton’s creation. With that setup, Newton’s calculus proved that if an object obeys 

Kepler’s Second Law—equal areas in equal times—then its acceleration is inward to or outward from 

the Sun. If it also obeys Kepler’s First Law—like the planets, it orbits along an ellipse with focus at the 

Sun—then the acceleration at any time is inward and is inversely proportional to the square of distance 

at that time. Write that in the form a = k/r
2
, with r now meaning distance from the origin and not a fixed 

radius. Nothing so far prevents k from being one constant for Earth, a different one for Mars, a third for 

Jupiter, and so on. Newton showed that Kepler’s Third Law—orbital periods vary as (major axis)
3/2

—

implies that there is a single constant K such that every planet’s acceleration has magnitude 

 a = K/r
2
. 

[Those proofs require just elementary calculus, but with skill in the rules of derivatives, polar coor-

dinates, and vectors. If you are thus skilled and so inclined, see Appendix 2. Separately, for a wonderful 

account of much here, read the Ferris chapter on Newton, pages 103-122.] 

With that planetary acceleration, Newton’s Second Law implies that on a planet of mass m, the Sun 

exerts a force of magnitude 

 F  =  ma  =  K m/r
2
. 

Thereby, the force is proportional to the mass of the planet. By Newton’s Third Law, the force is 

proportional to the mass M of the Sun: 

 F  =  ma  =  G M m/r
2
 

for some constant G characteristic of the solar system. That was a profound discovery. By around 1675, 

Newton had put a cause to the dance of the planets. 

Then, Newton later told, he saw an apple fall in his mother’s garden. It occurred to him that the 

Moon does exactly what the apple did (and what Galileo’s pendulums were doing): It falls, necessarily 

under some force, toward Earth. We can compare the resulting accelerations of Luna and apple. 

Pretend, for approximation, that Luna orbits Earth along a circle of radius R = 30 Earths. Call the 

distance 240,000 miles. The implied acceleration is 

 [v
2
]/R  =  [2R/period]

2
/R  =  4

2
R/(27.3 days)

2
. 

With 

 R  =  2.4  10
5
 mi  5.28  10

3
 ft/mi  and  27.3 days    2.36  10

6
 sec, 

we have Luna accelerating toward Earth at 9.0  10
-3

 ft/sec
2
. 
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By Newton’s time, people had a decent idea of the apple’s acceleration, 32 ft/sec
2
. Therefore the 

acceleration of the apple was 

 32/(9  10
-3

)    3560 

times that of Luna. The apple was (call it) 4,000 miles from the center of Earth. The inverse-square 

ratio (distance to apple over distance to Luna)
-2

 was about 

 (4000/240000)
-2

  =  3600. 

Thus, the accelerations related as the inverse-square of distance. The attraction of Earth, on the apple 

and on the Moon, had the same character as Sun’s attraction on the planets. Newton was led to postulate: 

The Law of Gravitation. Between two bodies of masses M and m, (with centers of mass) separated by 

distance r, there exists an attractive force of magnitude 

  F = G Mm/r
2
, 

where G is a universal constant. 

Some notes are in order here. 

1. The “27.3 days” figure is not a mistake. Imagine we start counting at Full Moon. In 27.3 days, 

Luna completes one revolution. However, it does not thereby reach the next Full Moon. During the 

interval, Earth goes roughly 27, about 1/13 of its orbit, around the Sun. Therefore, to reach Full 

phase past Earth along the Sun-Earth line, Luna must go a further 1/13 of its orbit. That is why the 

moon—the phase cycle, Full to Full—spans the familiar 27.3(1 + 1/13)  29.4 days. 

2. Determining the acceleration of falling objects, like the apple, is doable once you have reliable 

timers and tall structures from which to drop things. You can reasonably time a fall of 144 ft— 

St. Paul’s in London, built during Newton’s life, eventually reached more than 300 ft—taking 3 sec. 

From either Galileo’s s = at
2
/2 or Oresme’s 144 ft/3 sec = (average speed) = 1/2(end speed), you 

calculate a speed gain of 32 ft/sec per second. 

3. That Earth’s attraction acts as though all Earth’s mass were concentrated at its center was itself a 

fact that had to be established by integral calculus. 

4. The Law allowed humans to “weigh” heavenly bodies. By around 1800, Earth’s distance r from 

the Sun had been approximated with decent accuracy. That allowed calculation of Earth’s speed, 

then Earth’s acceleration a, just as we did with Luna. By then, Henry Cavendish had approximated 

G by exceedingly careful Earthbound experiment. When you have r, a, and G, from 

 a  =  F/m  =  GM/r
2
, 

you obtain the mass M of the Sun. Since the same law applies to Earth, we can find the mass of 

Earth. Indeed, we can find the mass of any celestial body that has satellites measurably far from the 

body. Jupiter and Saturn come immediately to mind. 

(iii) differential equations 

The gravitational force F is described by the equation 

 F = G Mm/r
3 

(-r). 

In the context of the solar system, r is the position vector whose magnitude r is distance from the Sun 

and whose direction is from the Sun to the planet in question. The minus sign says that the force points 

in the opposite direction, planet to Sun. The division by r
3
 sets the magnitude of F at (GMm/r

3
)r; the 

force is proportional to inverse-square distance. 

Combine that with F = ma to write 

 a = GM/r
3 

(-r). 

This equation puts acceleration, the rate of change of velocity, which is the rate of change of position, in 

terms of position. It was the first differential equation.  [The name “derivative equation” would have 

http://www.famousscientists.org/henry-cavendish/
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been more informative.] It is an equation that relates a quantity (or multiple quantities) to its (their) 

rate(s) of change, the rates of change of those rates, and so on. Differential equations became a powerful 

tool in the scientific description of the world. 

We can give an elementary example with another of Newton’s discoveries (which, as a bonus, is 

outside of mechanics). Newton’s law of cooling says that an object at a temperature different from its 

surroundings cools down or heats up (toward the ambient temperature) at a rate proportional to the 

temperature difference.  

Imagine placing a cup of 80 water into an oven at 200. Assume the 200 is constant; any heat the 

oven gives to the water is replaced by the burner. Say the cooling rate is a tenth of the difference. 

Initially the water heats up at a rate of (0.1/min)(200 – 80)  =  12/min. In a short time, the cup 

reaches 81. By that time, the heating has slowed to (0.1/min)(200 – 81)  =  11.9/min. But before 

then, the cup had reached 80.5, and the rate had been …. You can see why the calculus was needed. 

In general, let T be the temperature at time t. In the infinitesimal additional time dt, the change dT in 

temperature is given by 

 dT  =  (heating rate)  time  =  0.1(200 – T) dt. 

In other symbols, the derivative dT/dt—the rate at which temperature changes per unit time—satisfies 

 dT/dt  =  0.1(200 – T). 

That is a differential equation. It prescribes how T changes with time. Notice that 200 > T for our cup. 

Accordingly, the rate of change is positive; the water temperature rises. If we had started with T > 200, 

the rate would have been negative, and T would have decreased. How can we describe the changing 

temperature as a function of time? 

With the situation at hand, the Fundamental Theorem does not apply directly. If the rate of change 

were given in terms of t, so that the equation looked like 

 dT/dt  =  f (t), 

then straight integration would give us (the change in) T. Here, however, we have the rate in terms of T, 

not of t. We need an indirect approach. 

The direct question is to specify T in terms of t. Let us turn the question around and try to put t in 

terms of T. After all, we could have related the two differentials by 

 1/[0.1(200 – T)] dT  =  dt. 

That form is amenable to the Theorem. It tells us that summing the differentials of time, to get the 

span of time needed to get from one temperature to another, is a matter of integrating. 

Fix a target: Ask how long it takes the water to get from 80 to 140. We need to integrate 

 g(T) = 10/(200 – T) 

from T = 80 to T = 140. In terms of areas, we need to evaluate the area under the graph of 

 y  =  g(T)  =  10/(200 – T) between T = 80 and T = 140. 

That region has the same area as the one under 

 y = 10/x   between x = 60 and x = 120  (Exercise 2a). 

We have agreed that the latter area is 

 10 [loge 120 – loge 60] = 10 [loge (200 – 80) – loge (200 – 140)] (Exercise 2b). 

From that form, we conclude that the heating from 80 to T takes 

 t = 10 [loge (200 – 80) – loge (200 – T)] min. 

(Compare Exercise 2c.) From there, it happens, we may express T as a function of t; see Exercise 2d. 

Turning the question around led to an integral. It does not generally work, but whatever process 

works to solve a differential equation is sometimes called “integrating” it. 
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Integrating the equation 

 a = GM/r
3 

(-r) 

of motion under gravity is considerably harder. Naturally, Newton managed it. He showed that the 

possible paths, of an object subject only to an inverse-square force attracting it to a fixed body, form a 

family. It is the family of conic sections having one focus at the attracting body. Which of these sections 

the object follows, is determined by the position and velocity of the object at any chosen moment. 

The best moment to choose is when the object is closest to the attractor. At that point the conic’s 

tangent—and therefore the velocity of the object—is perpendicular to the conic’s axis (the segment 

from that point to the attractor). 

At that place, there exists a specific speed V that will cause the path to be a circle. For example, 

suppose the attractor is Earth, and we lift a package (hoping to make it a satellite) to a height 

of 200 mi. At that altitude, (call it) 4200 miles from Earth’s center, a speed of V  17,200 mi/hr 

parallel to the surface will send the package into a circular orbit of radius 4200 mi. Along that orbit, 

the speed will remain constant. 

Suppose that along the circle we later boost the speed to v > V. The satellite will rise to a higher 

point on the opposite side of Earth, then come back to the boost point. The orbit will become an 

ellipse of eccentricity (v/V)
2
 – 1. The bigger v is, the more elongated the ellipse, until we 

choose v = (2)V  24,300 mi/hr. Then the eccentricity reaches 1. That means the path is a parabola. 

The satellite never comes back. For that reason, this v is called escape velocity (at the 200 mi 

altitude). Once v exceeds (2)V, the path becomes a hyperbola. (The difference is: On the parabola, 

the satellite tends toward a “terminal speed” of zero, directed parallel to the axis; on a hyperbola, the 

terminal speed is the excess over (2)V, directed at an angle to the axis.) 

If the satellite is in the original circular orbit and we slow it to v < V, then the number (v/V)
2
 – 1 is 

between 0 and -1. The orbit is again an ellipse. The negative sign says merely that the lowest point is 

not the start but instead the point on the opposite side of Earth. In that case, the absolute 

value 1 – (v/V)
2
 gives the eccentricity. 

In actual rocketry, the effect of lowering the low point is to put the satellite into the atmosphere, 

where it is either destroyed or slowed for convenient landing. If you squeezed all of Earth’s mass 

into its center—so that the gravity were as before, but the air and planet were not in the way—then 

making v small would make the satellite pass at enormous speed by the center. 

The remarks about speed apply to any object, including a ball we might throw or a cannonball 

Galileo might fire. We previously stated that the paths of those balls would be parabolas. The statement 

is only close to true. It is based on the assumption that either ball’s acceleration is constant. Instead, 

acceleration varies with the force of Earth’s gravity. 

If our ball reaches a maximum height of 10 ft  0.0019 mi, which is 4000.0019 mi from Earth’s 

center, then up there acceleration is only (4000/4000.0019)
2
 as great as at ground level. For the 

cannonball, if it reaches 528 ft = 0.1 mi high, then the ratio drops to (4000/4000.1)
2
. For each ball, 

the path is an ellipse. The ellipse is indistinguishable from a parabola to the extent that say 

(4000/4000.1)
2
  0.99995 is indistinguishable from 1. 

c Exercises VII.B.4

1. As you stand still on the floor, what is the reaction to your weight? 
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2. Sketch (roughly) the graph of y = 10/(200 – T) between T = 0 and T = 200. 
a) Argue why the region under that graph from T = 80 to T = 140 is congruent to that under 
 y = 10/x from x = 60 to x = 120. 
b) Exactly how much is the area of the latter region in (a)? (Hint: The area under 
 y = 1/x  from x = 1 to x = b 
is loge b.) 
c) How much time does the water in the oven take to get from 80 to 140 degrees? 
d) Solve 
 t = 10 [loge (200 – 80) – loge (200 – T)] 
for T in terms of t. Then describe how T changes as time passes. 

e) How much time would be needed to heat the water to 199? to 199.999? What do you 

conclude about heating the water all the way to 200? 
f) Does the answer in (e) agree with the description in (d)? 

3. In a radioactive element, the atoms break down into simpler ones. The number disinte-
grating per unit time is proportional to how many there are. Therefore the mass m of 
remaining (unchanged) element decreases at a rate proportional to the mass itself: 
 dm/dt = -km. 
In the case of radium, k = 0.00753/year. 
a) Solve the differential equation 
 dm/dt = -0.00753m 
for t as a function of m, given that m = 1gm at time t = 0. 
b) How long does it take for the remaining radium to decrease to 1/2 gm? (That period is 
called the half-life. A sample of any size will reduce to half as much in that time.) 
c) Solve the equation from (a) for m as a function of t. What happens as time goes on? 

4. By Newton’s Law, the cooling rate of a cup of coffee hotter than the surrounding air is 
proportional to the difference between its temperature and the ambient. Given that, why 
does the coffee cool faster if we pour it into a saucer? 

d) light 

Newton made important discoveries related to light. He proposed that light consists of microscopic 

particles (“corpuscles”). The particle theory became a rival to the wave theory Huygens had proposed. 

The latter won out, because it could explain diffraction, the bending of light around obstacles; particles 

have to travel straight lines in the absence of force. Newton’s theory stayed out of favor until around 

1900. Then it turned out that interaction of light with subatomic particles could only be explained by 

thinking of light as composed of particles (photons, each one a “quantum” of light energy). 

More successful was his demonstration of the composition of white light. 

Around 1672, Newton used a slit to let a shaft of sunlight fall upon a prism, as 

illustrated at left. In passing through, the white light broke up into the rainbow. 

We noted (section V.A.4a) that at the air-to-glass entry, the red end of the 

rainbow is refracted less toward the normal than the violet end. At the glass-to-

air exit, red is refracted less away from the normal. The result is a separation of 

the colors, as suggested in the figure. Then Newton added an experiment. He 

used a second slit to allow a shaft of a single color to pass through a second 

prism. The single color did not in turn break up into others. The single colors were the “atoms,” the 

indivisible constituents, of the white light. 
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Around 1668, Newton revolutionized telescope design. A refracting telescope uses a convex lens 

(heavy black outline in the left half of the next figure) at the top of a tube (green) to turn incident 

parallel rays (solid arrows) into rays (dashed arrows) converging toward a focus (out of view below the 

figure). Newton realized you can cause the same focusing with a concave 

mirror (red). There is a disadvantage: You have to suspend a smaller flat 

mirror along the axis of the tube (above the figure) to reflect the focused light 

out of the tube. However, the reflecting telescope has some huge advantages. 

The lens has two surfaces that must be accurately shaped; the mirror has just 

one (that has to be silvered). The lens has to be refractively uniform (equally 

refractive throughout); the mirror, which the light does not cross, can have 

variable density, flaws, even bubbles. For those reasons, reflectors are much 

easier and cheaper to construct than refractors of a given size. Over the three 

centuries after Newton, the world’s biggest telescopes were always 

reflectors: William Herschel’s 50-inch diameter (1789) in England; Mt. Wilson’s 100 inches in 

California (1917); Hubble’s 94 inches in Earth orbit; versus just 40 inches in the 1897 refractor at 

Yerkes Observatory (Wisconsin). (Why does diameter of lens or mirror matter?) 

The lens has an additional disadvantage. Look at the figure: A convex lens vaguely resembles and 

acts like two prisms stuck base-to-base. Accordingly, it separates colors. That means red starlight 

focuses further from the lens than blue. Such chromatic aberration renders it impossible to examine all 

the light at sharp focus. The mirror avoids the aberration, because reflection does not separate the colors. 

e) the astronomer 

Edmond Halley (1656-1742) was a brilliant astronomer, so much that he was elected to the Royal 

Society and later appointed England’s second Astronomer Royal. Early on he charted the southern sky 

from St. Helena, the distant South Atlantic island to which Napoleon would one day be exiled. His later 

measurements led to the discovery that the stars have proper motion, motion relative to other stars. [We 

Yanks say his name HAIL-ee. I read somewhere that the British pronunciation is HALL-ee.] 

In 1684, he and others were asking whether you could explain Kepler’s laws through the agency of 

an attraction (to the Sun) analogous to light. Light from a point source propagates out to an imaginary 

sphere of radius 1, then continues out to the sphere of radius r. The latter has r
2
 times the area of the 

first. Therefore illumination, incident energy per unit of area, drops in proportion to 1/r
2
. The question 

was whether the Sun’s attraction waned similarly. Halley thought to put the question to the Lucasian 

professor. Newton answered what we encountered in the latter part of subsection c(iii): The orbits, the 

paths that do not go off to infinity, are ellipses. Newton had worked it out earlier, but had to reproduce 

the arguments. Halley was impressed, and asked Newton to elaborate. Newton complied; he put the 

arguments and much background into a manuscript he showed to Halley. Halley was amazed. He 

begged (the reluctant) Newton to let him publish it, had it printed in 1687, paid the bill for its 

production. It was Philosophiae Naturalis Principia Mathematica (The Mathematical Principles of 

Natural [Science]).  Halley had needed to coax Newton to allow publication of the most important 

scientific book of all time (even in a world that includes On the Origin of Species). 

Newton was like Fermat, but considerably worse. He was so afraid of subjecting his privacy to 

public (or private) scrutiny that he mostly did not even communicate his discoveries to colleagues. (It 

seems he had no friends.) He discovered (but did not prove) the binomial theorem around 1665, but first 

mentioned it in a 1672 letter he sent to Leibniz via the Royal Society. The Principia gave the world its 

first look at the laws of motion and gravitation, which Newton had formulated by 1670. It gave 
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Newton’s version of the Fundamental Theorem (from about 1665) three years after Leibniz published 

his version; Leibniz had discovered the Theorem some ten years after Newton. 

Halley’s discovery of proper motion ended forever any credibility attaching to Aristotle’s idea of an 

immutable celestial sphere. That idea had already been dented by Tycho (mentioned in section VI.D.2a). 

Tycho argued that a supernova (exploding star) of 1572 had to be past the Moon and planets, because it 

displayed no motion and (especially) no parallax. The Moon shows parallax. If for example the northern 

extreme of the Moon passes across (“occults”) a bright star from the viewpoint of Syracuse, then it will 

pass well below (south of) the star as viewed from Prague. Based on the supernova’s lack of parallax, 

Tycho concluded that it was among the stars, even though it was transient. Later, from his own 

observations and reports from his network of contacts, Tycho gauged that a comet of 1577 had shown no 

parallax comparable to the Moon’s. Accordingly, Tycho argued that comets are also travelers beyond 

the Moon, even though they appear and disappear. 

If comets are solar system objects, Halley reasoned, then Newton’s mechanics governs them. 

Around 1700, Halley applied Newton’s laws to observations of a 1682 comet to calculate its orbit. Then 

he used knowledge of the masses of Jupiter and Saturn—see the note about weighing the planets at the 

end of subsection c(ii)—to figure how the masses of those planets would “perturb” the motion of the 

comet. He concluded that the comet (which he had witnessed) was the same body that had appeared in 

1607 and 1531, tracing an eccentric orbit around the Sun over a period of about 76 years. Later he found 

records going back to ancient Chinese times, even to Babylonian times, indicating returns of the same 

comet. He predicted that it would return in 1757, a year he could not expect to live to see. As of 

December 24 that year, his prediction was unverified. The comet was spotted the next day. That 

Christmas Day observation, a triumph of science and in particular of Newtonian mechanics, came on the 

115
th

 anniversary of Newton’s birth. 

[Halley made another prediction for the future beyond him. Kepler himself had predicted that there 

would be transits of Venus—that Venus would cross the face of the Sun—in 1761 and 1769. Halley 

suggested that if astronomers mounted expeditions to scattered places on Earth, to witness the events 

and record the parallax of Venus, then they could calculate its distance from Earth. Thus, suppose the 

path of Venus across the Sun were 1/40 of Sun’s size higher from Cape Town than from London. The 

implication would be that a (not quite north-south) distance of about 5900 mi subtends an angle of 1/40 

of half a degree, or 0.00022 radian. It would imply an Earth-Venus distance of 

 (5900 mi)/.00022    27 million mi. 

From that one distance, you could calculate all the distances in the solar system, because Kepler’s laws 

dictate the relative distances. Halley’s suggestion was better on paper than in life. Read about the 

hardships of the expeditions British (James Cook, 1769) and French (… Le Gentil, both years) in Sky 

and Telescope Magazine’s three-part article.] 

e Exercises VII.B.4

1. a) Mathematicians studied tangents and areas—the questions that lead to derivatives and 
integrals—before Newton. Give examples of two such people, and describe the problems 
they solved and how the problems relate to the calculus. 
b) In view of (a), in what sense did Newton and Leibniz “invent” calculus? 

http://www.skyandtelescope.com/community/skyblog/observingblog/Transits-of-Venus-in-History-1761-156333085.html
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 The Eighteenth Century Chapter VIII.
We will stretch the century slightly back, then ahead into around 1820. The biggest progress was in 

calculus, where the driving force was desire to perfect the analytical description of mechanics. Still, we 

can go back to our old way of tracking development in geometry, algebra, and number theory. 

Keep in mind the political developments. England went from consolidating a world-circling empire 

to losing its North American colonies south of Canada. France went from the placid last years of Louis 

XIV to the explosion of 1789 and the years of Napoleon. Spain’s European dominions shrank to the 

Iberian Peninsula, though she still held half of South America. Germany was not yet a country. Russia 

finally opened up to the rest of Europe. The great Italian cities—not Italy itself, which like Germany was 

not yet a state, but Venice, Florence, and the like—ceased to be powers. 

 Geometry Section VIII.A.
It seems like centuries since we last talked about geometry. So it was: In Euclidean geometry, 

nothing had happened in five hundred years. The most popular question over that time had been 

squaring the circle. Proving the parallel postulate may have been a close second, but the last serious 

work on it had been by Arabic mathematicians. However, the work picked up in the eighteenth century. 

Recall what that work was about. From the time of Euclid, people had found the parallel postulate 

(consult section III.A.8b) unpalatable. They had tried to show that it is unnecessary, that it follows from 

the earlier postulates of Euclid. The Islamic world pursued a number of paths. Omar Khayyam (more 

familiar to us from algebra, toward the end of section V.A.3) looked at the 

quadrilateral at right. This birectangular isosceles quadrilateral has congruent 

perpendiculars BA and CD (the sides) raised at the end of segment BC (the 

base). Nasr al-Din al-Tusi (circle within a circle, 

section VI.D.1a) later studied the same figure. The 

question was whether the quadrilateral is necessarily a 

rectangle. Al-Hassan ibn al-Haytham (section V.A.2) looked at the 

trirectangular quadrilateral, shown at left, characterized by right angles 

at P, Q, and R. He faced the same question.  

Once you prove some quadrilateral is a rectangle, a long chain of inferences establishes the parallel 

postulate. A good place to follow the chain is Walter Prenowitz and Meyer Jordan’s Basic Concepts of 

Geometry (1965 and 1989). Roughly: The existence of one rectangle implies the existence of rectangles 

of all sizes; when there are rectangles of all sizes, every right triangle’s angles add up to 180; if every 

right triangle has that angle sum, then every triangle does likewise; and if every triangle has angle sum 

of 180, then parallel lines force congruent alternate interior angles. We named that last statement the 

“parallel postulate,” equivalent to the Euclid statement we named “Euclid’s postulate” (section 

III.A.8b(i)). 

1. Saccheri 

Girolamo Saccheri (Sah-CHEH-ree, 1667-1733) worked on al-Tusi’s 

polygon, now called a Saccheri quadrilateral. At right, we reproduce it and 

add the diagonals AC and BD (green), which meet at O. (We will accept, as 

Euclid would, that they must meet within the quadrilateral.) The figure also 

has the midpoints M and N of the summit AD and the base. The segment 

MN joining them is the median of the quadrilateral. Without using the 

parallel postulate, Saccheri proved a series of results. 
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Theorems. In a Saccheri quadrilateral: 

1. The diagonals are congruent. 

2. The summit angles BAD and CDA are congruent. 

3. The median is perpendicular to the base and to the summit. 

4. The base is parallel to the summit. 

5. The upper segments OA and OD of the diagonals are congruent, as are the lower ones OB and OC. 

6. The median crosses the intersection O of the diagonals. 

Theorem 1 is Exercise 1. In view of Theorem 1, triangles CAD and BDA are congruent by SSS. 

Therefore angles CDA and BAD are congruent, proving Theorem 2. 

To prove Theorem 3, look first at triangles BAM and CDM. Because the 

summit angles are congruent and M is the midpoint of AD, the triangles 

are congruent by SAS. Therefore sides BM and CM are congruent, as are 

angles 1 and 2. From the congruence of the sides, we see that triangles 

MBN and MCN are congruent by SSS. That tells us angles 3 and 4 are 

congruent. Adding the angle pairs 1 and 3, 2 and 4, we conclude angles 

AMN and DMN are congruent. Since they are supplementary, they must 

be right angles. It further tells us that angles MNB and MNC are 

congruent. Those must likewise be right angles. We have proved Theorem 3. 

Theorems 4 and 5 are Exercises 2-3. For Theorem 6, ignore the median and draw the segment ON. 

By Theorem 5, OB is congruent to OC. Hence triangles BON and CON are congruent, by SSS. Then 

angles ONB and ONC are congruent, must therefore be right angles. That means ON lies along the 

line perpendicular to BC at N. That perpendicular is the line MN; the point O is on MN. 

With those theorems in hand, any of a number of conclusions would establish that the quadrilateral 

is a rectangle. 

For one, if you could prove that the summit is congruent to the base, then triangles BCD and DAB 

would be congruent (SSS). That would make DAB a right angle; similarly with ADC. For another, if 

you could prove that the diagonals bisect, then you would know triangles BOC and DOA are con-

gruent (SAS, via the vertical angle). That would make the summit and base congruent. Finally, if 

you could prove that MN is congruent to AB and CD, then you would have triangles ABN and NMA 

congruent. (That would be by HL, hypotenuse-leg, which does not depend on the parallel postulate.) 

The congruence would make BN and MA congruent; again summit and base would be congruent. 

Observe that the last possibility would be an immediate consequence if you knew that parallel lines 

are equidistant. You cannot know that; as we stated at the end of section III.A.8b, the equidistance 

property is equivalent to the parallel postulate. 

Only one path was left to Saccheri: Try to show that if the summit angles are either acute or obtuse, 

then a contradiction follows. He managed one if they are obtuse. From the assumption that they are 

acute, there flowed such results as summit exceeds base (AD > BC) and sides exceed median 

(AB = DC > MN.) Those suggested that the quadrilateral might better be 

rendered as at right, with the lines only seeming curved to us because of our 

parochial notion of straightness. Notice that this picture is faithful to known 

properties: The median is perpendicular to summit and base; to left and right of 

the median, summit and base diverge; the sides exceed the median and are still 

perpendicular to the base; and the summit angles are acute. However, contrary 

to what Saccheri evidently believed, none of what he wrote actually 

contradicted the earlier Euclidean postulates. 
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. Prove, without invoking the parallel postulate, that in a Saccheri Exercises VIII.A.1
quadrilateral: 

1. The diagonals are congruent. 

2. The base is parallel to the summit. 

3. The upper segments (OA and OD in the first figure) of the diagonals are congruent, and so 
are the lower segments OB and OC. 

2. Lambert 

Johann Heinrich Lambert (1728-1777) was Swiss. He chose to study ibn al-Haytham’s trirectangular 

quadrilateral, needing to eliminate the possibilities that the remaining angle could be acute or obtuse. 

Interestingly, he left open the “obtuse” choice. That possibility would make angle sums in triangles 

exceed a straight angle. To eliminate it, Saccheri had needed the assumption that lines have infinite 

length. (Euclid had postulated only that they could be extended.) Lambert gave the following example 

where things that behave like lines produce triangles with angle sums beyond 180. 

For a creature confined to a surface—as humans were in the eighteenth century—the geodesics 

(paths of least distance) are what he has to interpret as “straight.” On a sphere, the geodesics are the 

great circles, the circles with centers at the center of the sphere. We can also describe them as 

sections of the sphere by planes that contain the center. For humans now, they determine the great-

circle routes planes nominally follow. 

Find a globe and follow three of them: the meridian of 75 west longitude (just west of New York) 

from the North Pole to the Equator (near where Ecuador, Peru, and Colombia meet) ; the Equator 

from the 75
th

 meridian to the 90
th

 (among the Galapagos Islands); and the 90
th

 meridian north (past 

New Orleans) to the Pole. That is a spherical “triangle” with two 90 angles at the Equator and a 15 

angle at the Pole. It has an excess of 15 beyond 180. On the sphere, all “triangles” have excesses. 

Lambert added a remarkable result. Slide the left edge of our triangle over to the 105
th

 meridian, 

through Denver. This new triangle has an excess of 30, and it clearly takes up twice as much Earth area. 

Lambert proved that if triangles have angle sums exceeding a straight angle, then their areas are 

proportional to their excesses. 

He then entertained the “acute” possibility. If the quadrilateral’s last angle is acute, then all 

quadrilaterals have angle sums under 360. Consequently all triangles have a defect, a shortfall in angle 

sum, below 180. Here again, Lambert showed that area is proportional to the defect. 

Notice an odd thing: Under either regime—obtuse or acute—there are no similar triangles other than 

congruent ones. If the angles of one triangle match those of a second, then they have equal areas. In that 

case, the equality of size leads to matching sides. 

According to Boyer, Lambert was the first to recognize—certainly he was first to write explicitly—

that attempts to prove the parallel postulate always end up chasing a ghost. Every such attempt had come 

down to establishing a reasonable statement that turned out to be equivalent to the postulate, so that the 

argument amounted to assuming what was to be proved. For example, in 

(what is now called) the Lambert quadrilateral at left, PS is necessarily 

parallel to QR. (Reason?) If we know that parallels are equidistant, then we 

infer that SR is congruent to PQ. Then triangles QRS and SPQ are congruent 

by hypotenuse-leg, angles 1 and 2 match angles 3 and 4 respectively, and 

(angle 3 + angle 4) is a right angle. You see that this argument hinges on the 

equidistance principle. We know the principle is equivalent to the parallel postulate. 
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http://www.archive.org/stream/AHistoryOfMathematics/Boyer-AHistoryOfMathematics#page/n521/mode/1up/search/lambert
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3. Playfair 

John Playfair (1749-1819) did not pursue the parallel postulate extensively, but he stated what is 

now the best-known equivalent. We will state his postulate and prove the equivalence. 

Playfair’s Postulate. Given a line and a point not on the line, there exists in their plane exactly one line 

through the given point parallel to the given line. 

Assume Playfair’s postulate. At right, we have parallel lines L and M cut by a 

transversal (blue) at P and Q. The dashed line is constructed by producing on the 

left at P an interior angle congruent to the one on the right at Q. Recall that by 

Euclid’s earlier postulates (section III.A.8b(ii)), the dashed line is parallel to M. 

By Playfair’s postulate, the dashed line and L must be one. Therefore L is the 

line that makes congruent alt-int angles. We have shown that Playfair’s postulate implies the parallel 

(alt-int angles) postulate. 

Conversely, assume the parallel postulate. At right, we start with point R off line N. 

Drop the perpendicular (dotted) from R to S on N, then erect the perpendicular 

(red) to RS at R. By the earlier postulates, the red line is parallel to N. That gives us 

one line through R parallel to N. Suppose now U (green) is a different line through 

point R. Then U is not perpendicular to RS; it makes interior angles at R unequal to 

the ones at S. By the parallel postulate, U is not parallel to N. The red line is the only parallel 

through R. We have shown that the parallel postulate implies Playfair’s. 

 The Calculus Section VIII.B.
The progress in calculus led beyond the desired culmination of Newton’s equations. Calculus and its 

outgrowths became indispensable for the physical description of the world, and more generally in the 

description of processes of change. 

1. The Bernoullis 

The Bernoulli family produced contributors to mathematics and physics for more than 200 years. 

(See the family tree in Boyer.) When the Spanish conquest of the Netherlands turned it into a dangerous 

place to be Protestant, much of the family left Antwerp (now Belgium, but modern Belgium was 

invented in 1830) for Basel (Switzerland). That was already home to Nicolaus Bernoulli and his sons, 

and there the boys occupied the University’s Chair of Mathematics for sixty years. 

a) Jacques and Jean 

The sons of Nicolaus were present, effectively, at the creation. They were in contact with Leibniz 

right after the latter’s publication of the calculus, and for years after. They advanced the subject so 

quickly that within twenty years they had in place much of the current form of undergraduate calculus. 

Jacques Bernoulli (1654-1705) took the Basel chair in 1687. Around 1690, he persuaded Leibniz to 

change the name calculus summatorius to calculus integralis.  For the calculus differentialis half, he 

contributed a modification to Fermat’s theorem about maxima and minima (section VII.A.4d). 

Recall the animation of the cycloid (Wikipedia®). At the high points, the point tracing the curve is 

moving horizontally; the tangent to the cycloid is horizontal and has zero slope. At the cusps, the 

tracing point is moving down, stops, starts moving up. Its direction—and therefore the tangent—is 

vertical; the slope is undefined (or “infinite”). Jacques pointed out that the maxima and minima of a 

function can happen where the derivative is undefined, in addition to where it is zero (Exercise 1). 
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Jacques contributed as well to the study and solution of differential equations.  

Jean Bernoulli (1667-1748) succeeded his brother at Basel and held the chair until his own death 43 

years later. (With the Swiss, you have to track the names in multiple languages. You will find Jacques 

listed as Jakob or James, Jean as Johann or John.) Some of his important work came under an odd 

arrangement with Guillaume, marquis de L’Hôpital (1661-1704). The latter hired Jean to produce 

mathematical results to be published under L’Hôpital’s name. The resulting publication, with some 

material from the author but much from Jean (including L’Hôpital’s Rule, Exercise 2), became a 

respected and widely-used textbook. 

Jean also laid the foundation for what came to be called the calculus of variations. The subject 

investigates questions of this form: Of all the functions that satisfy some condition, which one makes 

some integral (dependent on the function) as big or small as possible? 

The question does not have to be exotic. Remember Huygens’s idea (section VII.B.3a(ii)) that the 

arc length of the graph of y = f(x) is given by the integral of 

 ds = (1 + [f (x)]
2
) dx. 

That is an integral dependent on a function. We may ask for the function, among those whose graphs 

join two given points, that makes the integral smallest. That question amounts to asking for the path 

of least distance. We can answer that with no knowledge of the calculus of variations. 

Look at the very first question Jean made public. 

Picture at right the graph of y = f(x) descending from (0, a) to (b, c). Imagine 

the red object sliding frictionlessly along the graph, pulled by gravity. The 

question was: Of the functions with such a graph, which will cause the object 

to make the trip in the minimum possible time? 

This is Jean’s famous problem of the brachystochrone (from Greek for 

“shortest time”). It fits the form because you can express the time as an integral, much as we did for 

Newton’s Law of Cooling (section VII.B.4c(iii)); its dependence on f is evident. You might answer 

with the straight line graph. It certainly gives the shortest distance. However, if you make the path 

start down steeply from (0, a), as in the figure, then the slide accelerates more quickly. Maybe the 

faster speed gain will more than offset the increased distance. 

Jean proposed the question as a public challenge to European mathematicians. (The brothers were 

always posing such puzzles.) In due course, Jacques and Leibniz answered: The needed graph is the 

(upside-down) arch of a cycloid with cusp at (0, a) and low point at (b, c). This curve had previously 

answered a different question. Huygens discovered that it solves the tautochrone (“equal time”) 

problem: No matter where on the arc you start the object, the time the object takes to reach the 

bottom is the same. (Huygens had used that property to construct accurate timepieces; see Boyer.) 

Just ahead of the Jacques and Leibniz solutions, a splendid one appeared in the Philosophical 

Transactions of the Royal Society. Its author, evidently publicity-shy, had requested anonymity. Jean 

took one look and said, “Tanquam ex ungue leonem,” “By the claw [marks], you recognize [that it was] 

the Lion.” In his reckoning, there existed just one Briton who could have produced so elegant an answer. 

a Exercises VIII.B.1

1. a) Use Barrow’s method (add h to x, triggering addition of v to y) to find the slope of the 
tangent to the graph of 
 f(x) = x2/3 
at the point (a, a2/3). 
b) Find all a for which that derivative is either zero or undefined. 

   

(b, c) 

 y = f(x)
 

O 

a 

http://tutorial.math.lamar.edu/Classes/CalcI/LHospitalsRule.aspx
http://www.archive.org/stream/AHistoryOfMathematics/Boyer-AHistoryOfMathematics#page/n427/mode/2up
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c) Use the sign of the derivative—remember that the sign indicates whether the graph is 
sloping up or down—near the places in (b) to decide whether the function has extremes 
(max or min) there. 

2. As Fermat and the others would, we may write some of L’Hôpital’s Rule as follows: 
If f(0) = g(0) = 0 and h is infinitesimal, then 

 f(h)/g(h) = f (h)/g(h). 
Use the Rule and what you know about the derivatives of sine and cosine to show that 
 (1 – cos h)/h2  =  1/2. 

b) Daniel 

Jean Bernoulli had three sons, of whom the elder two gained fame. Nicolaus (1695-1726) was 

accomplished enough to receive Peter the Great’s invitation to join the Academy in Peter’s new Russian 

capital. Nicolaus went to St. Petersburg in 1725, died there the next year. The middle son, Daniel (1700-

1782), followed his brother.  He remained in St. Petersburg until 1733, then returned to a succession of 

posts at Basel. 

Daniel’s strength was hydrodynamics. Among his discoveries is the fluid-flow principle (higher 

speed, lower pressure) that bears the family name (and explains the lift under wings). To describe fluid 

flow, he pioneered the field of partial differential equations (PDE’s). Those equations relate functions of 

more than one variable and their partial derivatives. In that field, however, his best-known discovery 

was not about fluids. It was the string equation, which describes the shape of a vibrating string. 

Imagine a piano wire, fixed at both ends, vibrating (up and down, not sideways) in between. To 

describe its shape, we may give the (possibly negative) height y of the string above the equilibrium 

position, at each horizontal position x along the string as time t passes. Thus, we write y as a function 

 y = G(x, t) 

of more than one variable. 

At a fixed place x = a along the string, the height of the string is given by the function 

 y = G(a, t) 

of the single variable t. The partial derivative of y with respect to t is the rate of change of that 

function per unit change in t, with x not changing from a. We can interpret it. The derivative with 

respect to time of any position is velocity. In this case, the partial derivative of y with respect to t is 

the vertical speed (possibly negative) of the string at the place x = a, at whatever time we evaluate it. 

At a fixed time t = b, the height of the string is given by the function 

 y = G(x, b) 

of the single variable x. The rate of change of that function per unit change in x, with t not moving 

from t = b, is what we mean by the partial derivative of y with respect to x. We can interpret that one, 

too. When t = b, the wire has the shape of the graph of y = G(x, b). The “partial” of y with respect 

to x at any given place, at this time, is the slope of the tangent to the graph at that place, at that time. 

Physical considerations show that there is an equation that governs all possible vibration patterns. It 

relates y, its partial derivatives, their partial derivatives, …. Such an equation is called a partial 

differential equation. For the string equation, Daniel produced solutions in terms of periodic 

functions, namely sines and cosines. Those combine to produce what we naturally call “waves.” 

[The invention of PDE’s necessitated the creation of “ordinary differential equations” for what had 

been “differential equations.” That is the phenomenon of retronyms. One familiar retronym is “film 

cameras,” a name that had to be invented for what used to be called “cameras.” (The more usual 

example is “acoustic guitars.”)] 
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2. Euler 

Nicolaus, then Daniel, recommended to the Academy that it import another Basel native, Daniel’s 

best student. Like Barrow’s student, this one surpassed his mentor. He surpassed everybody; he was the 

most prolific mathematician ever. 

Leonhard Euler [OIL-er] (1707-1783) arrived in St. Petersburg a year after Nicolaus died. (Why did 

Euler accept, as Nicolaus and Daniel had, the invitation to such a distant place? Would Leibniz or 

Newton have done likewise?) He occupied the latter’s post until 1741, then accepted Frederick the 

Great’s invitation to the Berlin Academy. [You could say Euler became Mathematician Royal, but the 

ruler, a groupie to such luminaries as Voltaire, actually disliked the modest Euler.] By then, Euler was 

blind in one eye. His output continued to mark the very frontiers of mathematics. It was so extraordinary 

that in 1766, Catherine the Great asked him to return to St. Petersburg. [Promotion to Mathematician 

Imperial?] The next year, cataracts took the other eye. In his last sixteen years, the blind man still turned 

out remarkable results, dictated from a prodigious memory to servants who were not trained in math. 

a) the bridges 

Euler did not produce solutions so much as worlds of mathematics. He put problems he considered 

into contexts that inspired whole new fields of inquiry, some of which he then developed and some of 

which are still rich areas of study today. The best illustration is the problem of the Seven Bridges of 

Königsberg. It has nothing to do with calculus but is worth a detour. 

The town of Königsberg was in the Prussian province east of modern-day Poland. (Regiomontanus 

was born in a place of that name, but that one is in the middle of Germany. The province became East 

Prussia in 1920, when Germany was forced to cede the Prussian corridor along the Baltic Sea to Poland. 

In 1939, the Hitler government demanded it back. Poland refused, and Germany launched the invasion it 

would have staged regardless of the response. At World War II’s end, Stalin’s 

government kept the province and renamed the town “Kaliningrad.”) A river 

(blue in the figure at right) runs through it, with two islands (green) in the 

stream. Seven bridges (black rectangles) connected the islands to each other 

and to the riverbanks (gray). It was a nice place to stroll around; the figure 

spans less than a mile. Somebody thought to ask whether it was possible to 

take a walk—either round trip, starting and ending at the same place, or not—

that crossed each of the bridges exactly once. 

Euler thought as follows. If you make a successful round trip, then with every bridge crossing, you 

leave a landmass you entered (or will return to at the end of the trip) via some other bridge. Therefore 

for a round trip to exist, every landmass must have leading to it an even number of bridges. That same 

way of counting implies that for a non-round trip, only the starting and ending places may have an odd 

number of connectors. Neither trip is possible in the actual setup, since all four landmasses have odd 

numbers of bridges. 

(The argument shows that even numbers is a necessary condition for trip exists. That is, if even 

numbers is false, then trip exists is false. It does not treat the logical inverse, the question whether if 

even numbers is true, then trip exists is true. That would make even numbers a sufficient condition. It 

does happen to be sufficient, but further argument is required [necessary?] to prove that.) 
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Notice that the same reasoning applies to any number of land bodies connected by any number of 

bridges. Indeed, Euler recognized that it does not matter that lands and bridges are involved. There are 

simply places, with connections between some pairs of them. Look at the six black 

dots at left and the lines connecting some to others. (Any points of intersection in 

the middle do not count. One diagonal passes over the other; the lines connect only 

the big dots.) Such an arrangement is a graph. The dots are its vertices, and the 

lines are its edges. Graph theory is now an important area within math. It allows 

you to ask textbook exercises: Imagine a state road inspector, who wants to cover 

every inch of every road and not cover any road twice; or instead a salesman, who 

wants to visit every town exactly once, without regard to whether he traverses all the roads; can they 

manage those trips on the graph shown? But it also deals with momentous questions, owing to the 

modern importance of networks. The boards in the computer showing you this text have a staggering 

web of conductive paths by which various controllers must intercommunicate efficiently. You down-

loaded the text by means of a network of cables and transmitters connecting an array of servers working 

to deliver files swiftly and accurately. When the process goes wrong, you rely on the telephone network 

to connect you to that helpful young man in Mumbai. The design and maintenance of those webs are 

heavily dependent on Euler’s creation. 

a. Here are two questions you can answer by thinking, like Euler, of uncon-Exercises VIII.B.2
ventional ways to view and count things. 

1. A tournament has 544 registered entrants. The format is single elimination: For each 
round, as many pairs of distinct players as possible are chosen at random; paired 
contestants play each other, and the remaining player (if any) gets a “bye”; the winners and 
the one with the bye advance to the next round; the process repeats until you get to two 
players left, who play each other in the final round to determine the champion. How many 
games have to be played? 

2. A graph has six vertices, each connected by an edge to each of the others. Picture it as a 
regular hexagon with the sides and diagonals all drawn in, but some drawn in blue ink, 
some in red. Prove that there must exist a triangle, having vertices and edges of the graph 
as its vertices and sides, whose sides are of one color. 
(This question appeared in a long-ago Putnam Exam. You can extend it to a setting in the 
social sciences. Imagine if you had the same setup with 100 vertices. Would there 
necessarily exist a “ring of friends” of say 20 vertices forming a 20-gon of one color? Would 
there necessarily exist a “power group,” a group of say 10 vertices with one color 
connecting each to the other 9, and every one of the remaining 90 vertices connected by 
that same color to at least one of the 10?) 

b) analysis 

Euler turned the calculus into the branch of mathematics we now call “analysis.” (Boyer compares 

Euler’s synthesis of the works of Newton, Leibniz, and the Bernoullis to Euclid’s codification of the 

geometry of predecessors like Eudoxus.) His Introductio in Analysin Infinitorum (1748) made 

“function” the central concept in analysis. It gave the first presentation of “analytic geometry” as the 

study of curves and surfaces entirely in terms of equations, derivatives, and integrals. He used it to 

extend Jean Bernoulli’s study of geodesics. The book was first to treat the trigonometric functions as 

functions. It also related them to coordinates of a point on the unit circle or to ratios in a right triangle 

(as opposed to chords in a circle). In Institutiones Calculi Differentialis (Foundations of Differential 

Calculus, 1755) and Institutiones Calculi Integralis (three volumes ending 1770), he presented the 

 

http://en.wikipedia.org/wiki/William_Lowell_Putnam_Mathematical_Competition
http://www.archive.org/stream/AHistoryOfMathematics/Boyer-AHistoryOfMathematics#page/n501/mode/1up
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Bernoullis’ and his own development of our differential and integral calculus. His contributions covered 

most of the theory and solution methods of our undergraduate course in differential equations. All his 

textbooks became immediate standards. 

His work in partial differential equations extended Daniel Bernoulli’s hydrodynamics and the 

calculus of variations. The fluid-flow PDE called “Euler’s equation” has the fundamental role in fluid 

mechanics of Newton’s F = ma in particle mechanics. In the calculus of variations, he contributed 

studies of minimal surfaces. 

One of those studies determined the solid of revolution of minimal area.  

At right, we picture the graph (black curve) of y = f(x) from (0, c) to and 

beyond (a, b). If we revolve the region under the graph about the x-axis, it 

sweeps out a solid of revolution, outlined in red. (Compare it with 

Torricelli’s Trumpet from Exercise VII.A.4e:5.) The question at hand is: Of 

the function graphs joining the two points, which one produces the solid 

having the least possible area? 

We can express the  surface area as an integral. Look at the band colored 

green—just the skin, not the space it encloses—in 

the magnified view at left. It is roughly a ring of 

radius f(x), having therefore circumference 2f(x). Its horizontal span is 

an infinitesimal dx from left to right. However, that span is not the width 

of the ring material. The width is the infinitesimal ds (solid black 

hypotenuse) of arc length along the curve. As Huygens told us,  

 ds = (1 + [f (x)]
2
) dx. 

Accordingly, the band is 2f(x) around by (1 + [f (x)]
2
) dx wide; it has surface area 

 dS  =  2f(x) (1 + [f (x)]
2
) dx. 

We conclude that the surface area of the solid is the sum of those differentials, 

 S  =  ∫ 2𝑓(𝑥)√1 +  [𝑓(𝑥)]2 𝑑𝑥 from x = 0 to x = a. 

The question has become one of asking which function makes some integral minimal. Treating the 

question falls under the calculus of variations. 

Let us, ignorant of that subject, look at candidates. The straight graph (black at 

right) has the shortest area-sweeping length. However, it has great height. Hence it 

sweeps out bands of large circumference, leading to excess area. It pays to have 

some sag, as the green graph does. In that case, why not accept the extreme sag of 

the red graph, which gives the solid a long narrow “neck” of small surface area? The 

trouble with that one is that the long drop and rise sweep out bands of large width. 

In terms of the integral: On the black graph, the factor f(x) is big. It piles up excess integral. On the 

red graph, during both the drop and the rise,  f (x) has large absolute value. Consequently the 

factor (1 + [f (x)]
2
) builds excess integral. Where do we find the middle ground? 

Euler showed that the answer is a piece of the graph of 

 y = e
x
 + e

-x
 

(Exercise 1), squeezed or magnified vertically and displaced horizontally as needed. That curve had 

answered a different question, a challenge question issued by Brother Jacques. It described the shape 

of a wire or cord, hanging under its weight from supports at the two ends. Since chains, or the cables 

holding up a light suspension bridge, hang the same way, the curve is called a catenary (from Latin 

catena, chain.) Accordingly, the resulting solid of revolution is called a catenoid. 

   

 y = f(x)
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b Exercises VIII.B.2

1. a) Sketch the graph of y = ex. (You can take it from section VII.B.2d(ii).) 
b) Flip it left for right to produce on the same set of axes the graph of y = e-x. 
c) Use those two to sketch the graph of y = ex + e-x. 
d) Use Barrow’s method to find the derivative of g(x) = e-x. Does the sketch in (b) reflect 
that derivative? 

e) Write the derivative of h(x) = ex + e-x. Where is h (x) either zero or undefined? Does the 
sketch in (c) reflect this information? 

c) infinite series 

Newton’s facility in treating series like finite sums became a weapon in the hands of Euler. Actually, 

it became something of a loose cannon. We will see later an especially imaginative—“illegal” would be 

a more accurate word—use he made of series. Here we look at his combination of the exponential, sine, 

and cosine series.  

Recall that the three series are (Section VII.B.4b and Exercise 6 there ) 

 e
x
 = 1 + x + x

2
/2! + x

3
/3! + x

4
/4! +  …, (The notation “e” is Euler’s idea.) 

 sin x = x – x
3
/3! + x

5
/5! – x

7
/7! + …,  

 cos x = 1 – x
2
/2! + x

4
/4! – x

6
/6! + ….  (The notations “sin.” and “cos.” are Euler’s.) 

(Hereafter, we will refer to expressions like these as power series.) Notice that the terms of the 

exponential are split between the other two, albeit supplied with alternating signs. Euler introduced 

the needed signs by substituting the imaginary complex number ix. (The notation “i” for -1 was 

Euler’s.) Thus, 

 e
ix
 = 1 + ix + i

2
x

2
/2! + i

3
x

3
/3! + i

4
x

4
/4! +  …. 

The powers of i are 

 i
1
 = i,  i

2
 = -1,  i

3
  =  ii

2
  =  -i,  i

4
  =  i(-i)  =  1, i

5
 = i, …. 

Substituting them we have 

 e
ix
 = 1 + ix – x

2
/2! – ix

3
/3! + x

4
/4! + ix

5
/5!  – … 

  = (1 – x
2
/2! + x

4
/4! – x

6
/6! + …) + i(x – x

3
/3! + x

5
/5! – x

7
/7! + …) 

  = cos x + i sin x. 

(In Euler’s time, there were still objections to imaginary numbers. Imagine [no pun] resisters’ 

reaction to imaginary powers.) 

The equation looks a little strange, but it bears many gifts. One is the theorem named after Abraham 

de Moivre (1667-1754). De Moivre wrote that 

 (cos x + i sin x)
n
  =  cos nx + i sin nx. 

The equation follows immediately from Euler’s, since the right side is 

 e
i(nx)

  =  (e
ix
)
n
 

(but do the separate proof in Exercise 2). 

In turn, from de Moivre’s theorem, we get the multiple-angle formulas that Viète created and 

enlisted as aides in solving (polynomial) equations (section VI.C.5b).  

First, combine the theorem with the binomial theorem and evaluate the powers of i to write 

 cos nx + i sin nx =  (cos x + i sin x)
n
 

    =  cos
n 

x + (𝑛
1

)i cos
n-1 

x sin
 
x – (𝑛

2
)cos

n-2 
x sin

2 
x – (𝑛

3
)i cos

n-3 
x sin

3 
x + …. 

(That notation for the binomial coefficients is Euler’s, except for an underbar: (
𝑛

1
).)  
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Next, consider that a complex-number equation encapsulates two equalities: The real parts have to 

match, and so do the imaginary parts. Separating on the right the terms that have factor i from the 

others, we conclude 

 cos nx = cos
n 

x – (𝑛
2
)cos

n-2 
x sin

2 
x + (𝑛

4
)cos

n-4 
x sin

4 
x – …, 

 sin nx = (𝑛
1
) cos

n-1 
x sin

 
x – (𝑛

3
)cos

n-3 
x sin

3 
x + (𝑛

5
)cos

n-5 
x sin

5 
x + …. 

One sum ends at sin
n 

x, the other at (n cos
 
x sin

n-1 
x), depending on whether n is odd or even. (See 

a small example in Exercise 1.) 

The exponential equation also resolved issues related to the restricted domains of some functions of 

real numbers. Consider f(x) = x, which is undefined if x is negative. If you allow complex values, then 

the restriction disappears, though at a cost. We may write -1 = i. We gain extension of the domain of 

the square-root function. The cost is the function-ness: We end up instead with a relation, having two 

values and giving us no reason to choose one over the other. Euler, who was first to identify loge x 

(which he denoted by l. x [ell x]) as an exponent (to which you raise e to get x), extended the logarithm 

function to negative x.  

Thus, 

 e
i

  =  cos  + i sin   =  -1 

allows us to write 

 loge (-1)  =  i. 

Again, unique value is lost: We also have 

 -1  =  e
-i

  =  e
3i

  =  e
5i

  =  e
7i

  = …, 

which means loge (-1) has an infinity of values. 

The technique allows us to define complex powers of complex numbers. We have 

 e
i/2

  =  cos /2 + i sin /2  =  i. 

Therefore one value of i
(2+i)

 is the real number 

 (e
i/2

)
(2+i)

  =  e
(i/2)(2+i) 

 =  e
i + ii/2

  =  e
i

 e
-/2

  =  -e
-/2

. 

You will usually see e
i

 = -1 written as 

 e
i

 + 1  =  0. 

In this form, many consider it the most beautiful equation in mathematics. It displays the fundamental 

operations of addition and multiplication; the two identities 0 and 1 (definition later); the two most 

important real constants e and   (the notation  was not Euler’s, but its widespread use follows his 

example); and the quantity i that is the gateway to the complex numbers. 

c Exercises VIII.B.2

1. a) Multiply out de Moivre’s relation 
 (cos x + i sin x)3  =  cos 3x + i sin 3x 
to show that 
 cos 3x  =  cos3 x – 3 cos x sin2 x, 
 sin 3x  =  3 cos2 x sin x – sin3 x. 
b) Is the cos 3x formula in (a) equivalent to our old 
 cos 3x  =  4cos3 x – 3cos x? 
c) Multiply out 
 (cos x + i sin x)4  =  cos 4x + i sin 4x 
to write “quadruple-angle formulas” for cos 4x and sin 4x. Check the former against 
Exercise VI.C.4b:4a. 



 Chapter VIII. The Eighteenth Century 
Section VIII.B. The Calculus  3. D’Alembert 

199 

2. Write a proof by induction of de Moivre’s theorem. (Would induction have been available to 
de Moivre?) 

3. Find values for: a) i  b) cos i. (Hint: Write an expression for e-ix.) 

3. D’Alembert 

Despite the Swiss, France remained the center of European mathematics. It produced an incredible 

line of scientists and mathematicians. In connection with the calculus, we are going to restrict our 

attention to just two of them. The first is Jean (le Rond) d’Alembert [dalom-BEAR] (1717-1783). 

[In the eighteenth century, British development of mathematics fell considerably behind the rest of 

Europe. I have often heard this lack of progress blamed on the clumsiness of Newton’s method of 

fluxions, compared to the more dynamic method—and flexible notation—of Leibniz and the other 

continentals. Boyer is the first place where I saw the charge disputed.] 

D’Alembert was already famous by 1750. Around then, he began to collaborate with Denis Diderot 

on the latter’s Encyclopédie. For more than twenty years, he was what we might call the encyclopedia’s 

“science editor.” His 1754 appointment as secretary (secrétaire perpetuel) to the Académie des Sciences 

made him the chief judge of Europe’s scientific and mathematical work. [The encyclopedia was a 

compendium of philosophy as well as knowledge. It was more the embodiment of the spirit of the 

Enlightenment than its product. As such, it was part of the opposition to monarchy. With that outlook, 

d’Alembert and his friends Diderot and Voltaire were among the forebears of the French Revolution.]  

a) limits 

D’Alembert had an early interest in hydrodynamics, and published a book on the dynamics of solids 

(as opposed to particles). The interest in fluids necessarily led to PDE’s, in particular to the string 

equation. He extended Daniel Bernoulli’s work, producing an elegantly simple form for the solutions of 

the equation. However, our main interest in his mathematical work is his writing on limits. 

Before d’Alembert, the Irish bishop George Berkeley (1685-1753) criticized the logic of calculus, 

much as Zeno had done with geometry two thousand years before (section III.A.4c). Specifically, 

Berkeley attacked the reliance on infinitesimals (Fermat, Wallis, Barrow) and fluxions (Newton).  

Treat an example in the manner of Fermat. Subtract f(x) = x
3
 from the nearby f(x + h) = (x + h)

3
, then 

divide by h: 

 [f(x + h) – f(x)]/h  =  [(x + h)
3
 – x

3
]/h  =  3x

2
 + 3xh + h

2
.  (Check the algebra.) 

At that point Fermat set h = 0 to find the slope of the tangent to the graph of y = f(x). 

Berkeley said this was sophistry, not science. It might as well be a leap of faith. First, you assume 

that h is nonzero. You have to, otherwise you cannot do the division. Then you assume it is zero. All you 

could offer in defense against Berkeley’s indictment is that the method produced valid and useful 

results. He said the results came about because some errors cancelled others. 

(Bishop Berkeley was trained in science as well as divinity. Still, it was an incident involving faith 

that triggered publication of his criticism; read it in Boyer, pages 469-470.) 

D’Alembert voiced the same objections. For him, a quantity was zero, or was not zero. More 

important, though, he gave a way to avoid the logical problem. He said that what was necessary was to 

see the limit of the quotient. In our example, he would name 3x
2
 as the limit of  

 [f(x + h) – f(x)]/h  =  3x
2
 + h(3x + h) 

because the quotient can “approach [the stated limit] nearer than by any given quantity” (Boyer). Here it 

is clear that forcing the quotient near to 3x
2
 is a matter of making h small. (Look also at the calculation 

we made for the limit of [sin ]/ at the end of section VII.B.3b(i), and see Exercise 1 here.) 

http://www.archive.org/stream/AHistoryOfMathematics/Boyer-AHistoryOfMathematics#page/n518/mode/1up
http://www.archive.org/stream/AHistoryOfMathematics/Boyer-AHistoryOfMathematics#page/n485/mode/2up
http://www.archive.org/stream/AHistoryOfMathematics/Boyer-AHistoryOfMathematics#page/n509/mode/1up
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Newton always worked with his fluents and fluxions, but it happens that at one place he anticipated 

d’Alembert’s limit language. He wrote (Struik, page 111) that our quotients (the “prime ratios”) 

“approach nearer than by any given difference” to the limits (“ultimate ratios”). 

b) infinity 

Having no need for infinitesimals, d’Alembert could avoid the (“actually”) infinite. He gave a 

description very much like the modern: A quantity is infinite if it is larger than any given number. Thus, 

he would agree that the (“sum” of) the harmonic series 

 1/1 +1/2 +1/3 +1/4 +… 

is infinite, because it exceeds for example 10
9
. (That was the example in Exercise V.B.3:4.) In contrast, 

 1/1
2
 + 1/2

2
 + 1/3

2
 + 1/4

2
 + … 

is finite. Jacques Bernoulli,  who had rediscovered Oresme’s argument (section V.B.3b) for the 

harmonic series, showed that the sum never even reaches 2. (His argument is suggested in Exercise 2.) 

 Exercises VIII.B.3

1. What values of r, between 0 and 1, will guarantee that 
 1/(1 + r + r 2 + r 3) 
“approaches” 1/4 “nearer than by” 0.000001 (guarantee the fraction is within 10-6 of 1/4)? 
(In section VII.A.4e(i), we used Fermat’s method to approximate the area under the graph 
of y = x3. The approximation used the relation 
 (1 – r)(1 + r 4 + r 8 + …)  =  1/(1 + r + r 2 + r 3) 
with r = 0.99. Fermat substituted r = 1 on the right to get 1/4. D’Alembert would have 
outlawed the substitution, because it is illegal on the left side. He would have called for the 
limit of the two sides. This exercise asks for numerical evidence that the limit is 1/4.) 

2. Show that 
 1/12 + 1/22 + 1/32 + … + 1/10002  <  1 + 1 – 1/1000. 

(Hint: Start by showing that for integers k  2, 
 1/k2  <  1/([k – 1]k)  =  1/[k – 1] – 1/k.)  

4. Lagrange 

Joseph-Louis, comte de Lagrange [roughly la-GRONSH] (1736-1813) was a giant almost on the 

level of Euler. The scope of his contributions is vast, but they are largely too advanced for our treatment. 

The same was true with Euler, and will be with Gauss. For each of the three, we will touch upon those 

discoveries that we can describe in elementary terms. In this section, the subject is Lagrange’s analysis. 

At age nineteen, he was teaching artillerymen in the Military Academy at Torino. (He was actually 

born there, Turin, to the name Giuseppe Luigi Lagrangia.) In 1766, Frederick the Great invited him to 

head the Berlin Academy, at the recommendation of d’Alembert and the departing Euler. When 

Frederick died in 1786, Lagrange accepted Louis XVI’s invitation to Paris 

[Moving to Paris three years before 1789 was an interesting choice. During the Terror, it took 

Lagrange’s fame to prevent his expulsion from France. His life was not in danger: He wasn’t a French 

aristocrat; the “count” title would come from Napoleon in 1808. Still, he needed help. The most 

important help was the intercession of Antoine Lavoisier, whose genius and fame didn’t do his head any 

good. Read at the American Chemical Society.] 

You can get some idea of the reach of Lagrange’s mathematics from things named for him. In the 

calculus of variations—a subject whose name he created around 1760—he discovered the fundamental 

partial-derivative relation now called the Euler-Lagrange equation. Already by 1755, he had begun to 

http://www.acs.org/content/acs/en/education/whatischemistry/landmarks/lavoisier.html
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give the whole subject an elegant analytical form. He wrote about it to Euler, who had made similar 

discoveries.  (Euler held back publishing his version. There are those, including Boyer, who ascribe 

Euler’s choice—ceding priority of publication to Lagrange—to the old guy’s generosity.) Lagrange then 

applied his variational methods to a principle in mechanics to develop Lagrange’s equations. [Read 

about that “principle of least action” from Richard Feynman, no less.] Those represented a powerful 

refinement and extension of Newton’s equations of motion. They led to the discovery of Lagrangian 

points (described later) in planetary dynamics. Separately, he turned the variational ideas back to 

mathematics, and developed the method of Lagrange multipliers for a class of “constrained 

optimization” problems. (See Exercise 1 for an example.) 

a) series 

Lagrange used infinite series to propose an analytical basis for the calculus. Nowadays, one sense of 

“analytical” is “having to do with calculus.” For Lagrange, the word implied—as in the calculus of 

variations—a treatment using algebraic techniques, without the geometry needed for the approaches of 

Leibniz, Newton, and even Euler. (Struik page 134 says that in the preface to Mécanique Analytique, 

Lagrange specifically announced that there are no figures in the book, only algebraic operations.) 

Begin with any power series 

 f(x) = c0 + c1 x + c2 x
2
 + c3 x

3
 + c4 x

4
 + …. 

Here x is variable, each ci is a constant. We are assuming that the power series actually represents a 

number dependent on x. From the way we take derivatives of series, term by term, we have 

 f (x) = 0 + c1 (1) + c2 (2)x + c3 (3)x
2
 + c4 (4)x

3
 + …. 

This derivative has a derivative. The derivative of the derivative is called the second derivative. It is 

denoted by f (x), given by 

 f (x) = 0 + 0 + c2 2(1) + c3 3(2)x + c4 4(3)x
2
 + …. 

Clearly, that is not the end of it. The derivative of the second derivative is the third derivative 

 f (x) = 0 + 0 + 0 + c3 3(2)1 + c4 4(3)2x + …, 

and the recursion continues. 

It was in this context the Lagrange invented the notation f , f , and so on. In general, we use  f
 (n)

 to 

avoid  f
 bunch of primes

. He named those things derived functions, which is the origin of our “derivative.” 

Observe that the (derivative) series give 

 f (0) = c0,  f (0) = c1,  f (0) = 2(1)c2,  f (0) = 3(2)1c3, 

and in general 

 f
 (n)

(0)  =  n!cn. 

Write those the other way around: 

 c0 = f (0), c1 = f (0)/1!, c2 = f (0)/2!,  c3 = f (0)/3!, 

and so on. Then 

  f(x)  =  [f (0)] + [f (0)/1!] x + [f (0)/2!] x
2
 + [f (0)/3!] x

3
 +…. 

The last expression is called the Taylor series for f(x). The import of what we have argued so far is 

that if a function is given by some series, then that series has to be the Taylor series. (See Boyer about 

Brook Taylor and why the name “Maclaurin series” is a misnomer.) 

The power series we know are for 1/(1 – x), e
x
, and sin x. Let us see the Taylor series for the sine; 

work on the other two in Exercises 2 and 3. 

http://www.archive.org/stream/AHistoryOfMathematics/Boyer-AHistoryOfMathematics#page/n550/mode/1up
http://liberzon.csl.illinois.edu/teaching/FeynmanLecturesOnPhysicsChapter2-19.pdf
http://www.archive.org/stream/AHistoryOfMathematics/Boyer-AHistoryOfMathematics#page/n485/mode/1up
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Write g(x) = sin x. We know from various exercises that 

 g(x)  =  cos x,   g(x)  =  -sin x, g(x)  =  -cos x, g
(4)

(x)  =  sin x, 

which means the subsequent derivatives recycle through these. Therefore 

 g(0) = 0,  g(0) = 1,  g(0) = 0, g(0) = -1, g
(4)

(0) = 0, …. 

The Taylor series for g(x) is 

 g(x)  =  0 + [1/1!] x + [0/2!] x
2
 + [-1/3!] x

3
 + [0/4!] x

4
 + [1/5!] x

5
 + …. 

That matches our familiar 

 sin x  =  x – x
3
/3! + x

5
/5! – …. 

Lagrange stood the Taylor argument on its head. Taylor had characterized the series in terms of the 

derivatives; Lagrange drew the derivatives from the series. 

In Lagrange’s notation, write 

 f(h)  = c0 + c1 h + c2 h
2
 + c3 h

3
 + c4 h

4
 + …. 

He understood that equation to give f in the vicinity of x = 0. More generally, 

 f(x + h)  = a0 + a1 h + a2 h
2
 + a3 h

3
 + a4 h

4
 + …, 

where now the coefficients ai  =  ai (x) are dependent on x. Then he defined the derived functions by 

 f (x)  =  1! a1(x), f (x)  =  2! a2(x), f
 
(x)  =  3! a3(x), …. 

a Exercises VIII.B.4

1. What point of the unit circle is closest to (3, 4)? (This is a constrained-optimization 
problem. It asks: Of the points that satisfy the requirement (“constraint”) 
 g(x, y)  =  x2 + y2  =  1, 
which one gives the smallest value of (“optimizes”) 

 f(x, y)  =  ([x – 3]2 + [y – 4]2)?) 
[Essential first step: Optimize f 2 instead. Then if you know Lagrange’s method, give it a 
workout. Instead, you can answer using calculus. On the third hand, you could use trigo-
nometry. Whichever you choose, check your answer against the easy geometric answer.] 

2. Let f(x) = 1/(1 – x). We know that as long as -1 < x < 1, 
 f(x)  =  1 + x + x2 + x3 + …. 

a) Use the series to evaluate f(0), f (0), f (0), …. 
b) Use Fermat’s method to prove by induction that for any n, 
 f (n)(x)  =  n!/(1 – x)n+1. 
c) Do the values f (n)(0) from (b) match the answers from (a)? 

3. Let g(x) = ex. 

a) Write the formulas for g(x), g(x), …, and the values of g(0), g(0), g(0), …. 
b) Write the Taylor series for ex. 

b) the remainder 

The credibility of section (a) above depends on how much faith you have that functions are given by 

series and that you can treat series like finite sums, as in doing derivatives term by term. Lagrange did 

not depend on such faith. He showed that every appropriate function [one whose derivatives are doable] 

is given by an ordinary sum—a finite part of its Taylor series—to within a describable error. 
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Proposition. (The Lagrange Remainder) The difference between f(x) and the (finite) sum 

 [f (0)] + [f (0)/1!] x + [f (0)/2!] x
2
 + … + [f

 (n)
(0)/n!] x

n
 

is exactly the remainder 

 Rn  =  [f
 (n + 1)

(t)/(n + 1)!] x
n+1

 

for some (unspecified) value t between 0 and x. 

Stay with the example of the sine function. 

In the series for 

 g(x) = sin x, 

make x = /6. Lagrange’s proposition says that 

 sin (/6)  =  /6 – (/6)
3
/3! + (/6)

5
/5! + R5, 

with the understanding that for some angle t (as yet unknown, but not after Exercise 1) between 0 

and /6, the remainder R5 is exactly 

 [g
(6)

(t)/6!] x
6
  =  [-sin t]/6! (/6)

6
. 

We can calculate 

 /6 – (/6)
3
/3! + (/6)

5
/5!    0.500 002 132 6. 

That result comes from a scientific calculator that displays ten significant figures [but, I think, 

actually calculates with thirteen]. Therefore it is likely to be accurate to at least eight decimals. 

Remember, though, that we can only trust that calculation to within R5. Even without knowing the 

value of [-sin t]—merely knowing that it is between -1 and 0—we can be sure that 

 0  >  R5  >  [-1/6!] (/6)
6
    -0.000 03. 

We can make the same calculation with 

 x  =  (10 + 1/6)  =  61/6. 

That is, 

 sin (61/6)    (61/6) – (61/6)
3
/3! + (61/6)

5
/5!, 

with an error of exactly 

 r5 = [-sin u]/6! (61/6)
6
. 

At worst, the absolute value of that (not necessarily negative) error might be 

 [1/6!] (61/6)
6
    1.5 million. 

That is a most impressive possible error, given that we know sin (10 + 1/6) = 1/2. Indeed, the actual 

error is about 272000. 

However, if you increase the number of terms far enough, then the error begins to disappear. Thus, 

 R2047 = [sin v/2048!] (10 + /6)
2048

 

  < 32
2048

/2048!     (in absolute value) 

  = 1024
1024

/[1(2)3…1024(1025)1026…2048] 

  < 1/1024!.     (Explain all.) 

The subsequent error estimates are smaller still. 

b Exercises VIII.B.4

1. Use the calculation 

 /6 – (/6)3/3! + (/6)5/5!    0.500002 
to estimate the angle t for which 

 sin /6  =  /6 – (/6)3/3! + (/6)5/5! – sin t/6! (/6)6. 
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2. a) In section VII.B.4b, we said that 

 e1  1 + 1/1! + 1/2! + 1/3! + 1/4!, 
with an error of less than 0.01. Write an expression for the exact error, meaning the 
Lagrange remainder R4, then give an estimate for its value. 
d) If we calculated 

 e1  1 + 1/1! + 1/2! + … + 1/10!, 
how big could the error R10 be? 

c) limits 

Now we can use d’Alembert’s language to specify what it really means to write 

 sin x  =  x – x
3
/3! + x

5
/5! – …. 

The meaning is that sin x is the limit of the sum 

 x – x
3
/3! + x

5
/5! – …  x

(odd n)
/(odd n)!   (whichever sign is right) 

as n tends to infinity. In words, we can make the sum “approach” to sin x “nearer than by any given 

quantity” by forcing n to be correspondingly big. 

In the example toward the end of section (b) above, we would find 

 [sum] – sine  =  [(61/6) – (61/6)
3
/3! + (61/6)

5
/5! – …  (61/6)

n
/n!] – sin (61/6)  

smaller in absolute value than 1/1024! for all n  2047. 

[Oddly, Lagrange specifically excluded any talk of limits. Maybe he thought they did not fit into an 

algebraic treatment. The separation has a point: In our training, the notion of limit is exactly where 

calculus takes over from algebra.] 

d) the three-body problem 

Newton’s solution for the orbits of the planets—his description (section VII.B.4c(ii)) of the possible 

paths—depended on the assumption that the Sun sits stationary at the origin of coordinates. We admitted 

back there that in fact the Sun necessarily moves. That is always the case for two isolated bodies. 

Newton himself showed that they must both describe elliptical orbits about their center of mass (unless 

low speeds make them collide at the center. You can think of “center of mass” as the average position of 

their masses.) That center is stationary. At one extreme is the situation in which their masses are equal. 

Then the center of mass is at the midpoint of their segment, and the mutual orbiting is obvious. At the 

opposite extreme, one mass is much bigger than the other. Then the center is near—or even inside—the 

massive one, and its orbiting is almost undetectable. Thus, Earth’s mass is more than 80 times the 

Moon’s. Their center of mass is therefore about 1/80 as far from Earth’s center as from Luna’s. That 

puts the center about 3,000 miles from the center of Earth’s 4,000-mile-radius sphere. The effect is even 

more pronounced for Sun and Earth; the mass ratio there exceeds 300,000. 

Incredibly, if you add a third body, then the problem of solving the equations of motion becomes 

intractable. There simply does not exist a general solution that describes all the possible paths the three 

objects might follow in orbiting the center of mass. There are only special-case solutions. Lagrange 

studied some of the stable ones. 

One stable arrangement is when one mass is great and the other two revolve around it independently, 

with small interaction. That describes the relationship of Sun, Venus, and Earth. A second stable confi-

guration is that of Sun, Earth, and Moon: massive central object, smaller object, and even smaller third 

object looping around the second as they both revolve around the massive one. Lagrange’s study of this 

latter configuration was crucial to our understanding of Luna’s motion. That included the hoped-for use 

of lunar positions to determine longitude on Earth. The revolutionary government chose him to create 

the Office of (Bureau des) Longitudes. 
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A very different stable arrangement is in the figure at right. Start with 

Sun and Earth: massive body, smaller body. If you put a very-low-mass 

object at the Lagrangian point L4, on (roughly) Earth’s orbit 60 ahead of 

Earth and having Earth’s orbital speed, then the object will stay 60 ahead of 

Earth. It is obvious why it should orbit the Sun at the same rate as Earth 

does; it has the speed needed on that orbit. The unintuitive part is that the 

object does not get drawn toward Earth. The combination of the three 

gravitational attractions makes it revolve around Earth in the same one-year 

period in which it orbits the Sun, all three bodies dancing about their center 

of mass. That keeps the object at relatively stable distance from Earth. From considerations of 

symmetry, it is clear that the point L5 travelling 60 behind Earth is another stable position. 

There are three other Lagrangian points, all on the 

line joining Sun and Earth, as shown at left. Those three 

were originally described by Euler. The point L1 lies 

about a million miles from Earth, toward the Sun. Under the influence of just the Sun, an object at that 

place would orbit Sun with a period smaller than a year. (By Kepler’s Third Law, its period would be 

about [92/93]
3/2

 of Earth’s.) With Earth attracting to the outside, the object needs to orbit less fast; its 

period increases to Earth’s period. Therefore an object there remains on the Sun-Earth segment, roughly 

constant distance from both. At the two points L2 and L3, respectively about a million miles outward 

from Earth and just beyond the point opposite Earth, the attractions of Sun and Earth reinforce. The sum 

of attractions forces an object at those points to orbit faster; the sum decreases the object’s period to 

Earth’s period. That keeps the object stable behind or opposite Earth. 

Mankind has put numerous satellites at Sun-Earth’s L1 and L2 points. (See NASA for discussion of 

the nature of the points—including for example their actual stability—and some of the satellites humans 

have put there.) There has been no great reason for putting anything at L4 and L5, and it would be nearly 

impossible to communicate with something at L3. But L1 and L2 offer advantages. From L1, a satellite 

has a perpetual, unobstructed view of the Sun. [That’s discounting the occasional transit of Mercury or 

Venus, for which events those satellites enjoy an enviable seat.] Turning around, such a satellite has a 

constant view of Earth’s whole sunlit side, interrupted now and again by the Moon. At L2, a satellite 

would see Earth’s dark half, but in the outer direction would have a shaded look at the starry 

background. [The point is not in perpetual darkness. From 1 million miles, Earth’s angular size is 

about 8,000/1M  =  0.008 radian    0.46. From the corresponding 94M miles, Sun’s angular size is 

approximately 865K/94M    0.009 radian. From L2, you can always see some of the Sun.] 

5. Gauss and Probability 

Carl Friedrich Gauss [rhymes with “house”] (1777-1855) and Euler are generally recognized as the 

most important mathematicians since the giants of Greek fame. Much of nineteenth century mathematics 

came from Gauss, or flowed out of his work, or was anticipated by ideas he chose not to publish. We 

can sneak him into the eighteenth century because of epochal results he produced by 1801. 

[“Giant[s] of Greek fame” is not my invention. Read Emma Lazarus’s poem.] 

Gauss was a legend practically from childhood. There is a tale that as a child, he amazed his teacher 

by instantly summing the integers from 1 to 100. The teacher had given that task to the class to fill some 

time. Presumably, The Kid realized that the sum consists of 1 + 100, 2 + 99, …, 50 + 51, a parade of 50 

pairs adding to 101 each, and he was good at multiplication as well. At the age of 18, he proved that it is 

possible to construct a regular 17-gon, and more generally polygons whose sides number certain 

   

Sun E 
60º 
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Sun 
E 

L2 L1 L3 

http://map.gsfc.nasa.gov/mission/observatory_l2.html
http://www.libertystatepark.com/emma.htm
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combinations of Fermat primes. (Those are of the form 2
2

n

 + 1; see Section VII.A.4f(iii).) At 22, he 

presented a doctoral thesis with the first proof of one of algebra’s most important theorems (which we 

will cover). In later life, his analytical description of surfaces established a whole new branch of 

geometry. His discoveries in PDE’s, and in connecting them to phenomena of electricity and magnetism, 

began the development that led to James Maxwell’s complete description of electromagnetism. 

From his work in analysis, the part we can most easily describe actually belongs to probability. It is 

the normal approximation to the binomial distribution.  

a) the binomial distribution 

Imagine a set of actions that terminates with either of two possible results, with predictable 

probabilities. For example, one roll of the dice in the casino game of “craps” will produce a WIN or a 

LOSS for you, with (calculable) probabilities roughly 0.493 and 0.507 respectively. In a single roll, 

then, you have a probability .493 of ending up with a profit. 

[In the study of probability, the two possible results are always called “success” and “failure.” We 

will stick with the roller’s point of view and WIN-LOSS. 

A “roll” in craps is actually a sequence of throws of a pair of dice. Known rules specify when the 

sequence ends and whether you win. It is not hard to classify the infinite number of possible sequences 

and thereby arrive at the 0.493 probability of WINning. See the description at MathForum.org. 

It is embarrassing to write a sort of history of math and leave untouched the history of probability. 

This particular detour into probability is worth taking.] 

Let us perform “sessions” with stated numbers of rolls and count how many WINs happen. 

Suppose you decide to do a session of five rolls. Assuming the playing components—the dice, the 

playing table, the drinks—are not defective, your probability of WINning any given roll is 

independent of what happened before: It stays 0.493, irrespective of WINs or LOSSes on any 

previous rolls. The rolls constitute independent trials. (The name Bernoulli trials is synonymous, 

as long as we specify in advance how many rolls there will be. Jacques was first to describe them.) 

Given the independence, the probability of your WINning 0, 1, 2, 3, 4, or 5 of the rolls is given, 

respectively, by the six terms of the binomial expansion 

 (.507 + .493)
5
  =  .507

5
(.493

0
) + (5

1
).507

4
(.493

1
) + … + (5

4
).507

1
(.493

4
) + .507

0
(.493

5
). 

[Online, plenty of pages name the formula for those terms, but I could not find an online explanation 

why they give the probabilities. Here is a quick one. The probability of losing the first roll, then 

winning the next four, is 

 .507  .493  .493  .493  .493. 

But that is not the only way to win exactly four rolls. You can pick any four of the rolls, win those 

four, lose the other one. Because there are (5
4
) distinct ways to pick a “combination” of four objects 

from a set of five, there are that many ways to name four rolls to win. Therefore the probability of 

winning four rolls out of five is (5
4
).507

1
.493

4
.]  

http://mathforum.org/library/drmath/view/56534.html
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The values of the terms are given in the table below 

and plotted on the chart at right. (Verify any of them.) 

From the connection to the binomial expansion, the 

function given by the table and graphed in the chart is 

called the binomial distribution. Observe that for the 

five-roll session, your probability of turning a profit—

meaning getting 3, 4, or 5 WINs—is reduced to 

 .308 + .1497 + .0291    .487.  

It will be handy to have some technical terms. The sequence LWWWW is an outcome. We saw 

above that its probability is .507
1
(.493

4
). The set 

 E = {LWWWW, WLWWW, WWLWW, WWWLW, WWWWL} 

of outcomes is an event, with probability (5
4
).507

1
(.493

4
). It is a special event, in that all of its outcomes 

have the same number of WINs. Our interest is a function w that assigns a number to each such event, 

namely the shared number of WINs in the event’s outcomes. Thus, w(E) = 4. Such a function is a 

random variable. Its values inherit probabilities. We say, for example, that w = 4 has the probability we 

just named, (5
4
).507

1
(.493

4
). Because the possible values of w are separate, w is a discrete random 

variable. (The number of possible values need not be finite; see Exercise 1.) 

On the plot, we see the three red verticals erected at x = 3, 4, and 5. The sum of their lengths also 

gives the probability of a majority WINs. In the example of five rolls, there is no reason to add those 

lengths. But there is good reason to do it when the number of rolls is large. 

Indulge yourself: Stretch the 

session to 1000 rolls. [That’s not 

superhuman. It is easy to make 

100 bets per hour at the craps 

table. A weekend in Las Vegas 

will easily yield 1000 rolls.] 

The corresponding probability 

data are plotted at right, truncated 

to the interval from 440 to 540 

WINs. (Do Exercise 2b-d to see 

that below 440 and above 540 are 

not worth showing.) For the 

complete chart of 1001 data points, the heights are given by the terms of the expansion 

 (.507 + .493)
1000

  =  .507
1000

 + (1000) .507
999

(.493) + 

     1000(999)/2! .507
998

(.493
2
) + … + .493

1000
. 

The highest point is at 493 WINs (Exercise 2a), where the green vertical is; we will come back to 

that value later. 

Your probability of emerging from the 1000-roll session with a profit is the sum of the red verticals 

from 501 to 1000. That collection of verticals is hard to tell from an area, as indeed the graph is hard to 

distinguish from a continuous one. 

0
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Pretend that it is continuous, then think like Wallis.  That is, think of the red verticals as the 

infinitesimals for the part of the area under the graph from w = 501 to w = 1000. Wallis would tell us 

that the quotient 

 (sum of red verticals)/(sum of all 1001 verticals) 

  =  (probability of profit)/(.507 + .493)
1000

 

  =  probability of profit 

is the fraction of the area under the whole graph that lies between w = 501 and w = 1000. 

Notice that we discussed the probability of profit, but did not evaluate it. Evaluation comes later. 

We will exploit the connection to areas. We are studying a random variable whose possible values 

are separate. We will pursue that study by investigating variables whose possible values form a 

continuum of real numbers. 

a Exercises VIII.B.5

1. The geometric distribution applies to “trials until success.” Think of a die whose 
probability of landing with SIX showing is (always) 1/6. Imagine rolling it repeatedly until 
SIX shows; that is the “until success” part. Thus, the outcomes can be 1, 2, 3, … (rolls). Let 
p(n) represent the probability of (SIX showing for the first time on roll number) n. 
a) Evaluate p(1), p(2), p(3), …. (These rolls are also independent trials. Therefore 

 [probability of this followed by that] = [probability of this]  [probability of that].) 
b) Add up that infinity of probabilities. 
c) Find by two methods, adding and multiplying, the probability that 3 or more rolls will be 
needed for a SIX to show. 

2. Let p(n) represent the probability of n WINs in 1000 rolls of the dice, each roll having 
probability 0.493 of a WIN. Show that: 
a)  p(0)  <  p(1)  < … <  p(493)  and  p(493)  >  p(494)  > … >  p(1000). 
(Hint: Write out the binomial coefficients, then simplify the ratios 
 p(0)/p(1), …, p(492)/p(493), p(493)/p(494), …, p(999)/p(1000). 
No calculation is necessary.) 
b) p(449)/p(450)  <  0.84. 
c) p(434)/p(435)  <  p(435)/p(436)  < … <  p(449)/p(450). 
d) p(434) < 0.062 p(450). Any calculator can do the needed power. This relation suggests 
why the probabilities below 440 WINs are too small to plot; similarly above 540.  

b) continuous distributions 

We have seen probabilistic results that are integers, possibly an infinite number of them. There are, 

however, common probabilistic phenomena whose results can fill an interval of the real line. An 

everyday such phenomenon is waiting time. 

Imagine that you arrive at no special time at a bus stop where the buses arrive ten minutes apart on a 

consistent schedule. The time you have to wait for the next arrival is therefore some real number 

between 0 and 10 minutes. In this case, the function that assigns to each waiting session its duration has 

possible values that span a real interval. Such a function is a continuous random variable. 

Of necessity, the probability of hitting any exact waiting time is zero. It makes sense to talk, instead, 

about a value’s falling into some subinterval of the interval of possible times. (A subinterval is a set of 

possible outcomes; it is an event, with some probability.) As we hinted above, with “Wallis 

infinitesimals,” we turn to areas under graphs. We will specify a function f called the probability 

density function. 
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It is density in the sense that around t = a, f(a) is probability per unit of length on the t-axis. That is, 

for the infinitesimal length between 

 t = a and t = a + dt, 

the probability of landing there is 

 dp = f(a)dt. 

Then the probability that a value falls into the interval from t = a to t = b is the summation of the 

infinitesimals dp. In other words, it is the integral of f(t) between those values of t. In our language, 

it is the area under the corresponding part of the graph of f. 

There is one restriction we place on the density. Recall that the verticals under our two previous 

plots added up to (.507 + .493)
5
 and  (.507 + .493)

1000
, both 1. Accordingly, we will insist that the area 

under the complete graph of f(t) must be exactly 1. 

(i) the uniform distribution 

View the example of arriving to catch the buses that come every ten minutes. Our intuitive idea of 

randomness suggests that you are as likely to arrive during the third minute after the previous bus, t = 2 

to t = 3, as during the seventh, t = 6 to t = 7. In other words, you are as likely to wait 7-8 minutes as to 

wait 3-4 minutes. [Experience, of course, tells us that we will barely miss a bus and have to wait 9.9 

minutes.] More generally, any two wait-intervals of equal length have equal probabilities. That situation 

is governed by the uniform distribution. 

For the uniform distribution, the density function is always (a correctly 

scaled) constant. The corresponding graph is given by 

 y  =  f(t)  =  constant c  for r  t  s. 

For the bus example, r = 0 and s = 10. To make the total area 10c = 1, we have to 

take c = 1/10, shown at right. Then, for example, the probability that your 

waiting time falls between 0 and 7 minutes is the orange area, 0.7. You are 

unlikely to wait more than 7 minutes. 

(ii) the exponential distribution 

A different example of waiting involves radioactivity. In a radioactive element, atoms break down at 

random intervals, emitting some of their constituent particles. (Compare Exercise VII.B.4c:3.) If you 

surround a sample of say radium with detectors—like Geiger counters or phosphorescent screens—then 

you can detect the emissions. Physical considerations (later) suggest that from when you start looking, 

the time you wait for the next emission has the exponential distribution, a scaled version of the graph 

 y  =  g(t)  =  e
-t
,  t  0. 

Go wait for the bus. Imagine that the dispatcher is sending buses, still at an average rate of six buses 

every sixty minutes, but not at precise ten-minute intervals. Instead, he dispatches a bus whenever his 

radium sample emits a particle. Accordingly, the buses are separated by exponentially-distributed gaps.  

[For some perspective, recall from the radium exercise that the mass m of a radium sample decreases 

at the rate per year of 

 dm/dt = -0.00753 m. 

A radium atom has a mass of about 3.8  10
-17

 gm. For the sample to lose six atoms (six times that 

mass) in 

 1 hour  =  1/(24  365.24) year    0.000114 yr, 

it has to start with 

 m  =  dm/(-0.00753 dt)  =  -6  3.8  10
-17

 gm/(-0.00753  .000114) 

    2.7  10
-10

 gm.] 

   

 y = 1/10
 

O 
 10

 
7

 

y
 

t
 



 Chapter VIII. The Eighteenth Century 
Section VIII.B. The Calculus  5. Gauss and Probability 

210 

From mathematical considerations (also later), it follows that the scaling  

 y/d  =  e
-t/c

,  t  0 minutes, 

has to have c = 10. The area under the graph of 

 y = e
-t/10

  from t = a to t = b 

is 10(e
-a/10

 – e
-b/10

) (Exercise 2). Setting a = 0 and b = , which Wallis would approve, we find the 

total area under the graph to be 

 10(e
-0

 – e
-

)  =  10. 

Therefore the scaling factor d has to be 1/10. 

We see that the density is 

 g10(t)  =  (1/10)e
-t/10

,  t  0. 

The probability of waiting between a and b minutes for one of the random buses is the area under the 

graph of g10 from t = a to t = b, an area equal to (e
-a/10

 – e
-b/10

). 

How likely is it that your wait will be 0-7 minutes? The probability is 

 e
-0

 – e
-0.7

    0.503. 

You are about even money to wait more than seven minutes. 

It is worthwhile to compare the graphs of 

 y = e
-t
  and  y = (1/10)e

-t/10
. 

The two are sketched at right, blue and red 

respectively; see Exercise 1 for justification. Notice 

that the latter starts lower and goes down less fast. A 

greater part of the area under it is away from x = 0. 

One of the physical considerations we mentioned 

is that the radium atoms cannot remember when the 

last one popped. In other words, if the last emission 

was 15 minutes ago, then the probabilities for further 

additional wait-times are the same as for wait-times from the last emission. In that situation, we say the 

intervals between emissions are independent. In any situation where you can make that statement, the 

exponential distribution applies. 

To see independent wait-times in familiar terms, suppose you have been waiting 15 minutes for a 

bus when another rider arrives at the stop. The radium atoms, unaware that he is a newcomer, offer him 

the same distribution of wait-times they offered you. Thus, he has probability 0.503 of waiting 0 to 7 

minutes, 0.497 of waiting more. Since you will stand there as long as he does, the probability that you 

have to wait another 7 minutes or more is unsympathetic to how long you have already stewed. 

(iii) the normal distribution 

Now go back to the figure in (a) of the 

binomial distribution of WINs for 1000 

rolls in the game of craps. Replace the 

1001-point pattern by a smooth curve, and 

you produce the graph at right. That bell-

shaped graph, “the curve,” goes with the 

normal distribution. 

The curve has the shape of 

 𝑦 =  𝑒−𝑥2
, 

with no restriction on x. We can check 

y 
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(Exercise 3) that the latter graph has its highest point at x = 0, horizontal tangent there, and tangents of 

negative slope for x > 0. Because 

 𝑒−𝑥2
 = 1/𝑒𝑥2

 < 1/x
2
   (Justify both.), 

the positive x-axis is an asymptote to the graph toward the right. The left (x < 0) half is symmetric to the 

right half. The curve in the figure is the simplest we can draw to fit that information. Properly scaled, it 

is the density function for the normal distribution. Gauss proved that as the number of Bernoulli trials 

increases toward infinity, the binomial distribution approaches a normal distribution centered at the 

binomial maximum. 

The scaling takes the form 

 𝑦/𝑑 =  𝑒−(𝑥/𝑐)2
. 

You need multivariable calculus to determine the area under that graph, cd. To make the area 1, 

we must set d = 1/(c). Therefore the density function for a normal distribution is 

 h(x)  =  (1/[c])𝑒−(𝑥/𝑐)2
. 

As with the exponential, compare the graphs of 

  y = (1/)𝑒−𝑥2
 and y = (1/[10])𝑒−(𝑥/10)2

. 

They are illustrated at right, again blue and red, and 

related as before: The second one starts lower and drops 

more slowly to right and left. Accordingly, a greater 

share of the area under it is away from the high point. 

 

 

b Exercises VIII.B.5

1. a) Sketch the graph of y = e-t for t  0. 
(Hint: The graph of y = e-t is the left-for-right mirror image of the graph of y = et.) 
b) Show that 
 e-t/([1/10]e-t/10) 

is 10 when t = 0, decreases as t increases, is 1 at some t, and is 0 when t = . 

c) Use (a) and (b) to sketch the graph of y = (1/10)e-t/10, t  0. 

2. Think of areas under the graph of 

 y  =  G(t)  =  e-t/10,  t  0 
in Wallis’s infinitesimal terms. 
a) Draw the verticals from the t-axis up to the graph at t = a, t = b, and the midpoint 
 t = (a + b)/2. 
Show that their heights are those of the verticals under the graph of 
 y  =  g(t)  =  e-t 
at the places t = a/10, t = b/10 and t = (a + b)/20. 
b) Evaluate the area under 
 y = g(t),   t = a/10 to t = b/10. 
(Hint: See the hint for Exercise 1a, and remember that the antiderivative of et is et.) 
c) Part (a) suggests that there are equal corresponding infinitesimals under the graph 
of G(t), t = a to t = b, and the graph of g(t), t = a/10 to t = b/10; but the ones for G are 
spread out over a width ten times as big as the infinitesimals for g. In view of (b), what does 
that imply for the area under G? 
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3. a) Use Fermat’s method to show that the slope of the tangent to the graph of 

 𝑦 =  𝑒−𝑥2
 

at the point (a , 𝑒−𝑎2
) is -2a𝑒−𝑎2

. (Hint: If h and k are not zero, then 

  𝑒ℎ𝑘/ℎ = 𝑘𝑒ℎ𝑘/𝑘ℎ,  
and if s is infinitesimal, then 
 [es – 1]/s  =  1.) 
b) Use the slope to show that the graph rises to the right for x < 0, has horizontal tangent 
at x = 0, and drops to the right for x > 0. 

c) average value and average dispersion 

Any probability distribution carries numerous important parameters. The two most basic are the 

average value of the associated variable and the dispersion, the extent to which the values are scattered 

away from the average. 

[To get an imprecise analogy, think of planning a trip. You would want to know the average 

temperature of destinations you consider. You might prefer a place with a 75 average to one with a 30 

or 98 average. Still, if you choose the 75, you should also look into the dispersion. If Honolulu 

averages 75 with a daytime high of 82 and overnight low 68, and Death Valley has the same average 

with high 115 and low 35, you might judge the places unequally attractive.] 

(i) expected value 

Let us go back to the craps table and look at a bunch of customers playing five rolls each. Based on 

the probabilities in the five-roll data in (a), we would calculate that among the customers, a fraction 

 0.0335  will have 0 WINs, 

 0.1629  will have 1 WIN, 

 …, 

 0.0291  will have 5 WINs. 

With those fractions, we anticipate that the average number of WINs per customer will be 

 (0.0335)[0] + (0.1629)[1] + (0.3168)[2] + (0.308)[3] + 

  (0.1497)[4] + (0.0291)[5] = 2.465. 

For any discrete variable, no matter what the distribution is, the summation of all the products 

 (probability of result)[value of result] 

is called the expected value or expectation. If the random variable in question has an infinity of values, 

then the summation becomes an infinite series (and the expectation might be infinite; see Exercise 1). 

[Remember that “expected value” is a strictly technical name. “Average value” would be fine with 

me. If I rolled the dice five times and scored 2.465 WINs, I would refer to the result as “unexpected.” 

If the variable has infinitely many positive values and infinitely many negative, then a mathematical 

complication arises. We won’t even try to address it.] 

Suppose we have instead a continuous variable with probability density h(x). The discrete definition 

 expected value  = summation of (value  probability) 

yields naturally to 

 expected value  = integral of (value  probability) 

    = area under the graph of y = xh(x). 

See Exercise 2 for the expected values of the continuous distributions we have described. For the 

uniform distribution (2a), the integral is at our level. The same is true for the normal (2c), for a reason 

you should see for yourself. For the exponential (2b), undergraduate-level calculus is unavoidable. 
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c(i) Exercises VIII.B.5

1. Recall the probabilities (Exercise VIII.B.5a:1) p(1), p(2), … of needing 1, 2, … throws of a 
fair die “until success,” meaning until a SIX shows up. 
a) What is the expected value of the number of throws needed?  (Hint: 
 1 + 2a + 3a2 + 4a3 + …  =  (1 + a + a2 + a3 + …) + (a + a2 + a3 + a4 + …) + 
      (a2 + a3 + a4 + a5 + …) + …. 
The result is not a coincidence. Try to show that the geometric distribution’s expected value 
is always related that way to the probability of “success.”)  
b) Suppose the King, grateful for your service, lets you roll that die with the promise that if 
the first SIX happens on roll number n, he will reward you with 2n dollars. What is the 
expected value of your reward?  

2. Find the expected values for: 
a) the uniform distribution with density 
 f(x) = 1/10,    x between 0 and 10. 
Then show that in general, for the uniform distribution between x = a and x = b, the 
expected value is the average (arithmetic mean) (a + b)/2. 
b) (calculus) the exponential distribution with 
 g10(x)  =  (1/10)e-x/10,  x = 0 to x = b. 

Then set b =  to find the expected value for the unlimited interval. This answer is why, if 
the buses average one every 10 minutes, then the denominator under x has to be 10. 
c) (only seemingly calculus) the normal distribution with 

 h10(x)  =  1/(10) 𝑒−(𝑥/10)2
, over the whole real line. 

(ii) standard deviation 

To describe how widely spread the values of a random variable are, we could find the average 

difference between the values and the expected value. 

Return to the craps table. For our five rolls, the numbers 0, 1, …, 5 of WINs differ from the expected 

value 2.465 by 

 0 – 2.465, 1 – 2.465, …, 5 – 2.465. 

The average difference, weighted according to the frequencies (probabilities) of the values, is 

 (0.0335)[0 – 2.465] + (0.1629)[1 – 2.465] + … + (0.0291)[5 – 2.465] 

  =  (0.0335) [0] + … + (0.0291) [5] – (0.0335 + … + 0.0291)[2.465] 

  = expected value   – (1)[2.465] =  0. 

Of course it is zero! That is the nature of arithmetic averages, including weighted ones: For every 

unit of excess above the average, there must be a unit of deficiency below it. 

The negative differences are cancelling out the positive ones. To avoid that misinformation, there are 

two ways to eliminate the signs. One is to use the absolute values of the differences. The other is to 

square them. The latter is how Gauss measured the average separation from expectation. 

Take the squares of the differences, 

 (0 – 2.465)
2
, (1 – 2.465)

2
, …, (5 – 2.465)

2
. 

The average of the squares, weighted by probabilities, is 

 (0.0335)[0 – 2.465]
2
 + (0.1629)[1 – 2.465]

2
 + … + (0.0291)[5 – 2.465]

2
. 

The square root of that number, 

 √((0.0335)[0 –  2.465]2  + ⋯ +  (0.0291)[5 –  2.465]2)    1.118 

is the Gauss average. Notice that it looks vaguely like an extension of the distance formula. 
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[The square root of the average square is sometimes called the RMS, root-mean-square. (“RMS 

average” would be redundant.) Notice that the name comes from our algebraic notation, where the last 

operation done appears on the left. Given the order in which the operations are performed, perhaps the 

name ought to be “square-mean-root.” 

It is instructive to compare the RMS with the average distance, what you would get if you followed 

the first idea and averaged the absolute differences. That would be 

 (0.0335)|0 – 2.465| + (0.1629)|1 – 2.465| + … + (0.0291)|5 – 2.465|    0.937, 

smaller than RMS. It is in the nature of RMS to lean toward the bigger of the numbers being averaged.] 

For every random variable, the RMS distance of the values from the expected value is called the 

standard deviation. It is universal to signify expected value by  (Greek lowercase letter mu) and 

standard deviation by  (lower sigma). For a discrete variable, the deviation is 

  = (summation of the products {[value – ]
2
  (probability of value)}). 

That summation might be a series, whose value may or may not then be finite. For a continuous variable 

with density f(x), the sum morphs into an integral: 

  = (integral of the products {[value – ]
2
  (probability of value)}) 

  = (area under the graph of y = [x – ]
2
 f(x)). 

The definition can be clumsy to apply. There is a more convenient expression for the deviation. 

Theorem 1. Suppose v is a random variable with expectation (v). Let (v
2
) be the expectation of v

2
, the 

variable which assigns to each event the square of the value v assigns. If the two expectations are finite, 

then the standard deviation of v is 

 (v)  =  [(v
2
) – (v)

2
]. 

In case you think those terms inside the radical are equal, calculate for the five-roll WINs w. There, 

 (w
2
)  =  (0.0335)[0]

2
 + (0.1629)[1]

2
 + … + (0.0291)[5]

2
  7.326. 

We earlier evaluated (w) = 2.465, whose square is about 6.1. 

The new formula does accord with the earlier estimate for standard deviation: 

 (w)  =  [(w
2
) – (w)

2
]  =  (7.326 – 2.465

2
)    1.118 

We will indicate the proof of Theorem 1 for a discrete variable. The method adapts easily to a 

continuous variable (Exercise 1). 

Let v have the values v1, v2, … with corresponding probabilities p1, p2, …. Write  and  for its 

expectation and deviation. By definition, 

 
2
 = p1 (v1 – )

2
 + p2 (v2 – )

2
  + …. 

Multiply out the squares and rearrange the terms to write 

 
2
  =  [p1 v1

2
 + p2 v2

2
 + …] – 2[p1 v1 + p2 v2 + …] + [p1 

2
 + p2 

2
 + …]. 

That first bracket is the expected value of v
2
. The second bracket factors as 

  [p1 v1 + p2 v2 + …]  =  . 

The third factors as 

 
2 

[p1 + p2 + …]  =  
2 

[1]. 

Provided the expectations are real numbers, we have proved 

 
2
  =  (v

2
) – 2

2
 + 

2
  =  (v

2
) – 

2
. 

The above argument used silently a fact that deserves attention. 
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We said that 

 p1 v1
2
 + p2 v2

2
 + … 

is the expected value of v
2
. That expression sums terms of the form 

 (probability of value of v)[value of v
2
]. 

The definition of expectation demands terms of the form 

 (probability of value of v
2
)[value of v

2
]. 

The two summations are equivalent. If v takes on the values 7 and -7, then 

 (probability of v = 7)[7
2
] + (probability of v = -7)[-7]

2
 

appears in the former summation, while 

 (probability of v
2
 = 49)[49]  

appears in the latter. Those two are equal, because 

  (probability of v
2
 = 49)  =  (probability of v = 7) + (probability of v = -7). 

In turn, that equality is an elementary property of probability (see “Addition Rule” at Glasgow). 

See Exercise 2 for the deviations of the continuous distributions of interest to us. 

c(ii) Exercises VIII.B.5

1. Let v be a continuous random variable with probability density F(x) over some interval of 

the real line. Let  be its expected value, E(v2) the expected value of v2, both assumed to 

be finite. Show that the standard deviation  of v is given by 

 
2  =  E(v2) – 2. 

(You may take it for granted that the integral of a sum is the sum of the integrals.) 

2. Use Exercise 1 and the expectations from Exercise VIII.B.5c(i):2 to find the standard 
deviations for: 
a) the uniform distribution with density 
 f(x) = 1/10,    x between 0 and 10. 
Then show that in general, for the uniform distribution between x = a and x = b, the 

standard deviation is (b – a)/12. (Notice that it exceeds [b – a]/4. This latter number, 1/4 
the length of the interval, is average distance from the midpoint of the interval.) 
b) (calculus) the exponential distribution with 
 g10(x)  =  (1/10)e-x/10,  x = 0 to infinity. 
(Notice that the larger the denominator, the larger the deviation. Larger denominator brings 
more spread; deviation measures spread.) 
c) (calculus, but not multivariable) the normal distribution with 

 h10(x)  =  1/(10) 𝑒−(𝑥/10)2
 over the whole real line. 

(You should get  = 10/2. Again, bigger denominator goes with greater dispersion.) 

(iii) the binomial parameters 

For the binomial distribution, there are simple formulas for both expectation and deviation. 

Theorem 2. For the binomial distribution applying to n trials with success probability p, 

  = np  and  
2
 = np[1 – p]. 

Use the five-roll session at craps as evidence. 

http://www.stats.gla.ac.uk/steps/glossary/probability.html
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We need to write out the binomial coefficients. To make room, abbreviate the WIN probability 0.493 

by p, the LOSS probability 0.507 by q. Then 

 (w) =  q
5 

[0] + 5/1 q
4
p [1] + 5(4)/1(2) q

3
p

2
 [2] + 5(4)3/1(2)3 q

2
p

3
 [3] + 

   5(4)3(2)/1(2)3(4) qp
4
 [4] + 5(4)3(2)1/1(2)3(4)5 p

5
 [5] 

  =  5p [q
4
 + (4)/1 q

3
p + (4)3/1(2) q

2
p

2
 + (4)3(2)/1(2)3 qp

3
 + (4)3(2)1/1(2)3(4) p

4
] 

  =  5p [q + p]
4 

= 5p. 

The expected value for n rolls is np. 

For the standard deviation, we work with Theorem 1. The expected value of w
2
 is 

 (w
2
) =  q

5 
[0

2
] + 5/1 q

4
p [1

2
] + 5(4)/1(2) q

3
p

2
 [2

2
] + 5(4)3/1(2)3 q

2
p

3
 [3

2
] + 

   5(4)3(2)/1(2)3(4) qp
4
 [4

2
] + 5(4)3(2)1/1(2)3(4)5 p

5
 [5

2
] 

  =  5p {q
4 
[1] + (4)/1 q

3
p [2] + … +  (4)3(2)1/1(2)3(4) p

4 
[5]}. 

Separate the factor in {braces} into two sums by rewriting the values [1], [2], …, [5] as 

 [0] + [1], [1] + [1], [2] + [1], [3] + [1], [4] + [1]. 

From the green numbers, we have the first sum 

 q
4 
[0] + (4)/1 q

3
p [1] + (4)3/1(2) q

2
p

2 
[2] +  (4)3(2)/1(2)3 qp

3 
[3] +  (4)3(2)1/1(2)3(4) p

4 
[4]. 

From the blues, we get the second sum 

 q
4 
[1] + (4)/1 q

3
p [1] + (4)3/1(2) q

2
p

2 
[1] +  (4)3(2)/1(2)3 qp

3 
[1] +  (4)3(2)1/1(2)3(4) p

4 
[1]. 

Instead of calculating the two sums, look at their forms. The first sum is the expected number of 

WINs in four rolls. We have already shown that it equals 4p. The second sum is the binomial 

expansion for (q + p)
4
 = 1. Substituting, we get 

 (w
2
)  =  5p {4p + 1}. 

The expected value of w
2
 over n rolls is np([n – 1]p + 1). 

We have 

 (w
2
)  =  np([n – 1]p + 1)  and  (w) = np. 

Therefore 

 (w)
2
 =  np([n – 1]p + 1) – (np)

2
 

  =  np(1 – p). 

One other property of the binomial distribution is worth mentioning. The most likely result (mode, 

in probability-talk) is the integer closest to the expected value. In the example from (a), for 1000 rolls, 

the most probable number of WINS (with probability barely above 0.025) proved to be (.493)1000. 

(iv) the normal parameters 

In all our discussion, the normal densities have been centered at x = 0. In use, the usual situation is a 

dataset with normal distribution centered at some “mean” . Translating the center of the distribution 

to x =  is just a matter of writing the density as 

 h(x) = 1/[c] 𝑒−([𝑥−]/𝑐)2
. 

It is straightforward (calculus, but not really) to show that this density has expected value . Without 

calculus, we can see geometrically that the dispersion remains as before. Adapting Exercise 2c above, 

we see that the standard deviation is  = c/2. Therefore the all-purpose normal density is, in terms of its 

expectation  and deviation , 

 H(x)  =  1/[√2] 𝑒−([𝑥−]/[√2])
2

. 

Entertain this question: What is the probability that a US male picked at random (every male 

equally likely to be chosen) will have height between 6 and 62? 
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Suppose we know that the average height is 70. All we may conclude is that such men are taller 

than average. We need to know the variation. The standard deviation would help; assume that it 

is 3. It turns out we still need to know the distribution. (Compare Exercise 1.) 

Assume that height of US males is normally distributed. In view of the mean and deviation, the 

density is 

 H1(x)  =  (1/[3√2])𝑒−([𝑥−70]/[3√2])2
. 

To answer the question, we need the area under its graph from x = 72 to x = 74. 

Rather than taking those complicated densities head-on, make the task easier by thinking in terms of 

displacement from the mean, measured in standard deviations. The quantity (x – ) is (signed) distance 

from the expectation. Then 

 z = (x – )/ 

is signed distance from , measured in standard-deviation units. With any normal density, the 

probability that a value lies between z = a and z = b deviations from the expected is the area, between 

those two values, under the graph of 

 H0(z) = (1/√2)𝑒−(𝑧/√2)2
. 

The density H0 is called the standard normal density. It has expectation 0 and deviation 1. (For 

those, adapt Exercises (i):2c and (ii):2c.) Notice that it is a stationary target; the expression has no 

parameters. Accordingly, people make tables of areas under it, just as they make trigonometric tables. 

(See an unusually nice table at mathisfun.com, plus try out the interactive bell curve there. Be sure to 

read the instructions above the table to see what it tabulates.) 

The question above asked for the probability of a height between 72 and 74. Those heights 

are 2 to 4 inches above mean. Interpret that as between 

 z  =  2/3    0.67 and z  =  4/3    1.33 

deviations above expectation. From the table entries, the requisite area is 

 0.4082 – 0.2486  =  0.1596. 

Just under 16% of our males are that tall. 

c(iv) Exercises VIII.B.5

1. Imagine we have evidence that the average New York City high temperature for July 1 

is 87F. Consider this question: How unusual is a July 1 on which the high temperature in 

NYC exceeds 96? Can you answer it: 
a) with no further information? 

b) given that the highs are distributed uniformly between 75 and 99? 

c) given instead that the standard deviation is 4? 

d) given that the highs are normally distributed, with standard deviation 4? 

2. How many kids in Lake Wobegon are above average? (Read about Garrison Keillor at 
publicradio.org.) In our language, what is the probability that a (randomly selected) child 
has “score” [or something] above expectation if the “scores” are distributed: 
a) uniformly?  b) exponentially?   c) normally? 
(In each case, no other information is needed.) 

d) the approximation 

Now we can elaborate what this whole Gauss section is about, the normal approximation to the 

binomial distribution. 

http://www.mathsisfun.com/data/standard-normal-distribution-table.html
http://www.mathsisfun.com/data/standard-normal-distribution-table.html
http://www.publicradio.org/columns/prairiehome/posthost/2013/04/01/the_lake_wobegon_effect.php
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Proposition. As the number n of Bernoulli trials with success probability p grows toward infinity, the 

binomial density approaches 

 H(x)  =  1/[√2] 𝑒−([𝑥−]/[√2])2
, 

in which  = np is the expected value of the binomial distribution and  = (np[1 – p]) is the 

corresponding standard deviation. 

We can use the density as written to estimate individual probabilities. 

Return to the casino and the probability p(493) of 493 WINs in 1000 rolls at craps. There,  = 493 

and   =  (1000[.493].507)    15.8. Use, as is customary, values halfway between integers. Then 

p(493) is the area under the graph of 

 H2(w) = 1/[15.8√2] 𝑒−([𝑤−493]/[15.8√2])2
 

between w = 492.5 and w = 493.5. 

Near the high point, the graph is practically horizontal. Therefore we may take 

 area    H2(493)  width  =  1/(15.8[2])    0.025. 

Even where the graph is sloping, over a narrow interval, the height at the midpoint is an excellent 

approximation to the average height. Hence for example (via scientific calculator) 

 p(450)    H2(450) (450.5 – 449.5)  =  1/[15.8√2] 𝑒−(−43/[15.8√2])2
    0.00062. 

[Compare those results with the plotted probabilities in the chart from subsection (a). 

The plotted values are calculations of the exact probabilities, 

 p(493) = (1000
493

).507
507

.493
493

  and p(450) = (1000
450

).507
550

.493
450

. 

There are approximations to those values first developed by de Moivre and refined by James Stirling; 

read about both at University of St Andrews. It was by studying the approximations that Gauss 

established the limiting behavior of the binomial distribution.] 

For intervals of values—as opposed to individual ones—it makes considerably more sense to return 

to thinking in standard deviations. 

Recall that we postponed figuring the probability of turning a profit on 1000 rolls at the craps table. 

To make a profit, you need 501 or more WINs. Use w  500.5. That is 7.5 WINs above expected 

value, which is in turn 

 z  =  7.5/15.8    0.47 deviations 

above expectation. The probability of z  0.47 is 0.3192. (How does that value come from the table?) 

Over that weekend in Vegas, you are odds-on to lose money. 

Now you see why casinos put limits on how much you may bet. They want their small advantage to 

operate over many small bets. 

Show up at a casino in an armored truck and say, “I want to bet this here $500 million on one roll of 

the dice.” The bet would give the house an expected profit (the negative of your expectation) of 

 .493(-$500M) + .507($500M)  =  $7 million, 

with 0.507 probability of making a profit (and of course 0.493 of losing half a billion). No casino 

would take such a bet; that would be gambling! However, they would be happy to entertain you 

while you make 10,000 bets of $50,000 apiece. Then the casino would have expectation 

 10,000  [.493(-$50K) + .507($50K)]  =  the same $7 million, 

with probability 0.9192 of making a profit. There is an outside chance (0.0228) you will win $3M or 

more, but it is equally likely that you will lose $17M or more. (All those come from Exercise 2.) 

http://www-history.mcs.st-and.ac.uk/Biographies/De_Moivre.html
http://www.mathsisfun.com/data/standard-normal-distribution-table.html
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The normal distribution—along with its approximation to the binomial—is enormously important in 

statistics, and therefore to the empirical parts of science. Examples include social sciences research (as 

in polling) and medical research (testing effectiveness of medication). It is indispensable for the study of 

various kinds of reliability. That includes quality control (deciding what is needed to assure a certain 

“confidence” that something will survive its use or misuse) and validity of statistical inference (deciding 

how likely it is that some conclusion reflects reality and not merely chance occurrence). 

d Exercises VIII.B.5

1. For 1000 rolls, each with probability 0.493 of WIN, we said that the tail ends of the density 
plot are too low to graph. Certainly, p(0) through p(440) are all individually small. What 
about collectively? Find the probabilities of: 
a) 450 or fewer WINs. [Our table won’t reach (440 or fewer).] 
b) 540 or more WINs. 

2. For 10,000 rolls betting $50,000 each at craps: 

a) Show that the probability of not losing (call it simply WINs  5,000) is 0.0808. 

b) Show that the probability of profit exceeding $3 million (WINs  5,030) is 0.0228. 
c) Without calculating: Why is losing $17M or more as likely as winning $3M or more? 

 Number Theory Section VIII.C.
Turning to number theory puts us in the land of the giants. The contributions of Euler and Gauss 

defined the subject for the developments that followed. 

1. Euler and the Theorems of Fermat 

It is tunnel vision to focus entirely on Euler’s work on Fermat, but that part of his work is both 

elementary and interesting. 

a) Fermat’s Little Theorem 

Recall Fermat’s result (section VII.A.4f(i)) that prime p divides (a
 p-1

 – 1) if it does not divide a. 

Euler proved it via the following: 

Theorem 1. If p is prime and a is natural, then p divides (a
 p

 – a). 

[Some call this one “Fermat’s little theorem.” Nobody calls the earlier one “Fermat’s big theorem.”] 

Euler’s proof was by induction on a. 

The base case is immediate: 1
p
 – 1 is certainly divisible by p. 

Assume now k
p
 – k is divisible by p. By the binomial theorem, 

 (k + 1)
p
 – (k + 1)  =  k

p
 + (

𝑝
1

)k
 p-1

 + … + (
𝑝

𝑝 − 1)k
 1

 + 1 – (k + 1) 

    =  pk
 p-1

 + … + [p(p – 1)…2]/[1(2)…(p – 1)] k
 1

 + (k
p
 – k). 

All the binomial coefficients are divisible by p (next paragraph), and by assumption so is (k
p
 – k). 

Therefore (k + 1)
p
 – (k + 1) is divisible by p. That completes the induction. 

To see that the coefficients are divisible by p, we may simply observe that each is a fraction whose 

numerator has factor p and denominator does not. (No denominator factor is divisible by p. Why?) 

Hence p does not cancel out. For more formal evidence, use the example 

 (
𝑝
3

)  =  [p(p – 1)(p – 2)]/[1(2)…3]  =  p [(p – 1)(p – 2)]/[1(2)…3]. 

We know it is an integer. Therefore [1(2)…3] divides p [(p – 1)(p – 2)]. Because p divides none 

of 1, 2, 3, it does not divide their product. (Why?) Hence [1(2)…3] is relatively prime to p. Since it 
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divides p[(p – 1)(p – 2)] and is prime to p, it has to divide [(p – 1)(p – 2)] (Exercise III.B.4a:5). The 

blue fraction is an integer, and the binomial coefficient is a multiple of p. 

The little theorem is now easy. No matter what a is, p divides 

 a
p
 – a  =  a(a

p-1
 – 1). 

If now p does not divide a, then it has to divide (a
p-1

 – 1). 

a Exercises VIII.C.1

1. Find the remainder upon division by 43 of: 
a) 245   b) 285    c) 2125.  

b) sum of squares 

The second theorem (section VII.A.4f(ii)) states that if prime p has remainder 1 on division by 4, 

then there are (unique) natural a and b with 

 p = a
2
 + b

2
. 

Fermat did not write a proof. Euler’s proof was elementary but complicated (even compared to Fermat’s 

proof for Theorem 3 in section VII.A.4f(iv)); look at it in Wikipedia®. At the same page, you will find 

an advanced proof by Lagrange.) 

Interestingly, Lagrange proved something else about sums of squares. We have seen that not every 

number is the sum of two squares. Lagrange showed that every number is the sum of four squares: 

Given any natural n, you can find a, b, c, d (some maybe zero) such that 

 n = a
2
 + b

2
 + c

2
 + d

2
. 

There is a nice proof (for which you need the language of Gauss, below) by Matilde Lalín at Université 

de Montréal. 

c) Fermat’s primes 

The third “theorem” was that every natural number 22𝑛
+ 1 is prime. Euler settled the conjecture via 

a distinctly Eulerian approach: He looked at what kind of prime could divide one of those numbers. 

Suppose p divides 224
+ 1. That says 224

+ 1 is some multiple ip, and 

 224
  =  ip – 1. 

Therefore 

 225
  =  (224

)
2
  =  (ip – 1)

2
  =  jp + 1.  (What does j have to be?) 

The power 225
 has remainder 1 upon division by p. 

Let k be the first natural exponent for which 2
k
 has remainder 1, say 

 2
k
  =  qp + 1. 

Then k must divide every exponent, like 2
5
, with that property. To see that, use 2

5
 as example. Apply 

the division algorithm: 

 2
5
  =  Qk + R,      R satisfying 0  R < k. 

Then 

 jp + 1 = 225
  = 2

Qk + R
 

  = (2
k
)
Q 

2
R
  = (qp + 1)

Q 
2

R
 

  = (lp + 1)
 
2

R
.    (What does l have to be?) 

Multiply out and transpose to write 

 2
R
 = jp – 

 
2

R
lp + 1. 

That says 2
R
 has remainder 1 on division by p. Since k is the smallest positive such power and R < k, 

we infer R cannot be positive. Therefore R = 0; k divides 2
5
. 

https://en.wikipedia.org/wiki/Proofs_of_Fermat%27s_theorem_on_sums_of_two_squares
http://www.dms.umontreal.ca/~mlalin/Lagrange.pdf
http://www.dms.umontreal.ca/~mlalin/Lagrange.pdf
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In fact, k has to be 2
5
. The latter does not have that many divisors, only 

 2
0
, 2

1
, 2

2
, 2

3
, 2

4
, 2

5
. 

None of the first five can be k. Imagine if k were say 2
2
, so that  222

would have remainder 1: 

 222
 = mp + 1. 

In that case, we would have 

 224
 = (222

)24−2
 

  = (mp + 1)
4
 = Mp + 1. 

That equality is impossible, because 224
  =  ip – 1 does not have remainder 1. (What is its 

remainder?) That leaves only the sixth candidate, k = 2
5
. 

We said k has to divide all the powers for which 2
power

 has remainder 1. By the little theorem, p – 1 

is one such power. (To apply the little theorem, we have to know p does not divide 2. How can we 

be sure?) Therefore k = 2
5
 divides p –1: p – 1 is a multiple of 2

5
, and 

 p  =  (some multiplier)  2
5
 + 1. 

The effect of all that is to narrow the search for prime divisors of 224
+ 1 to primes that are of the 

form (multiple of 32) +1. The list of such numbers is 

 33, 65, 97, 129, …. 

From there, we may scratch the composites. You can check that the prime survivors are 

 97, 193, 257, …. 

We may also dump “…”; no list of possible divisors can go on forever. In fact, even 257 is already too 

big. The first prime divisor of 224
+ 1 has to be no more than its square root, 223

+ = 256+. To decide 

whether 224
+ 1 is prime, then, we need only try to divide by 97 and 193. Since 

 2
16

  =  2
10

2
6
  =  1024(64), 

we can easily do the operations by hand to establish that 2
16

 + 1 is prime. 

You can apply the argument above to any of the numbers 22𝑛
+ 1. For example, the only possible 

prime divisors of 223
+ 1 are those of form (multiple of 2

4
) + 1: 

 17, 33, 49, 65, …. 

All of those are disqualified. (Why?) For a better example, choose 225
+ 1. Its prime divisors have to 

look like (multiple of 2
6
) + 1: 

 65, 129, 193, 257, 321, 385, 449, 513, 577, 641, …. 

Euler, a phenomenal calculator, divided by the surviving five candidates to establish that 

 (225
+ 1)  =  641  6,700,417. 

The fifth “Fermat prime” is not a prime number. 

It is still not known whether any of the “Fermat primes” with n > 5 are prime. 

c Exercises VIII.C.1

1. Find the remainder of (232 + 1) upon division by 197. (Hint: Use a simple calculator, starting 

with 210  =  1024  =  5  197 + 39.) 

d) Fermat’s Last Theorem 

Euler worked on the Last Theorem and some variations. He proved that 

 x
n
 + y

n
  =  z

n
 

does not have integer solutions if n = 3 or n = 5. Recall that Fermat (section VII.A.4f(iv)) had eliminated 

n = 4. Those cases rule out solutions for any multiple of 3, 4, or 5. However, Euler could not establish 

the general case. 
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[I take that as conclusive evidence that Fermat did not have a proof, either. You will see support for 

that opinion below. I’ll do my best to separate fact from editorial.] 

In one variation, Euler characterized the integer solutions of 

 x
3
 + y

3
 + z

3
  =  w

3
. 

The possibility of negative numbers in that equation allows two forms: 

 3
3
 + 4

3
 + 5

3
  =  6

3
, 

with three positives on one side; or the split solution 

 1
3
 + 12

3
  =  9

3
 + 10

3
. 

(The latter figures in the most popular story about Ramanujan. Read from “Durango Bill” Butler.) In 

another variation, Euler calculated 

 59
4
 + 158

4
  =  133

4
 + 134

4
. 

From such cubic and quartic examples [I assume], he delivered the opinion that solutions to 

 a
n
 + b

n
 + …  =  z

n
 

require at least n n’th powers on the left. That turned out to be false. See David Murphy’s report for a 

sterling account and for related Diophantine equations. 

We have seen that Euler demolished the Fermat-primes conjecture and proved the sum-of-squares 

theorem (as Fermat did not). For the little theorem, he gave more than proof: He generalized it into a 

new avenue of study. 

If n is not prime, then a
n-1

 might not have remainder 1 on division by n, even if a is relatively prime 

to n. Use n = 10. Clearly 2
9
 cannot have remainder 1; its remainder is even. From 

 3
4
 = 8  10 + 1, 

we have 

 3
9
  =  (3

4
)
2
  3  =  ([multiple of 10] + 1)  3; 

the remainder is 3. On the other hand, 

 1
4
 = 1,  3

4
 = 81, 7

4
  =  (49)

2
  =  2401,  9

4
  =  (81)

2
  =  6561. 

Those are the four numbers relatively prime to 10, raised to the power of how many there are. Euler 

showed that this pattern always holds. 

Proposition. Let n be a natural number and (n) the count of naturals from 1 to n that are relatively 

prime to n. For any a relatively prime to n, 

 a
(n)

 has remainder 1 upon division by n. 

This really is a generalization of the little theorem. If p is prime, then all of 1, 2, …, p – 1 are prime 

to p. Therefore (p) = p – 1. If p does not divide a, then it is prime to a. The proposition implies that 

if p is prime and does not divide a, then a
p-1

 has remainder 1 on division by p. 

It is standard to denote this count, Euler’s totient function, by  (Greek lower-case letter phi). Euler 

established numerous properties for . For one example, he related (n) to the prime factorization of n. 

From the relationship, it follows that  is multiplicative: If m and n are relatively prime, then  

 (m) (n)  =  (mn). 

(Compare Exercise 1.) Then Euler studied other multiplicative functions. For another example, if you 

add up (i) for all the divisors i of n, you find the sum is n (as in Exercise 2). That relation introduced 

functions defined as sums related to the divisors, like the sum of the divisors or their powers. (What is 

the sum of the zero’th powers of the divisors of n?) 

[To quote the beginning of Section VIII.B.2a, Euler produced “worlds of mathematics.” If he could 

not build a whole new theory around the Last Theorem, I can’t conceive that Fermat had a proof.] 

http://www.durangobill.com/Ramanujan.html
http://www.hillsdalesites.org/personal/dmurphy/work/EulerConj-MichMAA.pdf
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Proving the Last Theorem was a laborious slog involving international contributors over 350+ years. 

You can get an excellent account of this history at St Andrews. For half of it, the only successful attacks 

were for particular primes. (Why is it possible to limit attention to just prime exponents?) The first 

general approach was introduced around 1819 by Marie-Sophie Germain (1776-1831). (Wikipedia® has 

a detailed account of her life, but see the article at Agnes Scott College. At the latter site, you will find a 

remarkable collection of profiles of women in mathematics.) Numerous contributors followed up her 

methods, producing proofs for a large class of prime exponents. By 1955, the most important watershed 

was an extremely advanced proposition called the Taniyama (and others) Conjecture (try Wolfram for a 

synopsis), whose truth would imply the theorem. Finally in 1995, Andrew Wiles presented a proof, 

which needed some later modification, of the conjecture. That settled the Last Theorem. (Must see: a 

very personal interview with Wiles at PBS.) 

[I saw a short musical titled “Fermat’s Last Tango.” It was staged within a little church nestled in the 

headquarters of Citibank. A church inside a bank is an enormous convenience to those of us who 

worship money. The performance was a satirical revue in which the ghost of Fermat delighted in 

mocking Wiles’s fits and starts in trying to settle the Last Theorem. 

In the lobby, there was an exhibition of Fermatiana. Among its items, my favorite was a form letter. 

It had been written in mid-twentieth century by the math chairman of a well-known school—maybe it 

was University of Wisconsin. Evidently, its existence owed to the Ramanujan syndrome (end of 

section IV.A.4), whereby math departments frequently receive communications of earth-shaking 

discoveries. The form letter read something like this: 

 Dear __________________, 

 

 Thank you for your proof of Fermat’s Last Theorem. The first error occurs on 

 page ______. This invalidates the proof. 

 

 Sincerely, … ] 

d Exercises VIII.C.1

1. Count up relatively prime numbers to show that: 

a) (4) (5)  =  (20). 

b) (2) (10)    (20). Why is this not a contradiction? 

2. a) Write down the divisors of 10, including 1 and 10. Figure out their -values, then show 
that the values sum to 10. 
b) Do the same with the divisors of 20. 

2. Gauss 

To Gauss, number theory was the “queen of mathematics.” His Disquisitiones Arithmeticae 

(Arithmetical Investigations, 1801) presented and extended previous discoveries to such extent that we 

may view it as the foundation of modern number theory, the way Euler’s Introductio … was foundation 

for modern analysis. The work of Gauss reached into advanced methods in complex functions; we will 

examine just two elementary areas. 

http://www-history.mcs.st-and.ac.uk/HistTopics/Fermat's_last_theorem.html
http://en.wikipedia.org/wiki/Sophie_Germain
http://www.agnesscott.edu/lriddle/women/germain.htm
http://mathworld.wolfram.com/Taniyama-ShimuraConjecture.html
http://www.pbs.org/wgbh/nova/physics/andrew-wiles-fermat.html
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a) congruences 

(i) definition 

Gauss created an idea that has connections to the division algorithm, along with the same 

combination of elementariness and power. The definition is this: Let n  2 be a natural number and a 

and b integers; we say a is congruent to b modulo n, and write 

 a  b  mod n, 

if a – b is divisible by n. There is no profit in letting n be negative, n = 1 is trivial, and n = 0 leads 

nowhere; that is why we restrict n to 2 and above. 

Notice that we may say “a and b are congruent,” because the relation is symmetric: If a is congruent 

to b  mod n, so that 

 a – b  =  kn, 

then 

 b – a  =  (-k)n 

and b is congruent to a. (See Exercise 3.) 

Every integer is congruent modulo n to its remainder upon division by n. Thus, 

 23 = 2  10 + 3 gives  23 – 3 = 2  10, 

which says that 

 23  3  mod 10. 

In the same way, 

 -23 = -3  10 + 7 (remember that remainders have to be nonnegative), 

so that 

 -23  7  mod 10. 

We will refer to the remainders 0, 1, …, n – 1 as the residues modulo n. With respect to congruences 

mod n, they make up a complete set of representatives for all integers. 

(ii) arithmetic 

Arithmetic with congruences is sometimes called “clock arithmetic,” by analogy with the passage of 

hours on a clock. If the time on a 12-hour clock is now 10:00, then in four hours it will be 2:00, because 

 10 + 4  =  14    2  mod 12. 

(We will frequently write chains of equalities and congruences.) Similarly, five consecutive four-hour 

periods lead to 10 + 5  4    6  mod 12 on the clock. 

The most fundamental property of congruences is that they are compatible with addition and 

multiplication. That is, if a  b and c  d  mod n, then 

 a + c    b + d  and  ac    bd mod n. 

For example, 

 23  68  and  17  82 mod 5. 

Therefore mod 5, 

 40  =  23 + 17    68 + 82  =  150  

and  

 391  =  23  17    68  82  =  5576. 

The general proof for addition is Exercise 4. For the multiplication part, 

 (a  b  mod n) means a – b  =  kn,  (c  d  mod n) means c – d  =  mn. 

Hence 

 ac  =  (kn + b)(mn + d)  =  (knm + kd + bm)n + bd, 

and it follows that ac  bd. 
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The compatibility allows us to turn big calculations into reasonably small ones. Consider finding the 

residue of 39
41

 modulo 43. That power is not something we want to evaluate; even 39
2
 is no bargain. But 

we know 39  -4. (Everything in this and the next paragraph will be mod 43. Choosing -4 over 39 is a 

winner, despite the sign, because it lowers the absolute value.) The compatibility implies that the powers 

of 39 are congruent to the powers of -4. 

Thus, 

 39
4
    (-4)

4
  =  256    -2. 

(Here we chose the fourth power because 256 is close to a multiple of 43: 256  =  6  43 – 2.) Then 

 39
20

  =  (39
4
)
5
    (-2)

5
  =  -32    11, 

 39
40

  =  (39
20

)
2
    11

2
  =  121    -8, 

 39
41

  =  (39
40

)[39]    (-8)[-4]  = 32. 

a Exercises VIII.C.2

1. Calculate the residues: 
a) 2100 mod 10 
b) 1113 mod 15 
c) 1213 mod 14. 

2. a) Show that any number is congruent mod 3 to the sum of its (decimal notation) digits. 
b) Show that a number (like 123456) is divisible by 3 iff the sum of its digits is divisible by 3. 
c) Do (a) and (b) with 9 in place of 3. 
d) Is 14710131619222528313437 divisible by 9? 
e) Is there a similarly convenient way to tell (from the digits) whether 
14710131619222528313437 is divisible by 11? 

3. Show that congruence modulo n has the other properties (aside from symmetry) of an 
equivalence relation: 

a) Reflexivity: Always a  a. 

b) Transitivity: If a  b and b  c, then a  c. 

4. Show that if a  b and c  d  mod n, then 

 a + c    b + d. 

b) the language of congruences 

(i) statements 

We have encountered numerous discussions couched in the language of remainders. We can simplify 

all their statements, and often their proofs, by rendering them in the language of congruences. Thus, in 

Babylonian times (Exercise II.B.1:1), we saw that no natural number with remainder 3 on division by 4 

is the sum of two squares. Now we would say that if n  3 mod 4, then no two squares add up to n 

(Exercise 1). On the flip side, look at the statement of Fermat’s sum-of-squares theorem (section 

VII.A.4f(ii)). It becomes: 

 If p is prime and p  1 mod 4, then there exist (unique) natural numbers a and b with p = a
2
 + b

2
. 

In the next subsections, we will give similar simplifications and proofs for some other statements. 

(ii) inverses 

Recall the important theorem (Theorem 1 in section III.B.4) that if a and b are relatively prime, then 

some integer combination ia + jb equals 1. For example, 16 and 21 are relatively prime, and 

 (4)16 + (-3)21  =  1. 
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From the rearrangement 

 (4)16 – 1  =  (3)21,  we judge that  (4)16    1  mod 21; 

similarly, 

 (-3)21 – 1  =  (-4)16  implies   (-3)21    1  mod 16. 

Whenever c and d have the property that cd  1 mod n, we say that c and d are inverses mod n. 

(Clearly the relation is symmetric.) If c and d are inverses mod n, we write c = d
 -1

 and d = c
 -1

. 

(Read “c inverse,” not “c to the -1.”) We just saw that 16 and 4 are inverses mod 21, and 21 and -3 are 

inverses mod 16. We will say that 4 is the inverse of 16 mod 21, because inverses are “unique” 

(Exercise 2). In general, the integer-combination theorem implies that if a and b are relatively prime, 

then each has an inverse modulo the other. 

On the other hand, it is impossible for a to have an inverse mod b if the two are not relatively prime. 

Thus, 16 cannot have an inverse mod 30. If there were such an inverse k, then we would have 

 1    (k)16    mod 30. 

Multiply both sides by 

 30/(GCD of 30 and 16)  =  30/2  =  15. 

The result would be a contradiction, 

 15[1]    15[(k)16]  =  240k    0 mod 30. 

(The reason for choosing 30/(GCD of 30 and 16) is that necessarily 

 16  (30/GCD of 30 and 16)  =  (16/GCD of 30 and 16)  30 

is a multiple of both 16 and 30. Indeed, it is the least common multiple; see Exercise III.B.4a:3e.) 

Once you have multiplicative inverses, you can define the inverse of multiplication, division. If d 

has inverse d
 -1

, we define the quotient a/d as ad
 -1

. Naturally, we call 

 1/d  =  1d
 -1

  =  d
 -1

 

the reciprocal of d. 

By the definition, mod 21 we have 

 12/4  =  12(4
-1

)  =  12(16)  =  192    3. 

That figures, because 4  3 = 12. We also have 

 12/5  =  12(5
-1

)  =  12(-4)   (Check that 5
-1

 = -4.) 

    =  -48    15. 

That one looks strange, but is in keeping with 5  15  =  75    12. 

b(ii) Exercises VIII.C.2

1. Show that: 

a) If m is even, then m2  0  mod 4. 

b) If m is odd, then m2  1  mod 4. 

c) If n  3  mod 4, then n is not the sum of any pair of squares. 
d) In a primitive right triangle (integer sides having no common divisor), the hypotenuse 
cannot be 123,456,003 long. 

2. a) Certainly (4)16  1  mod 21, but also 

 (25)16  =  400    1. 
In what sense are inverses mod 21 unique? 

b) Show that if (k)16    1 (“k is an inverse of 16”) mod 21, then k  4 (“k is the same 
as 4”) mod 21. 

3. a) Find the inverse of 20 mod 43.  b) Evaluate 3/20 mod 43. 
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(iii) theorems 

In this new language, we can restate and re-prove [“reprove” means something else] two old results. 

Theorem 1. (The Chinese Remainder Theorem) Suppose k, m, n (and perhaps others) is a finite 

sequence of pairwise relatively prime natural numbers. Then given equally many integers a, b, c (others 

if appropriate), there exists x such that 

 x  a mod k, x  b mod m, x  c mod n,  (… if any). 

(Reread the statement in section IV.B.4 to check that this makes an equivalent one, with an 

exception. Here, the integers a, b, … are not required to be remainders.) 

To prove this one, recall that if k, m, n are pairwise relatively prime, then each one is relatively 

prime to the product of any of the others (as in Exercise IV.B.4:2d.) Therefore mn has an inverse K 

mod k, kn has an inverse M mod m, km has an inverse N mod n. The required number is 

 x  =  aKmn + bkMn + ckmN. 

This number is congruent to a mod k because every term but the first is a multiple of k. Accordingly, 

 x    aKmn + 0 + 0    a1 mod k. 

Similarly we deduce x  b  mod m, x  c  mod n. 

Now suppose p is prime. If some integer is not divisible by p, then it must be relatively prime to p. 

We conclude that every integer that is not a multiple of p has an inverse mod p. That will turn out to be 

good to know, but it immediately leads us to a favorite.  

Theorem 2. (Fermat’s Little Theorem) If p is prime and a is not divisible by p, then 

 a
p – 1

    1 mod p. 

[It is worth a revisit just to see an elegant proof that I heard from my colleague, Jay Jorgenson.] 

To prove it, look at the p – 1 numbers 

 a, 2a, 3a, …, (p – 1)a. 

First, no two of them are congruent mod p. If two were, say 

 ia  ja  with i > j,  

then 

 ia – ja  =  (i – j)a 

would be divisible by p. That would mean p must divide either i – j or a. (Reason?) But p does not 

divide a, by assumption; and it cannot divide i – j either, because i – j is between 1 and p – 2. 

Second, none is congruent to 0; each is a product of two factors p does not divide. Therefore 

those p – 1 numbers span all the nonzero residues: One of them is congruent to 1, another is 

congruent to 2, …, a last one is congruent to p – 1. 

We conclude that their product is congruent to 

 1(2)(3)…(p – 1) = (p – 1)!. 

Of course, their product actually is 

 a(2a)3a…(p – 1)a = (p – 1)!a
p – 1

. 

Therefore we have 

 (p – 1)! a
p – 1

    (p – 1)!  mod p. 

Now take (p – 1)!. It is not divisible by p, because none of its factors is. By the statement preceding 

the theorem, (p – 1)! must have an inverse K mod p. Multiply the last congruence by K to write 

 K(p – 1)! a
p – 1

    K(p – 1)!. 

That amounts to a
p – 1

  1. 
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(iv) order 

By Fermat’s little theorem, 

 2
6
    1    3

6
 mod 7. 

Modulo 7, the powers of 3 are 

 3
1
 = 3,  3

2
  =  9    2, 3

3
    3  2  =  6, 3

4
    3  6    4, 

  3
5
    3  4    5, 3

6
    3  5    1; 

the first power with 3
m
  1 is m = 6. Not so with 2: 

 2
1
 = 2,  2

2
 = 4,  2

3
  =  8    1. 

Whenever there is a positive power m of a such that a
m
  1 mod n, there must exist a smallest such 

power. We call that smallest power the order of a mod n. From what we just wrote, the order of 2 

mod 7 is 3, and the order of 3 mod 7 is 6. 

Notice that since 3
6
  1 mod 7, it follows that 

 3
5
 is the inverse of 3

1
,  3

4
 = (3

2
)
-1

, …. 

See Exercise 3a. 

Fermat also tell us that 

 2
42

  1 mod 43. 

Is 42 the order of 2 mod 43? We could try 2
2
, 2

3
, 2

4
, …. Instead, let us recall an analogous situation, the 

powers of i = -1. 

Recall that those powers cycle through i, -1, -i, 1, i, …. Every fourth power equals 1, and i
k
 = 1 iff k 

is a multiple of 4. That is a fundamental truth about periodic behavior. Anywhere you have a process 

whose repetitions eventually bring you back to the ground state—in this case, repeated 

multiplication by i eventually gives  i
k
 = 1, so that the next multiple returns to i—then the smallest k 

satisfying the relation divides the others. (Here, we see that i has order 4, and 4 divides those k for 

which i
k
 = 1.) Moreover, the key to the proof is always the same: the division algorithm. 

Theorem 3. If a has an order mod n, then the order divides all the other k such that a
k
  1 mod n. 

Instead of writing a general proof, let us outline the proof using 2 mod 43. 

Let m be the order of 2. We also have 2
42

  1. By the division algorithm, 

 42 = qm + r,  0  r  m – 1. 

Then 

 1    2
42

  =  2
qm + r

  =  (2
m
)
q
 2

r
    (1)

q 
2

r
. 

That says r, a number smaller than m, satisfies 2
r
  1. Since m is the smallest positive power 

with 2
m
  1, we infer that r is not positive. Therefore r = 0, and m divides 42, illustrating the proof. 

In our case, 

 42  =  2  3  7 

has just eight divisors: 1, 2, 3, 6, 7, 14, 21, 42. Therefore we check 

 2
2
 = 4,  2

3
 = 8,  2

6
  =  64    21, 2

7
    2  21  =  42    -1, 

and there the checking stops. Since 2
7
  -1, 

 2
14

  =  (2
7
)
2
    (-1)

2
  =  1. 

The order of 2 mod 43 is 14. 

Now we reunite with another old friend. 
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Theorem 4. (Fermat’s primes) If p is a prime that divides 2
2

n

 + 1, then p  1 mod 2
n + 1

. 

For partial proof, let p divide 

 2
2

n

 + 1  =  2
2
n

 – (-1). 

That says 

 2
2

n

    -1 mod p,  so  2
2

n + 1

  =  (2
2
n

)
2
    1. 

Therefore the order of 2 mod p divides 2
n + 1

. Therefore the order of 2 is 2
n + 1

 (Exercise 4). We also 

know that 2
p – 1

  1. (At least, we know it if we know that p does not divide 2. What guarantees 

that?) By Theorem 3, 2
n + 1

 must divide p – 1. In other words, 

 p  1 mod 2
n + 1

.   (Compare Euler’s proof in section VII.C.1c.) 

b Exercises VIII.C.2

1. a) Find a solution of the congruence system 

 x  2 mod 5,  x  3 mod 8,  x  4 mod 9. 
b) Characterize all the solutions. 

2. a) Evaluate the residues of 2100 mod 7 and mod 43. 
b) We now know that 232 + 1 is not divisible by any prime below 641. Find its remainders 
upon division by 3, 5, 7, 11. 

3. a) Does there exist k such that 18k    1  mod 81? 
b) What is the order of 3 mod 43? 

4. In the proof of Theorem 4, why is 2n+1, and not a smaller number, the order of 2? 

5. a) The two-digit decimal numeral 25 has the property that 252 = 625 ends in the same 
numeral. Are there any others? 
b) Is there a three-digit numeral whose square ends in the same numeral? 
[I learned (a) from Lee Child’s fictional character “Jack Reacher.”] 

6. Show that if p is a prime exceeding 5, then (111…1) (decimal numeral with p – 1 digits, 
all 1) is divisible by p. [That one is from Richard Kasna.] 

c) the prime-number theorem 

The theorem is a statement about the density—actually, about the sparseness—of prime numbers 

among the natural numbers. Late in his life, Gauss said that patterns of primes had led him to a 

conjecture about (n), the number of primes from 1 to n, some fifty years before (around 1795). About 

that same time, Adrien-Marie Legendre had made an equivalent conjecture. 

Proposition. (The Prime Number Theorem) For large n, 

   (n)  n/loge n. 

It is important to understand the sense of the approximation. It is that (n) is asymptotic to the other 

quantity: If (as Wallis would have said it) n is infinite, then 

 (n)/[n/loge n]  =  1. 

It is not true that the two quantities are nearly equal. If one were 10
100

 + 10
50

 and the other 10
100

, then 

their ratio would be 

 1 + 10
-50

  =  1.00…01 (49 zeroes), 

but their difference would be inconceivably large. (Compare Exercise 1.) 
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c Exercises VIII.C.2

1. a) Use a count of primes (and a scientific calculator) to find the ratio and difference 

 (100)/[100/loge 100] and (100) – [100/loge 100]. 
b) Do the same for 1,000. 

2. The distribution of primes has some strange properties. Bertrand’s postulate says that you 

can always find a prime between n and 2n (for n  2). On the other hand, you can find 
indefinitely long stretches of natural numbers devoid of primes. Show that the one million 
consecutive integers 
 (106 + 1)! + 2, (106 + 1)! + 3, …, (106 + 1)! + 106 + 1 
are all composite. 

 Algebra Section VIII.D.
The result that culminated eighteenth-century algebra is the Fundamental Theorem.  

Proposition. (The Fundamental Theorem of Algebra) Every nonconstant polynomial with complex 

coefficients has a complex root. 

To take advantage of it, we first need some results from long before. 

1. Polynomials 

In previous examples, our polynomials always had integer coefficients. Now we will need to allow 

division. That need alone would force us to expand the set of candidates to at least the rationals. 

However, our results apply even to polynomials with complex roots. For that reason, we now allow 

polynomials to have complex coefficients, and their single variable to take complex values. 

Remember some definitions and properties. In a polynomial written as a sum, the highest power of 

the variable actually there (having nonzero coefficient) is the degree. The term with that power is the 

leading term, and its coefficient is the leading coefficient. Neither definition applies to the zero 

polynomial, the one with fixed value 0; it has no leading term, no degree (as opposed to one with fixed 

nonzero value, which has degree 0). We may say the zero polynomial, because it is unique. 

Our polynomials are functions. Accordingly, 

 f(z) = g(z) 

means that their values match for all complex z. In that case, f and g have to be the same polynomial: 

same degree, and corresponding terms having the same coefficients. 

Thus, it is impossible to have 

 123z
4
 + 456z

7
 + 789z

10
 = 212223z

24
 + 121314z

15
 + 31z

10
 

for all z. If that were the case, then we would divide by the biggest power z
24

 to say 

 123/z
20

 + 456/z
17

 + 789/z
14

 = 212223 + 121314/z
9
 + 31/z

14
 

for all z. That statement cannot be true: If z is Wallis’s , then the left side is 0 and the right 212223. 

By similar reasoning, H(z) = 0 forbids H to have any nonzero coefficients. 

The sum of two polynomials has the greater of their degrees, unless the leading terms cancel. From 

 (uz
m
 + …)(vz

n
 + …)  =  uv z

m+n
 + …, 

we see that the degree of a product of polynomials is the sum of the degrees. 

Now we are ready to present three results. 

http://www.miniwebtool.com/list-of-prime-numbers/?to=1000
http://en.wikipedia.org/wiki/Bertrand's_postulate
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 2z
2
  – 1/2 z – 9/4 

2z + 3 4z
3
   +  5z

2
   –  6z 

 4z
3
   +  6z

2
 

  -z
2
   –  6z 

  -z
2
   –  3/2 z 

   -9/2 z 

   -9/2 z – 27/4 

     27/4 

Theorem 1. (The Division Algorithm) Suppose f(z) and g(z) are polynomials, g not the zero 

polynomial. Then there exist a quotient (polynomial) q(z) and remainder r(z) such that 

 f(z)  =  q(z)g(z) + r(z);  

and q and r are unique if we insist that r be either 0 or of lower degree than g.  

The analogy to the statement for integers is obvious. It is interesting that “r [is] either 0 or of lower 

degree than g” takes the place of “0  remainder < divisor.” We extend the analogy to divisibility: 

If (and only if) r(z) = 0, so that 

 f(z)  =  q(z)g(z), 

then we say that g(z) divides f(z) (or g is a factor of f, or f is a multiple of g). 

Take for example 

 f(z) = 4z
3
 + 5z

2
 – 6z and g(z) = 2z + 3. 

In the text box at right, we see the long division. The 

green entries show that 

 f(z)/g(z)  =  2z
2
 + (-z

2
 – 6z)/(2z + 3). 

The effect of the process, so far, is to reduce the degree 

of the dividend (the polynomial into which we are 

dividing). That is the basis for a general proof: It would 

be proof by induction on the degree of the dividend. 

We continue to the orange entries, which show 

 f(z)/g(z) = 2z
2
 – 1/2 z + (-9/2 z)/(2z + 3). 

As long as the degree of the dividend on the right exceeds or equals the degree of g(z), the division 

can continue. Finally, the red entries indicate 

 f(z)/g(z) = 2z
2
 – 1/2 z – 9/4 + (27/4)/(2z + 3). 

The long division has produced 

 f(z)  =  (2z
2
 – 1/2 z – 9/4) g(z) + 27/4.  (Check with Exercise 1.) 

As for uniqueness, suppose 

 f(z)  =  q(z)g(z) + r(z)  =  Q(z)g(z) + R(z), 

with both r(z) and R(z) either zero or of lower degree than g(z). Rewrite 

 [q(z) – Q(z)] g(z)  =  R(z) – r(z). 

If q(z) and Q(z) were not identical, then the product on the left would have at least the degree of g(z), 

whereas the polynomial on the right has either smaller degree or no degree. Therefore q(z) and Q(z) 

have to be identical, the left side is the zero polynomial, and R(z) and r(z) have to be identical. 

Theorem 2. (The Remainder Theorem) Suppose f(z) is a polynomial and u is a complex number. Then 

the remainder of f(z) upon division by the linear polynomial z – u is f(u). 

From the division algorithm, we have 

 f(z)  =  q(z)(z – u) + r(z), 

where r(z) is zero or has smaller degree than (z – u). That divisor has degree 1. Therefore the 

remainder is zero or has degree 0; it is a (possibly zero) number v. Thus, 

 f(z)  =  q(z)(z – u) + v. 

That equality has to hold for all z. In particular, it is true for z = u. Substitute z = u to see that 

 f(u)  =  q(u)(u – u) + v  =  v. 

We have shown that the remainder is the number f(u). 

Theorem 3. (The Factor Theorem) The complex number u is a root of the polynomial f(z) iff  (z – u) is 

a factor of f(z). 

The factor theorem was doubtless known before Cardano. The proof is almost immediate: 
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u is a root of f(z) iff f(u) = 0 (by definition) 

 iff the remainder of f(z) on division by z – u is 0 (remainder theorem) 

 iff f(z) has z – u as a factor. 

The theorem guarantees that a polynomial of degree n can have no more than n distinct roots. 

Imagine that u is a root of 

 f(z)  =  4z
3
 + 5z

2
 – 6z + 7. 

By the factor theorem, 

 f(z)  =  q(z)(z – u), 

in which q(z) must have degree 2. Suppose now v  u is a second root of f. Then 

 0  =  f(v)  =  q(v)(v – u). 

Since (v – u) is not zero, that forces q(v) = 0. The factor theorem applies equally to q(z): 

 q(z)  =  s(z)(z – v), 

where now s(z) has degree 1. Once we get to first degree, we know exactly how s(z) has to look: 

 s(z)  =  az + W  =  a(z – -W/a). 

From 

 4z
3
 + 5z

2
 – 6z + 7  =  f(z)  =  a(z – -W/a)(z – v)(z – u), 

we conclude that a = 4 and f(z) can only be zero for z = u, v, or w = -W/a. 

 Exercises VIII.D.1

1. Multiply out to verify that 
 4z3 + 5z2 – 6z  =  (2z2 – 1/2 z – 9/4)(2z + 3) + 27/4. 

2. What is the remainder of: 
a) 4z3 + 5z2 – 6z upon division by z + 1? 
b) 4z3 + 5z2 – 6z upon division by 2z – 2? (Reminder: The remainder theorem deals with 
a specific division.) 
c) z43 – 1 upon division by z2 – 1?  (same reminder) 

3. a) Guess one solution of the equation 
 z3 – z2 – z – 2  =  0. 
b) Use the solution to factor the cubic. 
c) Find all the complex solutions. 

2. Complex Numbers 

Next we need added understanding of complex numbers. Review as needed the short discussion of 

their arithmetic in section VI.B.4b. 

a) coordinate plane 

By 1797, there had emerged the picture of the complex numbers in the 

Cartesian plane. Our usual identification for a point P in the plane, in the figure 

at right, is an ordered pair (a, b) of real numbers (blue). Instead, let us identify 

the point with the single complex number z = a + bi. In that expression, called 

the rectangular form of the complex number z, we may identify the x-value a 

as the real part Re z and the y-value b as the imaginary part Im z. The conjugate 

𝑧̅ = a – bi is the mirror-image of z in the x-axis, illustrated in the figure. More 

important, we may picture complex addition: 

 z + w  =  (a + bi) + (c + di)  =  (a + c) + (b + d)i 

is specified by the parallelogram rule, also illustrated. 

   

P(a, b) 
z = a + bi 

w = c + di 

z = a – bi 

z + w 
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b) Euler’s equation and polar form 

Polar coordinates specify the point P(a, b) by the ordered pair (r, ). There r 

is distance from the origin and  is azimuth, angle measured counterclockwise 

from the x-axis to the segment joining P to the origin (provided P  O). Both r 

and  are illustrated (blue) at left. The coordinate systems are related by 

 a = r cos , b = r sin . 

Having agreed that P is z = a + bi, we now have 

 z  =  r cos  + ir sin   =  r(cos  + i sin ). 

By Euler’s equation, the quantity in parenthesis is e
i

. We then have 

 z = re
i

. 

That representation gives the polar form of the complex number z. 

We will refer to r = (a
2
 + b

2
) as the modulus of z, denoted by |𝑧|. We call  the argument of z, 

denoted by arg z. The argument is, like the polar angle, not unique; z determines it only to within a 

multiple of 2. Notice that e
i

 has geometric meaning. It is, in the last figure, the place where the ray 

OP crosses the unit circle. Algebraically, since it has polar coordinates (1, ), it equals 

 1e
i

  =  z/r  =  𝑧/|𝑧|. 
No matter what real number c is, e

ic
 is on the unit circle: 

 |𝑒𝑖𝑐|  =  | cos c + i sin c |  =  (cos
2
 c + sin

2
 c)  =  1. 

Finally, 𝑧̅ has polar coordinates (r, -). Consequently 𝑧̅ = re
-i

, and 

 𝑧𝑧̅  =  (re
i

)(re
-i

)  =  r
2
e

0
  =  |𝑧|2

. 

c) powers and roots 

The product 𝑧𝑧̅  above is just one example of how polar form facilitates multiplication of complex 

numbers. Clearly 

 (re
i

)(Re
ic
)  =  (rR) e

i( + c)
. 

In words, the product’s modulus is the product of the moduli, and the product’s argument is the sum of 

the arguments. In particular, powers (including rational powers) are given by 

 (re
i

)
k
  =  r

k 
e

ik
. 

Picture those: The powers of a non-real complex number  wind around the origin, spiraling outward 

or inward (depending on r) by steps spanning  radians. For example, 

 w  =  1 + i3  =  2e
i/3

    (Verify the second equality!) 

has 

 w
2
  =  4e

i2/3
,  w

3
  =  8e

i
  =  -8, …, w

6
  =  64e

i2
  =  64, …. 

The powers of w lie along the rays of inclinations 60, 120, …, spiraling exponentially away from 

the origin. If we take instead 

 u  =  1/4 + i3/4  =  (1/2)e
i/3

, 

then the powers lie on the same rays but spiral inward toward 0. 

Notice that the powers of 

 v  =  𝑤/|𝑤|  =  e
i/3

 

are 

 v
2
  =  e

i2/3
,  v

3
  =  e

i
 = -1,  …, v

6
  =  e

i2
  =  1, …. 

Those are all on the unit circle, at the vertices of a regular hexagon. Check that 

 v
6
 = (v

2
)
6
 = (v

3
)
6
 = … = (v

6
)
6
 = 1. 

Each of v, v
2
, …, v

6
 is a sixth root of 1. 

   

rei 

 

r 
ei 

1 

P 

O 
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The powers of w, coming from multiplication, are uniquely determined by w. The same is not true of 

roots. The roots of a complex number, as we just saw for √1
6

, have multiple values. 

In Section VI.B.4c, we left Bombelli needing to calculate 

 √−23 + 10𝑖2
3

 + √−23 − 10𝑖2
3

, 

which solves the cubic equation 

 x
3
 – 27x + 46  =  0. 

Check that 

 z = -23 + 10i2 

is in the second quadrant and has |𝑧| = 27. Therefore 

 z = 27e
i

, where  = cos
-1

 (-23/27). 

We can no more determine that angle than Bombelli could, but we can approximate: 

   2.59 radians. 

Then one solution of the equation, corresponding to one cube root of z, is 

 x  =  √𝑧
3

 + √𝑧̅
3

  =  3e
i/3

 + 3e
-i/3

 

    =  6 cos /3    (Why?) 

      3.90. 

We can also specify z by 

 z = 27e
i(  2)

. 

Those polar forms yield two more solutions: 

 x  =  √𝑧
3

 + √𝑧̅
3

   =  3e
i( + 2)/3

 + 3e
-i( + 2)/3

 

    =  6 cos (/3 + 2/3) 

      -5.90; 

 x  =  √𝑧
3

 + √𝑧̅
3

  =  3e
i( – 2)/3

 + 3e
-i( – 2)/3

 

    =  6 cos (/3 – 2/3) 

      2.00. 

Check these solutions against sections VI.B.4c-d. 

 Exercises VIII.D.2

1. We found six distinct sixth roots of 1 and three distinct cube roots of -23 + 10i2. In each 
case, are there any others? 

2. Evaluate exactly, in rectangular form: 
a) all the cube roots of 1; 
b) all the fourth roots of -16; 
c) all the square roots of 7 + 24i. (Hint: Use the half-angle formulas. Check by squaring.) 

3. Gauss 

The first proof of the Fundamental Theorem came, remarkably, in Gauss’s 1799 doctoral 

dissertation. Boyer says that D’Alembert tried to prove the theorem fifty years before, but without 

success. Over the years, Gauss published a total of four proofs, based largely on the calculus of complex 

functions. Our statement of it—ten words, no symbols—is worthy of Gauss. He had a habit of holding 

his results secret until he could present them in the elegant and polished form he demanded.  

a) complete factorization 

We wrote that a polynomial with complex coefficients and positive degree must have “a” root. In 

fact, the Fundamental Theorem implies more. 

http://www.archive.org/stream/AHistoryOfMathematics/Boyer-AHistoryOfMathematics#page/n506/mode/1up
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Theorem 1. A complex polynomial of degree n has exactly n roots, counting multiplicity. 

Suppose f(z) is a complex polynomial. The Theorem says that f must have a complex root r1. The 

factor theorem then says that f must have the form 

 f(z) = q1(z)(z – r1). 

The same reasoning applies to q1, so that 

 f(z)  =  q1(z)(z – r1)  =  q2(z)(z – r2)(z – r1). 

The process continues, irrespective of whether r1, r2, … are different, but it does not continue 

forever. If f has degree n, then at 

 f(z)  =  qn(z)(z – r1)(z – r2)…(z – rn), 

we know qn(z) has to have degree 0. Its constant value must be the leading coefficient of f. 

From the factorization, we have 

 f(r1)  =  f(r2)  =  …  =  f(rn)  =  0. 

Moreover, if z is not one of r1, …, rn, then f(z) is the product of nonzero factors. We conclude that 

every complex polynomial of degree n has precisely n roots, taking multiplicity into account. 

We see, further, that every polynomial of positive degree factors completely (aside from the leading 

coefficient) into its “atoms,” the first-degree factors implied by the complex roots. 

a Exercises VIII.D.3

1. Suppose the equation 
 Ax3 + Bx2 + Cx + D  =  0 
has three (not necessarily distinct) complex solutions r, s, t. Show that the sums of their 
products, one or two or three at a time, are related to the coefficients by: 
a) r + s + t  =  -B/A. 
b) rs + st + rt  =  C/A. 
c) rst  =  -D/A. 

2. For the equation and solutions in Exercise (1), show that: 
a) r2 + s2 + t2  =  (B2 – 2AC)/A2 
b) 1/r + 1/s + 1/t  =  -C/D. 
Observe that in all five of the relations in Exercises (1) and (2), the solutions play symmetric 
roles. Compare that with some of Viète’s relations in section VI.C.3.) 

3. Suppose the equation 
 Ax4 + Bx3 + Cx2 + Dx + E  =  0 
has four complex solutions u, v, w, z. Show that: 
a) uvw + uvz + uwz + vwz  =  -D/A. 
b) uvwz  =  E/A. 
c) 1/u + 1/v + 1/w + 1/z  =  -D/E. 
Observe again the symmetry. Note further that in (c) here and in 2(b), the sum of the 
reciprocals of the solutions is the negative of the x-coefficient divided by the constant, 
regardless of the leading coefficient; and that the same proof would work with a polynomial 
of any degree. 

b) real polynomials 

Let us now concentrate on polynomials whose complex coefficients are actually real numbers. 

Theorem 1. The non-real complex roots of a polynomial with real coefficients come in conjugate pairs. 
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Let 

 f(z)  =  an z
n
 + an – 1 z

n – 1
 + … + a1 z + a0 

have real coefficients. Recall the statement, from the arithmetic of complex numbers, that the 

conjugate of a sum or product is the sum or product, respectively, of the conjugates. Applying the 

statement repeatedly, we have 

 𝑓(𝑧)̅̅ ̅̅ ̅̅  = 𝑎𝑛̅̅ ̅𝑧̅ 𝑛 + 𝑎𝑛−1̅̅ ̅̅ ̅̅ 𝑧̅ 𝑛−1 + … + 𝑎1̅̅ ̅𝑧̅ + 𝑎0̅̅ ̅. 

Because the coefficients are real, we may rewrite 

 𝑓(𝑧)̅̅ ̅̅ ̅̅  = an 𝑧̅ 𝑛 + an – 1 𝑧̅ 𝑛−1 + … + a1 𝑧̅ + a0 

  = f (𝑧̅). 
If now z is a root of f, then 

 f(z)  =  0  =  0̅  =  𝑓(𝑧)̅̅ ̅̅ ̅̅   =  f (𝑧̅). 
In words, if z is a root of a real polynomial, then so is the conjugate 𝑧̅. That proves Theorem 1. 

(i) real quadratics 

For a quadratic polynomial ax
2
 + bx + c with a, b, c real, the Fundamental Theorem implies two 

complex roots. By Theorem 1, they have to be both real or both non-real. 

Our experience tells us that if the discriminant 

  = b
2
 – 4ac 

is positive, then the quadratic formula 

 x = (-b  )/2a 

names the two different real roots; if  = 0, then it names the real double root; and if  < 0, then 

 z  =  -b/2a + i-/(2a)  and z  =  -b/2a – i-/(2a) 

form the conjugate pair of non-real roots. 

(ii) real cubics 

For any polynomial of odd degree, the pairing of non-real roots means that there must be an odd 

number of real roots. In particular, every real polynomial of odd degree must have at least one real root. 

Here, let us focus on cubics. We will use our knowledge of roots of complex numbers (section 

VIII.D.2c) to characterize the sets of solutions of cubic equations. To do so, we have to make an 

adjustment, based on the multiple values that roots of numbers can take. 

To see what is needed, consider our standard cubic equation 

 x
3
 + bx + c  =  0. 

The discriminant is 

  = c
2
 + 4b

3
/27. 

Write 

 A+ = √– 𝑐/2 + √∆/4
3

  and  A– = √– 𝑐/2 −  √∆/4
3

. 

The first result of Cardano’s substitution (section VI.B.2) amounted to  

 x = A+ + b/3A+. 

We turned that form into 

 x = A+ + A–. 

The equivalence of the two forms depended on the relation 

 A+ A–  =  √𝑐2/4 −  ∆/4
3

  =  -b/3. 
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The adjustment we have to make is this: For that relation to hold, we must choose for A– the complex 

value whose argument is opposite that of A+. If the arguments do not cancel—equivalently, if they do 

not add up to a multiple of 2—then their product (A+ A–) cannot be the real number -b/3. As long as we 

adhere to this rule, either form of the Cardano result produces all the solutions of the equation. 

The easiest case is when  = 0, as in 

 x
3
 – 27x – 54  =  0. 

There A+ = √27
3

. If we use the real value A+ = 3, then we need A– = 3. Our choice yields the solution 

 x = 3 + 3. 

Alternatively, we may use A+ = 3e
i2/3

. That forces A– = 3e
-i2/3

. Those are values of equal modulus 

and arguments 120. As a result, their imaginary parts cancel and their real parts sum to -3/2 + -3/2. 

Using the third cube root, A+ = 3e
-i2/3

, clearly gives the same solution. In that way,  = 0 always 

leads to a single real solution on one side of 0 and a double real solution half as far on the other side. 

The second case has  > 0, as in 

 x
3
 – 27x – 90  =  0. 

In that one, 

 A+ = √45 + 36
3

  and  A– = √45 − 36
3

. 

We may add the two real cube roots √81
3

 and √9
3

 to get one real solution. Instead, we may take 

 A+ = √81
3

e
i2/3

,  forcing  A– = √9
3

 e
-i2/3

.  

Those have opposite arguments but different moduli. That means their imaginary parts do not 

cancel, and the sum (A+ + A–) is a non-real solution. The last choice 

 A+ = √81
3

e
-i2/3 

  demands  A– = √9
3

 e
i2/3

, 

producing the conjugate solution. That always happens when  > 0: There is one real solution, two 

non-real (necessarily conjugate) solutions. 

For the final case  < 0, we have the example at the end of section VII.D.2c, 

 x
3
 – 27x + 46  =  0. 

In that example, we made A– the conjugate of whichever value we used for 

 A+ = √−23 + 10𝑖2
3

. 

Necessarily, each solution A+ + A– was real. But the cube roots are offset from the 60 and 120 

rays. The offset gives the arguments of the three A+ candidates different cosines. The resulting 

sums A+ + A– have different real parts. That is why  < 0 always results in three unequal real roots. 

c) complete factorization of real polynomials 

Complete complex factorization leads to a special form for real polynomials. 

Theorem 2. Every polynomial with real coefficients is the product of real linear factors and irreducible 

real quadratic factors. 

(According to its title, Gauss’s doctoral thesis is aimed at proving this result.)  

Real numbers are complex numbers. Therefore a polynomial f(x) with real coefficients, degree n, 

and leading coefficient a factors into the product 

 f(x) = a(x – z1)…(x – zn) 

of linear factors corresponding to its complex roots. 

The non-real roots occur in conjugate pairs. Say z1 is not real, and z2 = 𝑧1̅. Then 

 (x – z1)(x – z2)  = x
2
 – (z1 + z2) x + z1z2 

    = x
2
 – (𝑧1 + 𝑧1̅) x + 𝑧1𝑧1̅ 

    = x
2
 – (2 Re z1) x + |z1|

2
. 
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That product is a quadratic polynomial with real coefficients. It cannot be broken into the product of 

real linear factors, because those would imply real roots, and we already know that its only roots are 

z1 and 𝑧1̅. Consequently it is irreducible: It does not break up into real factors of lower degree. 

Multiplying out all other pairs of factors of f having conjugate non-real roots, we see that f 

decomposes into the product of three types of factors: 

  its leading coefficient; 

 some number m (possibly 0,  n, with the parity of n) of linear factors x – r corresponding 

  to its real roots; 

 and (n – m)/2 irreducible quadratic factors with real coefficients. 

Take for example 

 g(x) = x
5
 – x

4
 + 4x

3
 – 4x

2
 + 16x – 16. 

 It is fairly clear that 

 g(x) = x
4
(x – 1) + 4x

2
(x – 1) + 16(x – 1) = (x – 1)(x

4
 + 4x

2
 + 16). 

(Even without that observation, we can see that x = 1 is a root. That makes (x – 1) a factor, whose 

partner factor we may determine by division.) 

The partner has no obvious factors, but it is amenable to the quadratic formula: 

 z
2
  =  (-4  [16 – 64])/2  =  -2  2i3. 

The four square roots of the two numbers on the right give us the other roots of g. Sketch -2 + 2i3 

in the plane, to see that 

 -2 + 2i3  =  4e
i2/3

. 

Therefore 

 z
2
  =  -2 + 2i3 yields  z  =  2e

i/3
  =  (1 + i3). 

(Verify that statement by squaring the number on the right.) In a similar way, 

 z
2
  =  -2 – 2i3  yields  z  =  2e

-i/3
  =  (1 – i3). 

In view of those roots, we can factor g as 

 g(x) = (x – 1)(x – [1 + i3])(x + [1 + i3])(x – [1 – i3])(x + [1 – i3]) 

The product of factors #2 and #4 is 

 x
2
 – [1 + i3]x – [1 – i3]x + [1 + i3][1 – i3] = x

2
 – 2x + 4. 

The product of factors #3 and #5 is 

 x
2
 + [1 + i3]x + [1 – i3]x + [1 + i3][1 – i3] = x

2
 + 2x + 4. 

That means 

 g(x) = (x – 1)(x
2
 – 2x + 4)(x

2
 + 2x + 4), 

with the two quadratic factors irreducible. 

 Exercises VIII.D.3

1. Prove that every nonzero complex number has exactly n distinct n’th roots. 

2. a) Graph the five fifth roots of 32. 
b) Use (a) to write the five linear factors of x5 – 32. 
c) Use (b) to factor x5 – 32 into linear and quadratic factors having real coefficients (which 
you may express in terms of trigonometric functions). 

3. a) Graph the six complex solutions of 
 x6 + 64  =  0. 
b) Use (a) to write the polynomial as the product of quadratic factors with real coefficients. 
c) How come there are no linear real factors? 
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 The Astronomers Section VIII.E.
Before 1600, no earthbound telescope had turned to the sky. By 1801, there existed national and 

university observatories—plus wealthy individuals—possessed of huge telescopes that had extended the 

visible universe, along with man’s understanding of it. 

One of the individuals was the English musician and composer William Herschel (1738-1822). (He 

was originally Friedrich Wilhelm Herschel. He was born in Germany, like George I. In 1738, George 

was King of England, and like Herschel, spoke no English.) His characteristics included curiosity. 

Repeating Newton’s experiment in using a prism to separate colors in sunlight, he discovered that the 

place outside where red fell became heated. He concluded that some sort of invisible energy, relating to 

red as red relates to orange, was part of the original sunlight. He also had multiple talents, one of them 

being skill in shaping mirrors for Newtonian reflecting telescopes. (See section VII.B.4d.) He used 

telescopes (originally bigger than a human, rather than bigger than a building) to hunt for and map 

double stars. Over decades of observing, he realized that some pairs of stars are “binary systems.” That 

is, they do not simply lie in roughly the same direction as seen from Earth; they are actually orbiting 

each other, bound necessarily by gravity. He confirmed not only that the stars have proper motion; for 

pairs and even for systems of more than two, he confirmed that their dance answers to the same law as 

Kepler’s planets and Galileo’s cannonballs. 

Hunting thus for double stars, Herschel discovered an object too dim to see without optical aid 

(except maybe for extraordinary eyes) but clearly moving against the background of stars. It moved 

slowly, as though orbiting out beyond Saturn. A friend used Herschel’s observations to confirm that 

Herschel had discovered Uranus. It was the first planet added to the seven wanderers that had entranced 

humans for all our time on this one. 

Then on January 1, 1801—the first night of the nineteenth century—Giuseppe Piazzi discovered 

another wandering object. He gave it a name that became “Ceres.” By the time Ceres was overrun by the 

Sun—by the time it became unobservable in evening twilight—Piazzi had managed to observe it for 

only some weeks. As a result, he could not recover it when the time came for it to become visible west 

of the Sun, in the dawn. He appealed to the scientific community to invent a method to calculate orbital 

positions from meager data. The method came, and it yielded a position prediction that recaptured Ceres 

on the last day of the year. The predicted orbit suggested that Ceres is a small body—the modern 

estimate of its size is 1/8 Earth—traveling the wide space between the orbits of Mars and Jupiter. It was 

the first asteroid. 

The inventor of the method (“of least squares”) was Gauss. In that astronomical venture, Gauss was 

not indulging a hobby. He was a superb astronomer, as his predecessors Euler and Lagrange had been. 

Officially, it was what he did for a living. It is ironic that the man who earned the nickname “Prince of 

Mathematicians,” whom everybody must have recognized as the third Archimedes, or the second Euler, 

never held a title like “Professor of Mathematics.” The post he entered in 1807, and held for the rest of 

his life, was in Göttingen’s observatory: He was Chief Astronomer. 
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 The Axiomatization Chapter IX.
The nineteenth century brought turmoil to much of the globe. In the early part, France went from an 

emperor to military defeat and a king imposed by others. Spain lost its South American empire to 

revolutionaries, who could not keep the whole from breaking into distinct countries (unlike Brazil). In 

the middle years, the US arrived at the Pacific, then nearly came apart. Japan was unwillingly opened to 

the world. Russia rose to the status of world power. Germany came together as a county right after the 

defeat of France, fresh from the Second Empire that followed the Second Republic after the Second 

Monarchy, in a war that effectively ended in 1945. A year later, Italy became a nation-state. Britannia 

ruled the waves, but began to grant self-rule to her colonies. 

Mathematics underwent something of a revolution as well. The applied side certainly grew, 

culminating in the complete description of electricity and magnetism. Our interest, however, is on how 

algebra and the calculus ended up as deductive systems, and on how geometry became a very different 

system from its Greek origin. 

[Much of the material in this chapter is first covered in courses called “advanced calculus” or 

“introduction to analysis,” or where those are prerequisite. It is not that calculus is needed. What is 

necessary is enough experience to understand and craft proofs, what the Preface called “a feel for the 

nature of proof.” Nowadays colleges are increasingly putting in a course specifically designed to ease 

the transition from algorithmic calculus to proof-based courses; see for example MATH V2000 at 

Columbia University.] 

 Algebra Section IX.A.
The Babylonians knew specific verbal prescriptions corresponding to the quadratic formula. From 

the time al-Khwarizmi gave such equivalents more general form, it was still 600 years before the Italians 

gave what amounts to a “cubic formula” and “quartic formula.” By such time scales, it is reasonable that 

200 years after Bombelli there was still no “quintic formula.” On the other hand, given the pace of 

mathematical advance from mid-1500’s to mid-1700’s, you would have expected somebody to break the 

logjam. This section is about how answering the quintic question changed the nature of algebra. 

1. The Road to Abstraction 

a) Lagrange and solution formulas 

Recall that Lagrange’s great contributions to the calculus of variations came from generalization. He 

put existing theory into a general context, much in the manner of Euler and practically simultaneously 

(section VIII.B.4). Like Euler, he approached problems by making them manifestations of bigger 

problems, then producing correspondingly big solutions. In that spirit, he chose not to jump into the 

logjam. Instead, he studied what the successful solution formulas had in common. 

In his book of 1770—Berlin days—titled Réflexions sur la Résolution Algébrique des Équations, he 

wrote a theorem about such formulas. Roughly speaking, he said that where there is one, there exists a 

resolvent. The resolvent is a simpler equation, with solutions that lead to those of the original and are in 

turn given in a special way by permutations to the solutions of the original. 

This was a genuine jump in abstraction. It made no attempt to solve the equation; rather, he analyzed 

the form of its unknown solutions. In section VI.C.2, we remarked that Viète’s study of relations among 

the roots similarly dispensed with finding the solutions. Given the involvement of permutations, it 

appears that Lagrange’s study took off from Viète’s relations. Remember that those are symmetric in the 

solutions; see some in section VI.C.3 and Exercises VIII.D.3a:1-3. (Accept that those exercises use the 

http://bulletin.columbia.edu/columbia-college/departments-instruction/search/?department=MATH&pl=0&ph=10&college=CC
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Fundamental Theorem, which was unproven in 1770.) The expressions there have one value, unchanged 

by permutation of the solutions. 

His analysis to get to that theorem is out of our league. So are most of the simplifications he then 

applied. It is elementary, though, to illustrate the situation in our familiar cases. For that purpose, use our 

elementary notion of permutation: rearrangement or reordering. (We will later refine and elaborate 

considerably on the notion.) 

(i) quadratic equations 

Recall our usual approach to the quadratic formula. 

We wrote the general quadratic equation in the form 

 x
2
 + b/a x + c/a  =  0,  

then completed the square to write 

 (x + b/2a)
2
  =  (b

2
 – 4ac)/4a

2
. 

From there, we got our solutions 

 x1 = (-b + [b
2
 – 4ac])/2a,  x2 = (-b – [b

2
 – 4ac])/2a. 

(If the discriminant is negative, it does not matter which complex value [b
2
 – 4ac] represents.) 

Think of it differently. We could have chosen the substitution t = x + b/2a for the purpose of 

eliminating the degree-(2 – 1)-term. 

For that purpose, the substitution works. The quadratic becomes 

 0  =  (t – b/2a)
2
 + b/a (t – b/2a) + c/a  =  t

2
 – (b

2
 – 4ac)/4a

2
.  (Check the algebra.) 

The quadratic has yielded to the related equation 

 t
 2

  =  (b
2
 – 4ac)/4a

2
, 

which is simpler, even though it has the same degree. 

For the related equation, the two solutions 

 t1 = (b
2
 – 4ac)/2a,  t2 = -(b

2
 – 4ac)/2a 

lead to the two solutions of the original, 

 x1 = -b/2a + t1,   x2 = -b/2a + t2. 

They are in turn given by the original solutions, as 

 t1 = (x1 – x2)/2,    t2 = (x2 – x1)/2. 

Now write instead T = t
 2

 and consider the resolvent equation 

 T = (b
2
 – 4ac)/4a

2
. 

The resolvent has the advantage of lower degree than the quadratic. Its single solution T1 yields the 

two solutions of the quadratic by 

 x1 = -b/2a + T1,  x2 = -b/2a – T1. 

In turn, that single solution comes out of the quadratic’s solutions as 

  T1 = (x1 – x2)
2
/2

2
.       (Verify.) 

Notice that the last expression has a single value under the 2! permutations of x1 and x2. 

(ii) cubic equations 

For the standard cubic, the Italians made the substitution first. Let us use a familiar example with 

one real solution, 

 x
3
 – 27x – 90  =  0. 
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Substituting x = u – -27/3u, we led eventually to 

 x  =  √45 + 36
3

 + √45 − 36
3

. 

From the discussion in section VIII.D.3b(ii), the three solutions of the cubic are 

 x1 = √81
3

 + √9
3

,  x2 = √81
3

e
i2/3

 + √9
3

e
-i2/3

,  x3 = √81
3

e
-i2/3

 + √9
3

e
i2/3

. 

The solution process went through the related equation 

 u
6
 – 90u

3
 + 27

2
  =  0. 

Back in 1545, we stated the obvious, that a sixth-degree equation seems hardly like progress in solving a 

cubic. But of course, back there we put v = u
3
, to improve to the lower-degree resolvent 

 v
2
 – 90v + 27

2
  =  0. 

The solutions of the resolvent give the solutions of the cubic, and vice-versa. 

The resolvent has the solutions 

 v1 = 81,   v2 = 9. 

Those two give the three solutions of the cubic, namely the three complex values of either 

 √𝑣1
3  + 9/√𝑣1

3    or   √𝑣2
3  + 9/√𝑣2

3  . 

(Do Exercise 1 to match the sets of values.) 

To get the resolvent solutions from the cubic solutions, first look at the solutions of the sixth-degree 

equation. You can verify by substitution that they are 

 u1 = √81
3

,   u2 = √81
3

e
i2/3

,    u3 = √81
3

e
-i2/3

, 

 u4 = √9
3

,   u5 = √9
3

e
i2/3

,    u6 = √9
3

e
-i2/3

. 

Check next that 

 x1e
i2/3

 + x2e
i4/3

 + x3e
i6/3

  =  3u5, 

 x3e
i2/3

 + x2e
i4/3

 + x1e
i6/3

  =  3u1, 

and so on. (You will need the fact that the n n’th roots of 1 always add up to 0; do Exercise 2.) By 

“and so on,” we mean that each of the six u-solutions is given by 

 3uk  =  Xe
i2/3

 + Ye
i4/3

 + Ze
i6/3

, 

in which X, Y, Z is one of the 3! permutations of x1, x2, x3. Finally 

 v1 = 81 = u1
3
  =  (x3e

i2/3
 + x2e

i4/3
 + x1e

i6/3
)
3
/3

3
 

  = u2
3
  =  (x1e

i2/3
 + x3e

i4/3
 + x2e

i6/3
)
3
/3

3
 

  = u3
3
  =  (x2e

i2/3
 + x1e

i4/3
 + x3e

i6/3
)
3
/3

3
, 

and similarly for v2 = 9 with the other three permutations of x1, x2, x3. (Do Exercise 3 to check the 

three equations for 9, and it will be clear how to check the three for 81.) In words, the resolvent leads 

to the solutions of the original cubic, and in turn has solutions given by an expression in x1, x2, x3 

that takes on just two values under the 3! permutations of the x’s. 

(iii) the single form 

Always looking for unified (and elegant) theory, Lagrange adjusted the substitutions. 

Go back to the quadratic, and change the substitution to U = 4T and the equation to the resolvent 

 U = (b
2
 – 4ac)/a

2
. 

Now the lone solution is 

 U1 = (x1 – x2)
2
 

     = ([-1]x2 + [1]x1)
2
. 

The resolvent’s solution is the square of an expression in x1and x2. The expression is a root 

combination, in which the coefficients are the two square roots of 1; and the combination takes just 

one value under the 2! permutations of x1and x2. In terms of U1, the quadratic’s solutions are 

 x1 = -b/2a + U1/2,  x2 = -b/2a – U1/2. 
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[“Root combination” is not a standard term, but like “integer combination,” it describes the structure 

of the expression at hand.] 

Next, go back to the cubic and substitute 

 U = 3u. 

(It amounts to substituting x = U/3 – -27/U in the original cubic.) The related equation becomes 

 U
 6

/3
6
 – 90U

3
/3

3
 + 27

2
  =  0. 

Setting V = U
 3

, we arrive at the resolvent 

 V
 2

 – 90(27)V + 27
4
  =  0. 

That one has two solutions, 

 V1 = (27)81,   V2 = (27)9. 

They lead to the three solutions of the cubic, namely the three complex values of either 

 √𝑉1
3

/3 + 27/√𝑉1
3

   or   √𝑉2
3

/3 + 27/√𝑉2
3

. 

(Compare Exercise 1.) In turn, the V-solutions are given by 

 V1 =  (3u1)
3
  =  (x3e

i2/3
 + x2e

i4/3
 + x1e

i6/3
)
3
 

  =  (3u2)
3
  =  (x1e

i2/3
 + x3e

i4/3
 + x2e

i6/3
)
3
 

  =  (3u3)
3
  =  (x2e

i2/3
 + x1e

i4/3
 + x3e

i6/3
)
3
, 

and similarly for V2 with the other three permutations. The resolvent solutions are the cubes of the 

root combinations of the original solutions x1, x2, x3; and those cubes assume just two values under 

the 3! permutations of the three x’s. 

(iv) Lagrange’s conclusion 

Such was the structure Lagrange established. The formula for degree n gives solutions in terms of 

the solutions of a resolvent, whose degree is smaller than n and whose solutions are expressions in the n! 

root combinations 

 We
i2/n

 + Ye
i4/n

 + … + Ze
i2n/n

 

made from permutations WY…Z of the original solutions and the n’th roots e
i2k/n

 of 1. 

In the quadratic case, the resolvent had one solution, the lone value assumed by the squares of the 2! 

root combinations. In the cubic case, the resolvent had two solutions, given by the cubes of the 3! 

combinations. Similar reduction happens at degree 4: The resolvent has degree 3, with solutions given 

by an expression that assumes just three values under the 4! permutations of the original solutions. (See 

Exercise 4 for an example of such an expression.) 

For the quintic, Lagrange could not manufacture an expression that (produced the solutions of the 

quintic and) took fewer than six values. That many roots would make the possible resolvents harder to 

solve than the original. He had proved that the number of values is decisive, but could not establish that 

no expression with less than five values exists. Unable to find such an expression, he conjectured that no 

quintic formula exists. 

 Exercises IX.A.1

1. Verify that the three complex values of either 

 √81
3

 + 9/√81
3

   or   √9
3

 + 9/√9
3

 
are the same as the three solutions of the cubic in subsection (ii). 

2. We have seen that ei2/n, ei4/n, …, ei2n/n = 1 are the n distinct n’th roots of 1. Show that 
their sum is zero. (Hint: Write them as r, r 2, …, r n.) 
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3. Verify that 

 9 = (x3e
i2/3 + x2e

i4/3 + x1e
i6/3)3/27 

    = (x1e
i2/3 + x3e

i4/3 + x2e
i6/3)3/27 

    = (x2e
i2/3 + x1e

i4/3 + x3e
i6/3)3/27. 

(Hint: Verify the first, then notice that the second parenthesis is ei2/3 times the first.) 

4. a) Find the four solutions of the equation 
 x4 – 5x2 + 4 = 0. 
b) Label the solutions r, s, t, u, in any order. Show that the expression 

 (rei/4 + sei2/4 + tei3/4 + uei4/4)4 
has only three values under the 4! permutations of r, s, t, u. (Hint: Do not even think of 
making 4! calculations. Organize, as Euler and Lagrange would. The hint in (3) might help.) 

5. Why is n! the number of permutations of n distinct objects? 

b) Ruffini and the quintic 

Paolo Ruffini (1765-1822) was, like Lagrange, Italian. He took up permutations with a more general 

outlook than Lagrange, who had viewed them strictly as tools fitted to the formula problem. Ruffini 

studied how sets of permutations are put together. By 1799, he found the connection between the 

structure of such permutation sets and existence of solution formulas. (It will be easier to describe the 

connection later.) 

As a result, Ruffini proved that there is no quintic formula. In other words, from properties of the 

permutations of five objects, he deduced that no algebraic expression in the coefficients—no expression 

applying the arithmetic operations and roots to them—can in all cases evaluate the five complex 

solutions of a quintic equation. Notice that the same conclusion applies to higher degrees. If there were a 

sixth-degree formula, then you could apply it to solve 

 0x
6
 + Ax

5
 + Bx

4
 + Cx

3
 + Dx

2
 + Ex + F  =  0. 

Apparently, his proof was largely not accepted by the mathematical community. Legendre called it 

“vague.” It was twenty-two years before Augustin Cauchy wrote that he saw Ruffini’s argument as 

definitive; see Fiona Brunk’s article at St Andrews. Recall that Isaac Barrow’s explanation of the 

Fundamental Theorem of Calculus (section VII.B.1) met a similar reaction. Maybe Ruffini’s 

organizational complexity was as mystifying as Barrow’s geometric complexity.  

c) Abel 

Niels Henrik Abel [obble] (1802-1829) was a Norwegian whose main interest was analysis. Early 

on, he studied Euler’s limited proof of the binomial series—limited to rational powers—and produced a 

proof for all real exponents. Later (in his life of 26+ years) he obtained beautiful results on elliptic 

functions. Those are functions so divorced from the ordinary that they have to be given in terms of what 

Jesse Douglas called “integrals you can’t do.” (See Boyer’s description.) 

Independent of Ruffini, Abel discovered the permutation-to-formula relationship for the fifth degree. 

Interestingly, Abel’s methods were computational, a step back from the growing abstraction. In his 

student days in Christiania (now Oslo), Abel had found what he thought was a quintic formula. He 

spotted a mistake in it, then gave it further analysis. In 1824, he published his discovery. 

Many of his results appeared, beginning in 1826, in a mathematics journal started by August Crelle. 

Those eventually impressed even Legendre and Gauss. But at the time, they did not impress Cauchy. 

After meeting Crelle in Berlin, Abel visited Paris in the hope of getting a paper accepted by the 

Académie des Sciences. Cauchy assigned evaluation of the paper to reviewers who either did not read it 

http://www-history.mcs.st-and.ac.uk/Projects/Brunk/Chapters/Ch1.html
http://www.archive.org/stream/AHistoryOfMathematics/Boyer-AHistoryOfMathematics#page/n571/mode/2up
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or did not appreciate the depth of Abel’s results. (Maybe Cauchy, having accepted Ruffini’s proof, 

considered Abel’s to be redundant.) 

His papers rejected, Abel was unable to secure an academic post. He was sick with tuberculosis 

when he returned to Norway. He died there two days before a letter from Crelle arrived, bearing news 

that a university position in Berlin was Abel’s to take. 

At the end of the century, when Alfred Nobel funded the prizes that bear his name (How did Nobel 

get rich?), he did not create a prize in mathematics. The Norwegians wanted immediately to establish a 

prize honoring Abel’s genius, but the separation from Sweden (1905) and subsequent twentieth century 

crises intervened. The Abel Prize was finally established in 2002 and awarded in 2003, a century after 

the first Nobels. It is an annual prize, like the Nobels and unlike the Fields Medal, and has gone to a list 

of longtime contributors to the mathematics of the last fifty years.  

d) Cauchy and permutations 

Augustin-Louis Cauchy [coe-SHEE] (1789-1857) trained as an engineer. Born with the Revolution, 

he was actually a staunch royalist. In 1830, the Second Revolution deposed the House of Bourbon, 

which had been re-imposed with the defeat of the First Empire that had supplanted the First Republic 

after the overthrow of the monarchy. In protest, Cauchy resigned from the great Polytechnique and went 

voluntarily into exile for eight years. (During that sojourn, one of his posts was Lagrange’s old gig at the 

Turin Military Academy. Lagrange’s political outlook had been different, more like “When in Rome…”. 

As a foreigner in both Berlin and Paris, he was careful to observe the norms of his place of residence.) 

From the 1820’s, Cauchy was a god. That is how papers of the likes of Joseph Fourier (ahead) and 

Abel became his to judge, even though he did not hold the title of secretary to the Académie. For a take 

on his august standing, read Ferris (pages 247-250) about the regard accorded to William Thompson, 

Lord Kelvin. (The pages relate how Ernest Rutherford had to present a paper contradicting Kelvin’s 

estimate of The Age of the Earth—that is the title of the chapter, pages 231-254—to an audience that 

included Kelvin.) 

Cauchy’s innumerable contributions clustered around analysis. We may view him as founder of the 

calculus of complex numbers, a beautiful theory that is not merely an extension of the real-number 

calculus. (We mentioned before that Gauss used it in later proofs of the Fundamental Theorem of 

Algebra.) The theory is beyond our reach, but we will see later some elementary contributions. He also 

made discoveries in physics, including the theories of light, elasticity, and hydrodynamics. Right here, 

we focus on his development of permutations. 

(i) permutations as functions 

Normally we think of permutations as “rearrangements.” We call the rearrangement 2 4 1 3 5 a 

“permutation” of 1 2 3 4 5. Cauchy showed that it is better to think of permutations as functions. To do 

that, we define a permutation on a finite set as a one-to-one function with values in the same set. 

Thus, the above rearrangement comes from the function f defined on the set {1, 2, 3, 4, 5} by 

 f(1) = 2, f(2) = 4, f(3) = 1, f(4) = 3, f(5) = 5. 

(Is f actually one-to-one?) We usually think of a function as described by a formula, and we could 

write one for f : 

 f(x) = 2x modulo 5, 

with the understanding that if the residue on the right is 0, we use 5 instead. With permutations, 

though, formulas are typically both inconvenient to write and none too useful. 

http://www.mathunion.org/general/prizes/abel-prize/prize-winners/
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Using functions, we derive the advantage of a built-in multiplication, namely composition. Cauchy 

defined the product fg of permutations f and g as the composite function given by 

 fg (x) = g(f(x)). 

(It is an unfortunate adjunct of Lagrange’s function notation that it conflicts with the way we read, left-

to-right. Thus, to apply f first, as we want in g(f(x)), we have to write f on the left in fg.) Assuming f is 

one-to-one, meaning the five values f(1), …, f(5) are different, then the five values g(f(1)), …, g(f(5)) are 

different, provided g is one-to-one. In other words, if f and g are permutations, then so is fg. 

This “multiplication” shares with multiplication of numbers the property of associativity, but not 

commutativity. Composition is always associative: If f, g, and h are functions, then for every x, 

 [fg]h (x)  =  h(fg (x))  =  h(g(f(x))) 

    =  gh (f(x))  =  f [gh] (x). 

Therefore  [fg]h and f [gh] are the same function. On the other hand, if F and G are such that 

 F(1) = 2, G(1) = 1, and  G(2) = 3, 

then 

 F(G(1))  =  F(1)  =  2  but  G(F(1))  =  G(2)  =  3. 

That says GF and FG are different functions. 

On a finite set, a one-to-one function is necessarily onto (later discussion), has therefore an inverse. 

Our first example f makes the assignments 

 1  2,  2  4,  3  1,  4  3,  5  5. 

Its inverse f
 -1

 simply reverses the arrows. (See Exercise 1.) For each x, 

 f
 -1

(f(x))  =  x  =  f(f
 -1

(x)). 

That means f
 -1

f  =  f
 
f
 -1

 is the function I given by I(x) = x, which we call the identity (permutation). 

We will denote the set of permutations on {1, 2, …, n} by Sn. 

(ii) powers and order 

Define exponents as we would with numbers: 

 f
 1

 means f, f
 2

 means f f, f
 3

 means f f f, …. 

Notice that, by extension of associativity, no parentheses are needed, even if we go past the third power. 

Add to those: f
 0

 means I, and 

 f
 -k

 means (f
 k
)
-1

, which is the same as  (f
 -1

)
k
  (Exercise 2d). 

Unlike numbers other than roots of 1, a permutation does not have an infinity of unequal powers. 

Take any permutation f in Sn, and look at the list 

 f, f
 2

, f
 3

, …. 

It cannot produce new functions forever; Sn has only finitely many members (Exercise 3). Therefore 

the list has repetition. 

Imagine f
 16

 is the first one that matches a previous one, say 

 f
 16

 = f
 k
   (where necessarily 1  k < 16). 

(Why does there have to be a first one?) In that case, k has to be 1. After all, multiply both sides of 

the last equation by (f
 -1

)
k – 1

, and check that the result is 

 f
 16–(k – 1)

  =  f
  1

. 

That says f
 16–(k–1)

 is already a repeat. Therefore k – 1 has to be 0. 

Notice in this example that 

 f
 16

 = f   forces   f
 15

 = I 

(compare Exercise 2b), and that 15 must be the first power of f that equals I. 
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We see then that for each f, there exists a lowest power that is I. Its exponent is called the order of f. 

The idea matches that of order in modular arithmetic (section VIII.C.2b(iv)), right down to statements 

like those in Exercise 4. 

If you play card games, then you are familiar with shuffling. Shuffling tries to randomize the order 

(sequence) of the cards. To do it, you take about half the cards in each hand, then drop some from one 

hand, drop atop the first ones some from your other hand, drop atop the pile some from the first hand, 

and so on until all the cards have been dropped into a reordered pile. Players generally agree that it is a 

fair way to put the cards into an order that does not favor any of them. The “reordered” pile is evidently 

a permutation on the original sequence. If your shuffle is absolutely consistent—you always take the 

same number of cards into your left hand (and therefore likewise your right), always drop the same 

numbers from your two hands in the same sequence of drops—then you are applying the same 

permutation every shuffle. Accordingly, instead of producing random card orders, you are cycling 

through a fixed sequence of orders. When the number of shuffles reaches the (mathematical) order of 

your permutation, you end up with exactly the arrangement you started with. 

d(ii) Exercises IX.A.1

1. We defined f on {1, 2, 3, 4, 5} by 
 f(x) = 2x modulo 5, 
with f(5) = 5. Show, without calculating all the values, that the inverse f -1 is given (with the 
same proviso about 5 instead of 0 as a residue) by 
 f -1(x) = 3x modulo 5. 

2. Prove that for permutations f, g, h in Sn: 
a) The identity acts like 1: If  =  fI  =  f.  
b) Cancellation applies: If fg = fh, then g = h.  
c) Inverses are unique: If fg = I, then g = f -1. 
d) (f k)-1  =  (f -1)k. (General proof is unnecessary. Use k = 3 to give evidence.) 

3. a) How many different functions are defined on (all of) {1, 2, …, n} and have values there? 
b) How many of those are permutations? 

4. Show that for f in Sn: 
a) If f k = I, then the order of f divides k. 
b) One of the powers f, f 2, f 3, … is f -1. 

(iii) cycles 

Suppose g is a permutation on {1, 2, …, n}. Start with any k in the set and consider the sequence 

 k, g(k), g
2
(k) = g(g(k)), …. 

It cannot produce new values forever. Somewhere, it starts to repeat. The first repeat has to be k. It 

could not be, say, 

 g
8
(k)  =  g

2
(k). 

That would say 

 g(g
7
(k))  =  g(g(k)), 

which would force the earlier repeat 

 g
7
(k)  =  g(k).   (Why?) 

We used this “repeat” argument in (ii), and it is useful enough for us to [how shall we say?] repeat. 

Let us work an example; take n = 8, and let g be the permutation that turns 

  1 2 3 4 5 6 7 8 

into  3 4 5 6 7 2 1 8. 
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Suppose we start with 1. The corresponding sequence is 

  1, g(1) = 3, g(3) = 5, g(5) = 7, g(7) = 1. 

We will represent those assignments with the cycle (1 3 5 7). The cycle is understood to mean that 

 1  3  5  7  1 

under g. Notice that we can cycle a cycle: 

 (1 3 5 7)  =  (3 5 7 1)  =  (5 7 1 3)  =  (7 1 3 5), 

because they all make the same functional assignments. 

 Of the original numbers 1-8, the next unaccounted one is 2. We find the sequence 

  2, g(2) = 4, g(4) = 6, g(6) = 2. 

That means g also performs the cycle (2 4 6). Notice that this second cycle cannot have any numbers 

from the first, because all the numbers in the first cycle are already images of numbers there. 

Only the action of g on 8 remains to count. We have the sequence 

 8, g(8) = 8. 

That gives the single-element cycle (8), which does not overlap either of the first two. 

We now write 

 g = (1 3 5 7)(2 4 6)(8). 

You can see that we may choose to leave out the (8). The notation suggests multiplication of cycles. The 

suggestion is exactly right. Our multiplication in S8 means composition, permutation followed by 

permutation. It is clear that following 

 g1 = (1 3 5 7)  by g2 = (2 4 6) and g3 = (8) 

makes the g1 assignments, then performs the g2 assignments without disturbing those of g1, then makes 

whatever assignments g3 calls for without changing the previous ones. We may now generalize: 

Theorem 1. Every permutation is the product of disjoint cycles. 

It should be clear that disjoint cycles commute: g1 g2  = g2 g1. In our example, (1 3 5 7) and (2 4 6) 

operate in separate compartments. Irrespective of which you do first, its results emerge unchanged from 

the action of the second. We may reorder (permute?) g’s constituent cycles. What is more important is 

that the set of constituent cycles is unique. 

Theorem 2. The factoring of a permutation into the product of disjoint cycles is unique, except for the 

order of the cycles. 

Suppose you can factor the previous g into disjoint cycles in two ways, 

 g  =  g1 g2 g3  =  h1 h2 … hk. 

Then one of the h’s must make the assignment 1  3. That same h must also assign 3  5, because 

it is the only one with a 3 in it; the h’s are disjoint. Evidently that same one must also assign 

5  7  1, and no other assignments. Hence one of h1, h2, …, hk is g1. Continuing that way, we 

conclude that k = 3 and each cycle on the right is there on the left. That proves Theorem 2. 

 [It is standard practice to call (m1  m2  …  mk) a k-cycle. I love a usage I heard from the late Bernard 

Vinograde: (1 3 5 7) is a 4-cycle, but (2 4 6) is a “tricycle,” (9 10) a “bicycle,” and (8) a “unicycle.”] 

d(iii) Exercises IX.A.1

1. Show that: 
a) The order of a k-cycle is k. 
b) The product 
 g = (1 3 5 7)(2 4 6)(8) 
has order 12. More generally, the order of the product [h1 h2 … hk] of disjoint cycles is the 
least common multiple of the orders of h1 through hk. 
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2. We mentioned the shuffling of cards. Think of a standard deck of 52 cards. At any given 
moment, call the top card “card #1,” the one right below it “card #2,” and so on to “card #52” 
at the bottom. In a “perfect (out-)shuffle,” you take cards #1 to #26 in your left hand, #27 
to #52 in your right. You drop #52 from your right onto the table, then #26 from your left 
onto the first drop, then #51 from your right onto the first two, and so on, always alternating 
right-left. Call the permutation (of the card numbers) so defined h. 
a) Show that 
 h(1) = 1 and h(52) = 52.  
b) Find a formula for h(k). It is best to write a two-step formula, one way for k = 1, …, 26, a 
different way for k = 27, …, 52. 
c) Find the pair of (unequal) numbers i and j for which 
 h(i) = j  and h(j) = i. 
Why is there only one pair? 
d) Take any number m among the remaining 48—the cards not in (a) or (c)—and write the 
sequence m, h(m), h2(m), …. Show that for any of them, the sequence is an 8-cycle. 
e) In view of (a)-(d), what is the order of the perfect out-shuffle (as permutation)? 

3. Try the in-shuffle. In that one, you drop from your left hand first, so that #26 goes to the 
bottom and #27 ends up at the top. The separate formulas are easy to write. Then, if you’re 
feeling industrious, see that the associated permutation is a single 52-cycle. 

(iv) transpositions 

The standard name for bicycles is transpositions. They play a special role. 

Theorem 3. Every permutation is the product of transpositions. 

First notice that 

 g1  =  (1 3 5 7)  =  (1 3)(1 5)(1 7). 

On the right, the first factor assigns 1  3. That assignment is unaffected by the other factors, which 

do not move 3. The first also assigns 3  1, but the second factor moves that resulting 1 to 5, for a 

subtotal of 3  1 . The second further assigns 5  1. The combined effect of the first two factors 

is 1  3  5  1. The third factor assigns that last 1 to 7—which means 5 is carried onward to 7—

and also assigns 7  1. Therefore the product on the right assigns 1  3  5  7  1, same as g1. 

We now conclude that every cycle is a product of transpositions. Since every permutation is a 

product of cycles, we end up with every permutation as the product of transpositions. 

Factoring into transpositions, unlike the disjoint-cycle factoring, is not unique. 

Observe that 

 (1 3)(1 5)(1 7)  =  (1 3 5 7) 

    =  (3 5 7 1)  =  (3 5)(3 7)(3 1)   (Exercise 1). 

Further, disjoint transpositions commute, like any disjoint cycles, but otherwise order matters. Thus, 

 (1 2)(1 3) = (1 2 3)  but  (1 3)(1 2) = (1 3 2), 

and those tricycles are unequal. (Why?) 

(v) odd and even 

A permutation may factor into the product of different sets of transpositions. However, one thing 

about the sets has to match: the parity of the number of transpositions. 

Theorem 4. In any two factorizations of a permutation into transpositions, the number of factors is even 

in both, or else odd in both. 

We need a sequence of steps to give evidence. 
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Work with our previous example g, which produces the rearrangement 

 3 4 5 6 7 2 1 8 

Starting with the 3, count how many numbers are now to its right that began to its left (when the 

numbers were in increasing order). You see that only 2 and 1 are so displaced. Count that as 2 

inversions. The same is true for the 4, 5, 6, and 7; they give an additional 8 inversions. For the 2, the 

number 1 is misplaced on the right, the number 8 is correctly placed on the right. That adds 1 

inversion. For the 1, there are 0 inversions. The green numbers add up to 2 + 8 + 1 + 0 = 11. 

We said g is the product of transpositions. Clearly transpositions create inversions. The first trans-

position factor created some inversions, the second one added or subtracted some, and so on. That 11 is 

the total of inversions given/taken by the transpositions whose product g is. We should therefore ask, 

how many inversions does one transposition factor create or destroy? The answer is that a single 

transposition factor adds an odd integer of inversions to those of the previous factors. 

Take the transposition (2 6). Applied to the original arrangement 

 1 2 3 4 5 6 7 8, 

it actually switches the 2 and the 6. Moving the 6 to where the 2 was puts the intervening 3, 4, 5 on 

the wrong side of 6, creating 3 inversions. Moving the 2 to where the 6 was puts the 2 on the wrong 

side of the same intervening 3, 4, 5, adding 3 more inversions. But it also put the 2 rightward of the 

6. That makes (3 + 3 + 1) added inversions. 

Applied instead to a later rearrangement 

 ? M a b c N ?? ???, 

(2 6) switches the M and the N, no matter what they are. It produces the arrangement 

 ? N a b c M ?? ???. 

For inversions, the numbers represented by question marks are irrelevant. If they were on the correct 

side of either M or N before we applied (2 6), then they stay on the correct side; if not, then they stay 

incorrect. The ones that (literally) count are a, b, c. In the case where a is smaller than both M and N, 

before the switch it was on the correct side of one and wrong side of the other, and the same is true 

after the switch. In this case, the transposition neither added nor lost inversions attributable to a. The 

same reasoning applies in the case where a is bigger than both M and N. In the remaining case, a is 

between M and N (in numerical value). Then, either it is on the correct side of both before the switch 

and wrong side of both after, adding 2 inversions; or vice-versa, adding -2. Thus, when we 

apply (2 6), a contributes 0, 2, or -2 inversions to the resulting rearrangement. The same applies to b 

and c. That leaves just one other source of contributions. If N was on the correct side of M before 

(2 6), then it moved to the wrong side, and vice-versa. The shift of those two contributed either 1 

or -1 inversion. The application of (2 6) added to the number of inversions some 0’s or 2’s or -2’s, 

together with exactly one 1. Of necessity, it added an odd number, possibly negative, of inversions. 

Put the steps together now. Our g factors into transpositions. The first factor lends an odd number of 

inversions to the starting arrangement. The second adds or subtracts another odd number, for an even 

total. The third adds or subtracts an odd number, …. If the number of transposition factors is odd, then 

the number of inversions in the rearrangement produced by g is odd; if the number of factors is even, 

then so is the number of inversions. Because our chosen g produces a rearrangement with 11 inversions, 

every factorization of g into transpositions must have an odd number of factors. 

We call a permutation odd or even according to the parity of its number of transposition factors. 
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There are many contexts in which one configuration is incompatible with 

another and the conflict is explainable in terms of odd-even. An unexpected such 

context is the 15-puzzle. The puzzle has fifteen square tiles, numbered 1-15, 

shaded blue at left. They are placed into a square frame four times as wide. You 

can slide any tile adjoining the remaining empty place (gray) 

into the hole. Starting from the “original” position shown at 

left, for example, you can slide the 15 rightward into the 

hole, or instead slide the 12 down. With either of those 

moves, the hole slides correspondingly left or up. We ask, is it possible through a 

series of such moves to produce the position shown at right? 

The answer is no. Assign the value 16 to the hole, so that the original position is 

 1 2 … 15 16. 

The first move you make results in either 

 1 2 … 11 12 13 14 16 15 

or 1 2 … 11 16 13 14 15 12. 

Those rearrangements result from applying the transposition (15 16) or (12 16). Every move you 

make applies a transposition. Therefore every time you move, you change the resulting product of 

transpositions (the permutation of the tile numbers) from even to odd, or vice-versa. 

At the same time, with every move, you change the position of the hole by one row or one column. 

At the start, the hole is at 

 (row, column)  =  (R, C)  =  (4, 4), 

where R + C is even. Your first move puts it at 

 (R, C)  =  (4, 3)  or  (R, C)  =  (3, 4), 

at either of which R + C is odd. Similarly, every move switches the parity of R + C. Consequently 

every time you move a tile (and therefore the hole), the resulting rearrangement is a permutation of 

the original of the same parity as the resulting R + C. 

Now look at the proposed rearrangement, 

 16 1 2 … 14 15. 

Its only inversions are for the 16; there are fifteen numbers to its right that started on its left. The 

needed permutation is odd. But in this rearrangement, R + C = 1 + 1. No series of moves can 

produce simultaneously an odd permutation of the original and an even R + C. 

d(v) Exercises IX.A.1

1. Trace the images in (3 5)(3 7)(3 1) to show that it equals (3 5 7 1) = (1 3 5 7). 

2. Show that an n-cycle is an even permutation exactly if n is odd. 

3. Start with four arrows pointing upward and three down, as shown. 

       . 
In one “move,” you turn any two upside-down, reversing their orientations. Is there any 
number of such moves that will make them all point upward? 

2. Abstract Algebra 

a) Galois and groups 

Modern mathematics is divided, like all of Gaul, into three parts. They are not neatly separated; in 

fact, much beautiful mathematics has grown in their overlaps. Still, they are useful categories. Modern 

analysis is what came from the invention of the calculus, although it makes sense to trace it to what 

1 2 3 4 

5 6 7 8 

9 10 11 12 

13 14 15  

 

 1 2 3 

4 5 6 7 

8 9 10 11 

12 13 14 15 
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Euler revealed about its power. Modern topology studies form and spatial relationships, and as such 

evolved from geometry. As an axiomatic system, it was created around 1920; look up Felix Hausdorff 

and Kazimierz Kuratowski. Modern algebra studies abstract algebraic structures, and was born the night 

before Galois was shot. 

Évariste Galois (1809-1830)—he did not make it to his twenty-first birthday—was a hothead. He 

was a radical republican, much as Cauchy was the opposite, in a time and place where anti-monarchical 

activism was a dangerous pursuit. He was twice imprisoned for political agitating. Politics aside, he was 

impetuous. After rejections from the Polytechnique, he settled for the École Normale. He was expelled 

from it. Finally, he got into some dispute—over a woman, some say—and challenged an ex-friend to a 

duel. Night before the duel, he had a bad feeling. He started desperately writing a letter, in which he 

elaborated earlier works (some of which Cauchy had managed also to misdirect, like Abel’s, even 

though they cited Cauchy’s work on permutations), revealed undeveloped material, and lamented that so 

little time remained. He ended with a request that his discoveries be presented to Gauss and Carl Jacobi 

for judgment, not of correctness (whereof he had no doubt), but of importance. Somewhere in there, he 

introduced the world to what he called groupes. It was his valedictory. The bad feeling had good reason: 

In the duel, he was mortally wounded; he died the next day. It was more than ten years before the letter 

came to someone who could understand and appreciate it; that was Joseph Liouville, who published it in 

in his Journal de Mathematiques Pures et Appliquées in 1846. 

(i) groups 

 “Abstract algebraic structures” are made up of elements generally unrelated to numbers that 

nevertheless have number-like properties. [At the time of Bombelli and the development of the 

arithmetic of complex numbers (section VI.B.4b), the set of complex numbers would have qualified as 

an abstract algebraic structure. To Cardano, they were not merely abstract; he called them “sophistic.”] 

The structure that came from Galois’s work was the group, a combination of constituents satisfying 

four requirements. We will refer to the requirements as the axioms of group theory. 

Axiom 1. There is a set G, in which an operation is defined.  

An operation is a way of combining two elements of the set to yield a third. The archetype 

operations are (the usual) addition and multiplication in the set of natural numbers. Given two (not 

necessarily different) naturals a and b, a + b is another one, as is a  b. Subtraction and division are not 

operations: The subtraction a – b does not always yield another natural number; and the same is true of 

the division a/b. Sometimes, the last sentence is worded as, “Subtraction and division are not closed 

operations.” We will avoid that usage. To us, if it is not closed, then it is not an operation. 

You can invent an infinity of operations. Check that each of the following describes a process that 

produces a natural number from two others: 

a) Define a ^ b to mean a
b
, normal exponentiation. 

b) Define a PSUM b to mean ab + a + b, the last expression having the familiar meaning. 

c) Define a WEAVE b as follows: Write the first digit of a, the first digit of b, the second digit of a, 

the second digit of b, …, until one of them runs out of digits, then continue with the remaining digits 

of the other one. The two have to be in standard decimal notation—123, not 00123. Thus, 

 12 WEAVE 34  =  1324, 

 1234 WEAVE 56  =  152634. 

d) Define a ONLY b to mean b. Thus, (5 ONLY 6) = 6 and (78 ONLY 34) = 34. 

Axiom 2. The operation must be associative. 

Use (a $ b) to signify the result of operating a on b. The axiom demands for every a, b, and c in G,  

 (a $ b) $ c  =  a $ (b $ c). 

http://en.wikipedia.org/wiki/Felix_Hausdorff
http://en.wikipedia.org/wiki/Kazimierz_Kuratowski
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Addition and multiplication of naturals are two associative operations. (One advantage of using $ is 

that it is neutral, not suggestive of addition or multiplication specifically.) Exponentiation is not: 

 (2 ^ 3) ^ 4  =  8
4
,  2 ^ (3 ^ 4)  =  2

81
, 

unequal results. Associativity is not automatic. (Decide about the other examples in Exercise 1a.) 

Axiom 3. The operation must have an identity element, a member E such that for all a in G,  

 a $ E  =  E $ a  =  a. 

You should see that requiring (a $ E) = (E $ a) is not redundant. No axiom requires, and nothing so 

far indicates, that order is irrelevant. The natural number 1 is a “left identity” for ONLY, meaning 

(1 ONLY a) = a, but it is not a “right identity,” because (5 ONLY 1)  5. For exponentiation, 1 is a 

right identity but not a left identity: 

 a ^ 1 = a,  but  1 ^ 2  2. 

Multiplication has identity 1, because a  1 = 1  a = a, but addition does not have an identity, 

because no natural E satisfies b + E = b. 

Axiom 3 demands that there be at least one special element within G. Thereby, it excludes the 

possibility that G be the empty set. But the axiom happens to guarantee that there is only one identity. 

Theorem 1. A group’s identity is unique. 

Suppose E and F are elements that satisfy 

 a $ E  =  E $ a  =  a and  a $ F  =  F $ a  =  a 

for every a. Then in particular, E works on the left with F, meaning E $ F = F; and F works on the 

right with E, meaning E $ F = E. It follows that E and F are two names for one element, 

 E  =  E $ F  =  F. 

We may therefore speak of the identity in a group. 

Axiom 4. Every element of G must have an inverse: If a is any element of G, then there must exist an 

element denoted by a
-1

 (again “a inverse,” not “a to the -1”) with 

 a $ a
-1

  =  a
-1

 $ a  =  E. 

The conception of 0 and the negative numbers, together with Brahmagupta’s extension of arithmetic 

to them (section IV.A.3), created the set Z of integers. You can check that under the operation of 

addition, Z satisfies the four axioms. It is a group. The set Q
+
 of positive rational numbers is a group 

under the operation of multiplication. (Verify both in Exercise 2.) 

The theory born out of just these four axioms is vast. We will add a scant two elementary results to 

the humble beginning of Theorem 1. 

Theorem 2. In a group: 

a) Cancellation applies, on either side. That is, if either 

 a $ b = a $ c  or  b $ d = c $ d, 

then necessarily b = c. 

b) Inverses are unique (Exercise 3a). 

To argue (a), assume a $ b = a $ c. Apply the element  a
-1

, whose existence is guaranteed by 

Axiom 4, on the left to both. The definition of “operation” requires equal results: 

 a
-1

 $ (a $ b)  =  a
-1

 $ (a $ c). 

By Axiom 2, we may replace the left and right sides by 

 (a
-1

 $ a) $ b  =  (a
-1

 $ a) $ c. 

By Axiom 4, those two are 

 E $ b = E $ c. 

By Axiom 3, that last equation says b = c. We can work similarly to cancel on the right. 
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Notice that the above argument relies on just the four axioms and the nature of operations. 

a(i) Exercises IX.A.2

1. a) Show that PSUM and ONLY are associative, but WEAVE is not. 
b) Prove that PSUM does not have an identity. 

2. Verify that Z with addition and Q+ under multiplication are groups. 

3. Show that in a group: 
a) The inverse a-1 is unique: a $ b = E forces b = a-1. Hence we may say the inverse of a. 
b) The inverse of the inverse of a is a. 
c) The inverse of a “product” is the product of the inverses, but reversed: 
 (a $ b)-1  =  b-1 $ a-1. 

4. a) Show that if a is an element in a finite group, then the first element repeated in the list 
 a, a2 = a $ a,  a3 = a $ a $ a, … 
of its “powers” is a. (Remember that by associativity, no parentheses are needed.) 
b) Give an example of a group in which that same list might fail to repeat any element. 

(ii) two finite examples 

We will look at two specific instances of more general examples. In these two, we will begin to see 

how groups can have different structures. 

The first group uses addition modulo 6. Take the set 

 Z6 = {0, 1, 2, 3, 4, 5} 

of residues modulo 6, and define the operation “+” by 

 a + b = the mod 6 residue of the integer sum of a and b. 

Check that the table at right accurately tabulates the results. The table clearly 

reflects an operation, because all the results are in Z6. There is clearly an 

identity, 0, since the row and column headed 0 have the same numbers as the 

(shaded) headers. There are inverses, because every row and column has a 0 

in it. Only associativity is not evident. To verify it, we would need to 

compare 6  6  6 results with an equal number of others. However, if we 

accept that addition within the integers is associative and that congruence is compatible with that 

addition, then associativity is inherited. 

In Z6, the operation is commutative. That is easy to see, because the table is symmetric about the 

main (\) diagonal. A commutative operation is special; when a group has one, we say the group is 

abelian (honoring Abel’s studies). It is customary to call the operation in an abelian group “addition,” 

even if it is very different from ordinary addition. (Remember the example of Q
+
, Exercise 2 above.) If 

you adhere to that practice, then you denote its identity by “0” and the inverse of a by “-a.” 

The second example is S3. Cauchy’s analysis made it clear that Sn is always a group: There is 

multiplication, it is associative, I  has the identity property, and every permutation has an inverse. 

If n  3, then Sn is not abelian. In that case, Sn includes (1 2) and (1 3), and we have seen that 

 (1 2)(1 3)    (1 3)(1 2). 

Choosing S3 gives us a group with the same number of elements as Z6, but differing in a fundamental 

way. It also gives us a chance to see why Sn is called the symmetric group on n elements (which 

explains the letter “S”). 

+ 0 1 2 3 4 5 

0 0 1 2 3 4 5 

1 1 2 3 4 5 0 

2 2 3 4 5 0 1 

3 3 4 5 0 1 2 

4 4 5 0 1 2 3 

5 5 0 1 2 3 4 

3 
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Let us study the set of symmetries of the triangle. Cut an equilateral triangle (as 

nearly as you can) from a sheet of paper. Write “1” on front and back of the corner 

now on your right, as in the figure at left. Similarly, write “2” front and back at the 

top, “3” at the remaining corner. 

A symmetry is a transformation that leaves the paper triangle 

occupying the same space. For example, the transformation 

ROT120 that rotates the triangle counterclockwise through 120 about its center (the 

meeting of the medians) brings the triangle to the position shown at right. The vertices 

change place, but the triangle occupies the previous space. Similarly, we can apply 

ROT240, ROT360, …. 

You can see that the list actually has just three symmetries, 

 ROT120  =  ROT(120  any multiple of 360), 

 ROT240  =  ROT(240  any multiple of 360), 

 ROT360  =  ROT(0)  =  ROT( any multiple of 360). 

There are exactly three others. If we flip the triangle about the median from the 

vertex on the right, then the original position flips to the one at right. Call that 

transformation FLPRT. Notice that it is new: The rotations leave the corners 

oriented 1-2-3 counterclockwise, whereas FLPRT leaves them clockwise. 

Similarly we define flips FLPTOP about the vertical median and FLPLF about 

the median from the left corner. (Do Exercise 1 to convince yourself that there 

are no other symmetries of the triangle.) 

Now define a multiplication of these symmetries by composing, what we did to form the composite 

g(f(x)) of functions f and g. In simpler words, we will follow one symmetry by a second. When we do 

that, the result is another symmetry. Use your triangle to check that 

 (ROT120)(ROT240)  =  ROT360  =  ROT(0), 

 (FLPRT)(FLPTOP)  =  ROT240, 

 (FLPLF)(ROT120)  =  FLPTOP. 

Because the result is a symmetry, “compose” or “follow” defines an operation on the set of symmetries. 

As usual, associativity is laborious actually to establish. Let us simply agree that composition of 

transformations is associative, as it is with functions. There is clearly an identity, because ROT(0) 

preceding or following another symmetry leaves the latter unchanged. Finally, ROT120 is the inverse of 

ROT240, and ROT(0) and all three flips are their own inverses. The symmetries constitute a group. In 

fact, the group is indistinguishable from S3 (Exercise 2), so we will denote it by S3. 

Groups are certainly abstract structures, but their connection to symmetry has yielded concrete 

results in the sciences. Crystallography is one area in which symmetry has been applied to explain, and 

more importantly to predict, properties of materials. Separately, that predictive ability underlies 

explorations in subatomic physics, where the discovery of a particle with one set of characteristics 

(mass, charge, spin) leads to a search for another with mirror-image properties. For a last example: Our 

“flips,” chemistry, and the physics of light come together in the study optical isomers. 

a(ii) Exercises IX.A.2

1. a) Without enumerating them, show that there are just six symmetries of the triangle. 
b) How many symmetries are there of the square? of the regular n-gon? (Hint for both: 
Decide where vertex #1 goes; then you have exactly one more decision to make.) 

1 

2 

3 

1 

3 

2 

3 

1 

2 

http://en.wikipedia.org/wiki/Chirality_(chemistry)
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2. Show that each symmetry of the triangle effects a permutation of the vertices we named 
#1, #2, and #3. Then give three examples to show that following one symmetry by another 
effects the permutation that is the product of the corresponding permutations. 

3. Show that the group of symmetries of the triangle is not abelian. 

4. We saw (Exercise 2) that the symmetries of the triangle match the permutations in S3. Is it 
always true that the symmetries of the regular n-gon match the permutations in Sn? 

5. a) Exhibit two similarities and two differences between the way the operations work, in the 
group Z of integers under addition, versus the group Z6 under addition mod 6. 
b) Exhibit one similarity and one difference between the group Z of integers and the group 
Q of rational numbers, both under addition. 

(iii) subgroups 

We will see that everything we need about groups is found in the symmetric groups. We stay with 

unspecified groups for this subsection, but henceforth we restrict our attention to finite groups. 

Let G be a group, and call its operation multiplication. We will use normal algebraic notation and 

write (g multiplied by h) as gh. It would be natural to call the identity “1,” but we need that symbol for 

counting; we borrow from permutations and write I. 

Take an element g from G. Look at its powers 

 g, g
2
, g

3
, …. 

By the “repeat” argument, there is k + 1  2 for which 

 g
k + 1

  =  g 

is the first repetition on the list. (Remember that G is finite.) In that case, g
k
 = I, and k is the first 

exponent with that property. We say k is the order of g. That means 

 g, g
2
, …, g

k
 = I 

are all distinct. It also means g
k – 1

 = g
 -1

. (Compare Exercise 1.) 

The subset of G 

 H = {g, g
2
, …, g

k
 = I } 

is itself a group under G’s multiplication. Multiplication is an operation in H, because H is closed: 

 g
 i
 g

 j
  =  g

(i + j modulo k)
, 

with the convention that g
0
 means I. Multiplication is associative, because we are in a group G. We 

just said that H has I in it, and it has inverses: 

 (g
 j 

)
-1

  =  g
 k – j

   (Exercise 2). 

Therefore H meets the four requirements. 

When a subset J of a group G is itself a group under G’s operation, we say J is a subgroup of G. 

The subgroup of powers of the element g is called the cyclic group of (more formally, generated by) g. 

If it occupies all of G, then we call G a cyclic group. 

Return to the subgroup H of powers of g. See that the key statement above was that H is closed 

under the multiplication in G. In a finite group, that by itself guarantees that a subset is a subgroup. 

Theorem 3. If the nonempty subset J of G is closed under G’s operation, then J is a subgroup of G. 

(Why does J have to be nonempty?) 

Under the assumption, J has an associative operation. Take any j in J. All the powers of j are in J, 

because J is closed. We know that I and j
 -1

 are among those powers. Therefore J has identity and 

inverses. It is a subgroup of G. 

3 
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Just as an integer has automatic divisors, itself and 1, so a group G has automatic subgroups, G itself 

and {I }. Check that both are closed under G’s multiplication. [Recall that the math word for 

“automatic” is “trivial.” If you adopt it, then you have to say of a group with only the automatic ones 

that it has “no nontrivial subgroups.” I will take the liberty I did with divisors and say it has “no 

subgroups.”] In general, there will also be other subgroups. (Compare Exercise 4.) 

In Z6, there are two others. (Compare Exercise 5.) 

A subgroup can hold just 0. (Remember the operation; see Exercise 3.) If additionally it holds 1, then 

it has to hold also 

 1 + 1  =  2,  1 + 1 + 1  =  3,  …,  1 + 1 + 1 + 1 + 1  =  5 

along with 0. That would fill all of Z6 (which we conclude is cyclic). A similar thing happens if it 

holds 5. (Try it.) Those are the trivial possibilities. 

If our subgroup has neither 1 nor 5, but does have either 2 or 4, then it has 

 2 + 2  =  4 and 2 + 2 + 2  =  0  or  4 + 4  =  2 and 4 + 4 + 4  =  0. 

Either way, it is {2, 4, 0}. If it holds none of 1, 2, 4, 5, then it has to be {3, 0}. Those are the others. 

One way to make the search for subgroups systematic is to count their elements. The number of 

elements of a group or a subgroup is its order. Notice that this usage or “order” does not conflict with 

the earlier. If the order of element g is k, then 

 g, g
2
, … , g

k
 = I 

are the distinct elements of g’s subgroup; the order of g is the order of its subgroup. 

What is generally considered the most important theorem for finite groups came right out of 

Lagrange’s pioneering fiddling with permutations. 

Theorem 4. (Lagrange’s Theorem) The order of a subgroup divides the order of the group. 

We will illustrate the general argument with an example (which may also illustrate how Lagrange 

and Abel worked). 

In S4, let H be the subset 

 {I,  (1 2),  (1 3),  (2 3),  (1 2 3),  (1 3 2)}. 

We could check that it is closed under multiplication, but why bother? Those are the only possible 

permutations in S4 that do not move 4. It is obvious that H is a copy of  S3, in which we know the 

multiplication to be closed. Hence H is a subgroup. 

Take any permutation missing from H, like (1 4). Denote by (1 4)H the subset of S4 consisting of 

products (1 4)h, using an h from H. That subset is called a left coset of H. Check, or take my 

unreliable word for it, that (1 4)H consists of 

 (1 4),  (1 4 2),  (1 4 3),  (1 4)(2 3), (1 4 2 3), (1 4 3 2). 

(Is that a subgroup?) It has six elements, same as H. With all those 4’s, it obviously shares no 

elements with H. Neither of those facts is an accident. 

Each member h of H produces (1 4)h. No two unequal members can produce equal products: 

If (1 4)h1 equals (1 4)h2, then cancellation gives us h1 = h2. That is why (1 4)H has the same number 

of elements as H. Separately, no member h1 of H could match a member (1 4)h2 of (1 4)H: 

 h1 = (1 4)h2  would force  h1h2
-1

  =  (1 4)h2h2
-1

  =  (1 4); 

the left side is in H, and (1 4) is not. That is why H and (1 4)H have no elements in common. 

Therefore H and (1 4)H together account for 2(order of H) members of S4. 
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Is anything still unaccounted for? Clearly (2 4) is nowhere so far. The coset (2 4)H comprises 

 (2 4),  (1 2 4),  (2 4)(1 3), (2 4 3),  (1 2 4 3), (1 3 2 4). 

As before, this new coset has (order of H) elements, none in common with H. It is also disjoint from 

the first coset. If an element (1 4)h1 of (1 4)H were (2 4)h2 from (2 4)H, then we would have 

 (1 4)h1  =  (2 4)h2,  forcing   (1 4)(h1h2
-1

)  =  (2 4). 

That would put (2 4) in (1 4)H, contrary to why we chose (2 4). 

Without guessing at how many more left cosets there are (How many are there?), we can be sure of 

one thing. At some point, we will run out of new permutations to create new cosets. At that point, H 

and its other cosets (H is itself the coset IH) will together fill G. Since the cosets are disjoint subsets 

with (order of H) members each, the population of G is given by 

 (order of G)  =  (order of H)(number of left cosets). 

That is the reason for Lagrange’s theorem. 

Look at the set of nonzero residues modulo some prime. Take the prime 43, so that the set is 

 R43 = {1, 2, …, 42}. 

Apply the operation of multiplication modulo 43. If i and j are in R43, then they are not divisible by 43. 

Hence neither is their product; ij modulo 43 is another nonzero residue. That makes multiplication an 

operation in R43. It is associative, and we know 1 is the identity. We learned (section VIII.C.2b(ii)) that 

every member of R43 has a multiplicative inverse mod 43. Therefore R43 is a group under multiplication. 

In it, each member (say 15) has some order k. That k is the order of the cyclic subgroup generated by 15. 

By Lagrange’s theorem, k divides (order of R43) = 42. We draw our favorite conclusion, 

 15
42

  =  (15
k
)
42/k

    1 mod 43.   (See Exercise 7e.) 

a(iii) Exercises IX.A.2

1. In S4, write all the distinct powers of the given cycle, and verify that the next-to-last is the 
given one’s inverse: 
a) (1 2)   b) (1 2 3)   c) (1 2 3 4). 

2. Show that if g has order k, then for 1  j  k, 
 (g j )-1  =  g k – j. 
(Is the restriction on j needed?) 

3. In our previous example Z6, show that {1, 5} is closed under (natural number) multiplication. 
Is it a subgroup of Z6? 

4. Is it possible for a group G to have only the automatic subgroups G and {I }? 

5. What are the subgroups of S3? (Hint: There are six, total.) 

6. In the group Z  of integers under addition: 
a) Show that Theorem 3 does not apply. 
b) Describe all the subgroups. 

7. Unite number theory and group theory to prove Euler’s theorem about the totient function: 

a) List the (20) = 8 numbers below 20 that are relatively prime to 20. 
b) Show using number theory—not calculation—that they form a group under the operation 
of multiplication modulo 20. 
c) Show using group theory that for each k among them, 

 k(20)    1 modulo 20. 
d) Is this group cyclic? 

e) Is R43 cyclic? (Hint: Work from 34  -5 mod 43.) 
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b) groups of permutations 

(i) the inclusion 

We made an offhand remark that everything about our groups is found in the symmetric groups. We 

will make it less offhand by showing that every finite group has a twin within a symmetric group. 

Theorem 1. If G has order n, then there is a subgroup of order n in Sn in which the multiplication works 

the same way as the operation in G. 

[I am avoiding the technical description: There is within Sn a subgroup “isomorphic” (Greek root for 

“same form”) to G.] 

Let’s see what that means in our two examples Z6 and S3. 

We noted that Z6 = {1, 2, 3, 4, 5, 0} is the cyclic group generated by 1 under addition modulo 6. 

Certainly S6 is not cyclic. (Evidence?) However, take within S6 the cyclic subgroup C generated by 

the cycle c = (1 2 3 4 5 6). We saw (Exercise IX.A.1d(iii):1) that the order of a 6-cycle is six. 

Therefore the correspondence 

 1  c,  2  c
2
, …,  5  c

5
,  0  c

6
 = I 

matches the six elements of Z6 with those of C. More important, the multiplication in C reflects the 

addition in Z6: 

 i + j modulo 6  c
(i + j modulo 6)

  = c
i 
c

 j
. 

In the case of S3, we know its members are 

 I, (1 2),  (1 3),  (2 3),  (1 2 3),  (1 3 2). 

Match those with the members of S6  

 I, (1 2)(3)(4)(5)(6),  … ,   (1 3 2)(4)(5)(6). 

Clearly the S3 multiplication of its six cycles gives precisely the results, in abbreviated form, of the 

corresponding products in S6. 

To see why the theorem is true, label the elements of G: 

 G = {g1, g2, …, gn}. 

Let g be one of them. Define the function fg by 

 fg(gi)  =  gi g  (the multiplication in G)  for each i. 

The function is a permutation. That is, it is one-to-one: The only way 

 fg(gi)  =  fg(gj)   is   gi g  =  gj g. 

By cancellation, that forces gi = gj. The function permutes the n elements of G, is therefore in Sn. 

If h  g is another element of G, then fh  fg. That they are different permutations is immediate: 

 fg(I) = g   and   fh(I) = h  (I the identity in G) 

are unequal values. That makes the association g  fg a one-to-one correspondence. 

Finally, multiplication of these permutations in Sn works  the way multiplication in G does. Fix two 

members g and h of G. For every gi in G, 

 [fg fh ](gi) = fh ( fg (gi))  (by the definition of permutation multiplication) 

   = (gi g)h   (by the definitions of fh and fg) 

   = gi (gh)   (You decide.) 

   = f(gh)(gi). 

That says fg fh and f(gh) are the same permutation. In that way, the multiplication in the subgroup 

 {fg
1
,  fg

2
, …,  fgn

} 

of Sn reflects the multiplication in G. (Why is that set definitely a subgroup of Sn?) 
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(ii) the alternating group and normal subgroups 

Suppose f and g are two even permutations in Sn. Each is factorable into an even number of 

transpositions. Clearly then fg is also an even permutation. We infer that the subset An of even 

permutations is closed under multiplication. By Theorem 3 in (a(iii)), An is a subgroup of Sn. It is called 

the alternating group on n elements. 

Beginning with n = 2, An always has half the n! permutations in Sn. 

Suppose we multiply every member of Sn by (1 2). The multiplication turns every even permutation 

into an odd one, and vice-versa. As we saw just above, such a multiplication gives a one-to-one 

transformation: The cancellation law implies that if f and g are different, then f  (1 2) cannot be 

equal to g  (1 2). [Yes, the transformation is a permutation. What symmetric group does it belong 

to?] It follows that there are exactly as many evens as odds, and An has half the permutations. 

Implicit in the previous paragraph is that the set An(1 2) of products 

 (even permutation)(1 2) 

is the set of odd permutations. By analogy with “left coset” (from Lagrange’s theorem in subsection 

2a(iii)), we call An(1 2) a right coset of An. Clearly An and An(1 2) add up to all of Sn; those are the only 

right cosets of An. Similarly, the left coset (1 2)An is the set of odd permutations; it and An are the only 

left cosets of An. Since An(1 2) and (1 2)An are the same set, each right coset of An is also a left coset. 

In S3, A3 consists of 

 I,  (1 2 3),   (1 3 2). 

Check that the products of those three with (1 2) (the latter on the right) are 

 (1 2),  (2 3),   (1 3), 

and their products with (1 2) (on the left) are 

 (1 2),  (1 3),   (2 3). 

The right coset A3(1 2) is the same set as the left coset (1 2)A3. 

By contrast, the left and right cosets of 

 J = {I, (13)} 

(Is that really a subgroup of S3?) do not coincide. For example, 

 J(1 2) = {(1 2), (1 3 2)},  whereas  (1 2)J = {(1 2), (1 2 3)}. 

Keep in mind that the left coset (1 2)J is the only one the right coset J(1 2) could possibly match. 

They are the only ones that have (1 2). 

A subgroup for which every right coset is a left coset is special: We call it a normal subgroup. 

There are three situations in which it is automatic that subgroup H is normal in group G: 

1. H has half the elements in G. In that case, just as in the argument above for An, the lone right and left 

coset other than H is the rest of G. 

2. H is either {I } or G. In the usual mathematical usage, those are called the trivial normal subgroups. 

3. G is abelian. In that case, the cosets gH and Hg match element by element. 

There is a test for normality, often given as the definition of “normal,” that is generally more 

convenient than matching up the cosets. (Try it in Exercises 1 and 2.) 

Theorem 2. The subgroup H is normal in G iff for every member h of H and g in G (irrespective of 

whether g belongs to H), the product g
 -1

hg is a member of H. 

To see why, observe that Hg = gH means that each element h1g of the right coset equals some 

element gh2 of the left coset. From 

 h1g = gh2,   we infer   g
 -1

h1g = g
 -1

gh2 = h2. 

The product g
 -1

h1g is an element of H. The argument is reversible to prove the converse. 
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To see it with our subgroup 

 J = {I, (1 3)} 

in S3, simply note that 

 (1 2)
-1

(1 3)(1 2) = (1 2)(1 3)(1 2) = (2 3) 

is not in J. This is not a normal subgroup. 

b(ii) Exercises IX.A.2

1. Show that {I, (1 2)} and  {I, (2 3)} are not normal in S3. [Math has not adopted “abnormal.”] 

2. In S4, let 
 f = (1 2)(3 4),  g = (13)(2 4). 
a) Show that 
 f 2 = g2 = I  and  fg = gf. 
b) Argue why H = {I, f, g, fg } is a subgroup of S4. 
c) Argue as follows that H is a normal subgroup: 
Take a transposition of your choice in S4, and call it t. Show that  H has each of 
 t -1ft,  t -1gt,  t -1(fg)t. 
That says H passes the normality test with t. You could test with the other transpositions, 
but the calculations are similar, owing to symmetry: H has all three possible products of 
disjoint transpositions. It then follows that H passes the test with any product of 
transpositions. That makes H a normal subgroup of S4.) 

3. Show that if an abelian group has composite order, then it has some nontrivial normal 
subgroup (normal subgroup other than {I } and the group itself). 

(iii) group structure and solution formulas 

There is an architecture to groups, a way they are put together, that is related to the solvability of 

equations. The relation is the reason for this long discussion of groups, and in particular for introducing 

normal subgroups. It is what Ruffini and Abel established. 

Proposition. (The Abel-Ruffini Theorem) The general polynomial equation of degree n is solvable—

there is a formula that produces its solutions in terms of roots and arithmetic operations on the 

coefficients—if and only if the symmetric group Sn of its complex roots is a solvable group. 

A “solvable group” is one in which normal subgroups line up a certain way. In the remainder of this 

subsection, we will define the term and indicate how Galois proved that if n  5, then Sn is not solvable. 

That last, in view of the Abel-Ruffini theorem, proves that there are no solution formulas for the general 

polynomials of degrees 5, 6, …. 

In Sn, An is a maximal normal subgroup. That is, you cannot squeeze another normal subgroup 

between them. Indeed, you could not squeeze any subgroup, normal or not, between them: The order of 

that subgroup would have to divide (order of Sn) = n!, and (order of An) = n!/2 is already the biggest 

possible divisor. 

Now, An has normal subgroups. (Name one.) Here we mean subgroups that are normal in An, not 

necessarily normal in Sn. (Exercise 1b asks for evidence that you can have J normal in H, with H normal 

in G, without J being normal in G.) Let J1 be any maximal one. If J1 is not simply {I }, then among the 

normal subgroups of J1, there must be a maximal one J2. If J2 is not simply {I }, …. This descent has to 

come to an end at {I }. It leaves us with a sequence 

 {I } max normal in  Jk max normal in  Jk – 1  max normal in  

   … J1 max normal in  An max normal in  Sn. 

Such a sequence is called a composition series for Sn. 
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In S3, look at the sequence 

 {I },  A3,  S3. 

We know A3 is maximal in S3. In A3, {I } is the only subgroup (Reason?), and it is normal. Therefore 

the sequence is a composition series. 

In Z6, we can say the same things about 

 {0},  {2, 4, 0}, Z6. 

Therefore this sequence is a composition series for Z6. 

Those two composition series are pretty much the same, even though S3 and Z6 do not have the 

same, well, composition. There is, however, a series-related difference between the two groups. 

In S3, the series above is the only possible one, because there A3 is the only maximal normal 

subgroup. Check (Exercise 2) that 

 {0},  {3, 0},  Z6 

is another composition series for Z6. This one is structurally different from the previous, because in 

this one, the sequence of orders is 1-2-6; in the previous series, the orders were 1-3-6. Generally, 

composition series are not unique, although different series for one group do have something in 

common (as in Exercise 3). 

One way you can be sure that the normal subgroup H of G is maximal is if the natural number 

 (order of G)/(order of H) 

is prime. That ratio is useful enough to deserve a name: We call it the index of H in G. Recall from the 

Lagrange argument (section IX.A.2a(iii)) that it is the number of either left or right cosets of H. 

Exercise IX.A.2b(ii):2 had the example 

 H = {I,  (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}. 

It is a normal subgroup in S4, and therefore normal in A4. (See Exercise 1a. Why is it even a 

subgroup of A4?) In A4, it has prime index 12/4 = 3. 

Suppose J is a subgroup of A4 that contains H. Then the index of H satisfies 

 3 = (order of A4)/(order of J )  (order of J )/(order of H ). 

By Lagrange’s theorem, those ratios are integers. Of necessity, one of them is 1. If the first is 1, 

then J = A4. If it is the second, then J = H. That shows H is maximal in A4. 

If a group has a composition series in which each subgroup has prime index in the next one, then we 

say the group is solvable. That is the property Ruffini and Abel connected to solution formulas. 

In S2 = {I, (1 2)}, we have the lone composition series 

 {I }, S2. 

It carries the single index 2. For S3, we saw the composition series 

 {I },  A3,  S3, 

with indices 3, 2. Both groups are solvable, and we know formulas exist for quadratics and cubics. 

In S4, we know A4 is normal, with index 2. We know 

 H = {I,  (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)} 

is normal in A4, with index 3. We see that 

 J = {I,  (1 2)(3 4)} 

is a subgroup of H (Why?), has index 2, is therefore normal and maximal in H. Last, {I } has index 2 

in J. We have the composition series 

 {I },  J,  H,  A4,  S4, 

with all four indices prime. Therefore S4 is solvable. 
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Evidently, we are going to find that S5 is not solvable. Ruffini and Abel proved it by working 

directly with the permutations. Galois, in the material Liouville published in 1846, worked more with 

group properties. His proof is based on the next proposition.  

Proposition. For n  5, the alternating group An is simple: Its only normal subgroups are the automatic 

two, An and {I }. 

The proof is actually elementary, just more detailed than we want to tackle. You can find one at 

Georgia Tech. It hangs on two facts: Every normal subgroup of An (n  3) includes a tricycle; and if a 

normal subgroup of An has one tricycle, then it has them all. Because every even permutation factors 

into the product of tricycles (Exercise 4), a subgroup with all of them has to be all of An. 

We have met simple groups before. In answer to Exercise IX.A.2a(iii):5, if a group has prime order, 

then its only subgroups are {I } and the group itself. Hence a group of prime order is necessarily simple. 

As it happens, those are the only (finite) abelian groups that are simple (Exercise 3 in subsection (ii)). 

Accepting the proposition, we can prove the following. 

Theorem 3. For n  5, the only nontrivial normal subgroup of Sn is An. 

Given n  5, let J be a normal subgroup of Sn. Then the intersection J  An is a normal subgroup 

of Sn, is therefore a normal subgroup of An (both conclusions from Exercise 5). Because An is simple, 

J  An has to be either all of An or {I }. 

Suppose first J  An  =  An. That means An is a subset of J, therefore a subgroup of it. We know that 

you cannot squeeze a subgroup between An and Sn. It must be that either J = An or J = Sn. 

Suppose instead that J  An  =  {I }. That says J has no even permutations except I. It will then be 

impossible for J to have any odd ones. Imagine f is an odd permutation n J. Then the even 

permutation f
  2

 is in H, forcing f
 2

 = I;  f  has order 2. By Exercise IX.A.1d(iii):1, the factorization 

of f into disjoint cycles has only disjoint transpositions. Say 

 f = (1 2) (even number of disjoint transpositions devoid of 1 and 2). 

Because J is normal, it must also have the odd permutation 

 g  =  (1 3)
-1

f (1 3)  =  (3 1)
 
(1 2) (disjoint transpositions devoid of 1 and 2) (1 3). 

This g is different from f. It is different because f assigns 

 2   1   (stays 1 through the red transpositions), 

whereas g assigns 

 2  1  (stays 1 through the red transpositions)  3. 

Because g is not f = f
 -1

,  fg is another non-identity element of J, and fg is even. By that contradiction, 

we conclude J has no odd permutations. We infer J = {I }. That demonstrates the theorem. 

Now that we know all the normal subgroups of Sn for n  5, we can show that Sn has only one 

composition series. The only maximal normal subgroup of Sn is An, and by the proposition, the only 

normal subgroup of An is {I }. Therefore the only possible composition series for Sn is 

 {I }, An, Sn. 

In it, the first index is 

 n!/2 = [1(2)…5(6)…n]/2 = 60  something. 

That number is not prime. Hence Sn is not solvable. There is no solution formula for the general 

polynomial equation of degree n. 

Like Ruffini and Abel, Galois answered a question from the old algebra, the theory of equations of 

all those great names from al-Khwarizmi through Viète. But Galois answered it by creating the new 

algebra, the theory of abstract algebraic structures. 

http://people.math.gatech.edu/~ecroot/A5.pdf
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[There is a must-read book I recommended at the opening of Section VI.B. Galois and Abel are at its 

center. It is Mario Livio’s The Equation That Couldn’t Be Solved.] 

b(iii)  Exercises IX.A.2

1. a) Show that if J is a subgroup of H, and both are normal subgroups of G, then J is a 
normal subgroup of H. 
b) Give an example in which J is a normal subgroup of H, and H is a normal subgroup of G, 
but J is not normal in G. (Hint: An example exists in this subsection.) 

2. Show that 
 {0},  {3, 0},  Z6 
is a composition series for Z6. (Note: There are several things to prove.) 

3. We [you] saw in Exercise IX.A.2a(iii):7e that the group R43, of residues modulo 43 under 
multiplication, is cyclic. 
a) How many composition series does it have? 
b) For each series, what is the set of indices (of each subgroup in the next one)? 

4. Show that every even permutation is the product of tricycles. (Hint: The product of two 
transpositions has to be I, or a tricycle, or the product of two tricycles.) 

5. Show that if H and J are normal subgroups of G, then: 

a) H  J is a normal subgroup of G. (Note: There are two things to prove.) 

b) H  J is a normal subgroup of both H and J. 

c) Galois theory and the ancient problems 

Galois theory encompasses a collection of beautiful results. We will focus on just one, because it 

leads to the end of a two-millennium geometric hunt. It is a technical mouthful, so we will state it, then 

chew it in small bites. 

Proposition. A number is constructible if and only if it is algebraic and has minimal polynomial whose 

degree is a power of 2. 

(i) constructible numbers 

Recall from section III.A.3 the Greek challenge to construct figures with various properties. By 

constructing a number, we mean producing a line segment of that length by resort to three weapons: a 

compass, a straightedge, and a unit length. 

Think of a straightedge as an unmarked ruler. You cannot measure with it; you cannot produce, for 

example, a one-inch segment. However, informed that this underline is one inch long, you can use the 

compass and straightedge to reproduce the segment. Then you can adjoin consecutive congruent 

segments to draw a segment of any natural-number length. Therefore natural numbers are constructible. 

We know there is a construction to partition a length m into n congruent pieces. Therefore positive 

rational numbers are constructible. If we agree to consider lengths in one sense along a 

line to be positive, in the opposite sense to be negative—and a point to have zero 

length—then we see that all rational numbers fit the bill. They must be among the 

numbers the proposition identifies. 

At least some irrational numbers are constructible. At right, we have AB of unit 

length. We raise the perpendicular (green) at B, and make BC also 1 long. Then the 

length of AC is 2. Erecting the perpendicular CD (red) of unit length to AC, we have 

AD of length 3. Continuing, we construct every n. 

 

A B 

C 

D 

1 

1 
2 

3 
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The reason for studying constructible numbers is their relation to the three ancient problems.  We 

can construct a unit circle. To square it is to produce a square of area . That amounts to constructing a 

side of length . Similarly, doubling a unit cube amounts to constructing a side of length √2
3

. 

“Trisecting an angle” refers to producing an angle, but we can turn it into constructing a length. Suppose 

the angle to divide has measure 3. Trisecting it, to make an acute angle , is equivalent to constructing 

either sin  or cos . If we are given  with vertex O, as at left, we lay off length 1 

(green) to A along one side, then drop the perpendicular (red) to B on the other. That 

constructs sin  = AB and cos  = OB. If conversely we are given 

say cos , the length CD at right, then we build the perpendicular 

(green) at D, then use the compass to mark the point E on the green where CE = 1. 

That constructs angle ECD, whose cosine is cos . 

(ii) fields 

We need to define one more abstract algebraic structure. A set K is called a field when it is equipped 

with two operations that satisfy eleven axioms. The axioms correspond to eleven properties of the field 

of rational numbers, or of the field of real numbers. Accordingly, the operations are called addition and 

multiplication, denoted by + and  (the latter sign sometimes left out). The rules are: 

Axioms 1-5. Under addition, K is an abelian group.  

The “1-5” is a way to indicate that addition satisfies the four group axioms, plus the requirement of 

commutativity. Thus, + is an operation; it is associative; it has an identity, denoted by 0 and called 

“zero”; and every element a of K has an additive inverse, denoted by -a (and hard to name. “Negative a” 

has the disadvantage that we need “negative” for a later use. Similarly, “a inverse” is better saved for 

multiplication. “The additive inverse of a” has too many notes. “Minus a” will do, although “a opposite” 

is apposite.) The fifth requirement is a + b = b + a. 

[Richard Dedekind, whom we will meet later, described fields and called them by the German word 

for “body,” Körper. Perhaps because F is too valuable in connection with functions, math has kept K as 

the symbol for a field. G is valuable in the same context, but the French word for “group” is cognate to 

the English word; “group G” stays.] 

Axioms 6-10. Under multiplication, the nonzero elements of K form an abelian group. 

Although multiplication by 0 has to be defined, Axioms 6-10 say nothing about it. They demand 

something of the other elements. There must be other elements, because they form a group, and a group 

cannot be empty. Among the nonzero elements,  has to be an operation; it must be associative; there 

must exist a multiplicative identity, designated by 1 and called “one”; each element b must have a 

multiplicative inverse, written b
-1

 and called “b inverse”; and ab = ba. 

The two sets 1-5 and 6-10 of axioms are almost symmetric. They differ only in the odd exemption 

given, with respect to multiplication, to 0. More important, nothing so far connects addition and 

multiplication. The last rule does that. 

Axiom 11. Multiplication is distributive over addition: For any elements a, b, c of K, 

 a(b + c) = ab + ac.  

In that last equation, we have adopted the usual convention about order of operations. 

From those axioms, what can we prove? 

Theorem 1. For any element a in any field, 

 a  0 = 0  a = 0.  
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We have 

 a  0 + 0  =  a  0 (identity property of zero) 

   =  a  (0 + 0) (same) 

   =  a  0 + a  0 (distributivity). 

In every group, cancellation applies. Cancel a  0 to arrive at 

 0 = a  0. 

For 0  a, just mirror-image the argument. 

Theorem 2. In any field, 0 cannot have a multiplicative inverse, and addition cannot be distributive over 

multiplication (Exercises 1 and 2).  

Theorem 3. In any field, if ab = 0, then either a = 0 or b = 0. 

Theorem 1 says that if one of the factors is zero, then the product is zero. Theorem 3 says the 

converse. That is a fundamental algebraic principle. In old (equations) algebra, we solve equations by 

factoring expressions we know to be zero and reducing the question to what makes the factors zero. 

Assume ab = 0. If a  0, then a has an inverse a
-1

. It follows that 

 0 = a
-1

  0 (Theorem 1) 

    = a
-1

  (ab) (by assumption) 

    = (a
-1

  a)b (associativity) 

    = 1b  =  b (definitions of inverse and identity). 

If ab = 0, either a is 0, or b has to be. 

Almost all of our operations-based algebra—the pre-college “algebra” of our schools—follows from 

the axioms. On one side, take manipulations. The dreaded rules for adding and dividing fractions, 

 a/b + c/d  =  (ad + bc)/(cd),   (a/b)/(c/d)  =  (ad)/(bc), 

are easy to prove from the axioms (after some needed definitions; see Exercise 3a-c). On the other side, 

take equations and solutions methods. The “general linear equation” 

 ax + b  =  0  with a  0 

always has exactly one solution, given by x = -b/a (Exercise 3d). For another example, take the quadratic 

 ax
2
 + bx + c  =  0,  a  0. 

If b
2
 – (1 + 1)

2
ac has a square root, an element d such that d 2 = b

2
 – (1 + 1)

2
ac, then 

 x = (-b  d)/(a + a) 

gives the only two (possibly equal) solutions. (The proof has many steps—for example, you have to 

establish that multiplying binomials works the way we expect—but they are as elementary as they are in 

our usual proof of the quadratic formula. See Exercise 4 about the existence of square roots.) 

We said more than once “in any field.” There are fields other than those of rational, real, or complex 

numbers. Look at Z43, the set {0, 1, 2, …, 42} of residues modulo 43 with addition and multiplication 

modulo 43. Under that addition, Z43 is an abelian group; the explanation matches that for Z6 in section 

IX.A.2a(ii). The nonzero residues form the abelian group R43 (end of section IX.A.2a(iii)) under 

multiplication. We trust that the multiplication is distributive, for a reason we have seen before: 

Multiplication of integers is distributive, and congruence is compatible with it and addition. (It should be 

clear that all these statements hold in Zp, for any prime p.)  

Those fields Z43, Q (rationals), R (reals), C (complex) really are different algebraically. In Z43 but 

not the other three, 

 1, 1 + 1,  1 + 1 + 1, … 

lists finitely-many elements. (We have seen why.) In Q but not the other three, 

 x
2
 – 6  =  0   (“6” meaning 1 + 1 + 1 + 1 + 1 + 1) 
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has no solution. (What is the solution in Z43?) In R and not the others, 

 x
3
 – 21  =  0 

has exactly one solution? (What are the solutions in Z43 [recall that R43 is cyclic] and C?) Finally, in 

C and not the others, 

 x
2
 + 1  =  0 

has a solution. (The Z43 case is about square roots, Exercise 4d.) 

c(ii) Exercises IX.A.2

1. Prove that in a field, 0 cannot have a multiplicative inverse. (The axioms do not require 0 to 
have an inverse. Here we say that they actually prohibit an inverse.) 

2. Prove that in a field, addition cannot distribute over multiplication: 

 a + (b  c)  =  (a + b)  (a + c) 
cannot always (for all elements of the field) be true. 

3. a) Based on the axioms, define a – b and  a  b (hereafter a/b). 
b) Prove (in a field) the familiar algebraic relation 
 (a – b)(a + b)  =  a2 – b2. 
c) Show that 
 (a/b)/(c/d)  =  (ad)/(bc). 
State the needed conditions. 
d) Show that x = -b/a solves 
 ax + b  =  0, 
and nothing else does. 

4. a) Show that in any field, 1 has at least one square root. 
b) In (a), is it possible for there to be just one square root? Is it possible for there to be 
three (distinct) square roots? 
c) Give one example of a finite field in which -1 has no square root; a second example in 
which it has exactly one; a third in which it has two. Is more than two possible? 
d) In Z43, does -1 have a square root? (Hint: R43 is still cyclic with 42 elements, and 42 is 
not divisible by 4.) 

(iii) fields of real numbers 

Within the field R of real numbers, the subset Q of rational numbers is itself a field under the 

addition and multiplication in R. We therefore say Q is a subfield of R. 

By analogy with our study of maximal subgroups (section IX.A.2b(iii)), we may ask whether there 

are subfields smaller than Q, or between Q and R. The answers are no and yes. 

Suppose K is a subfield of R. Then K has to possess an additive identity O. That identity must have 

 O + O  =  O 

under the addition in K, which is the addition in R. Since the latter addition allows cancellation, we 

conclude that O = 0. Additionally, K must have a multiplicative identity I that must be different from 

O = 0 and must satisfy 

 I  I  =  I. 

Because I is nonzero, we may cancel it to conclude I = 1. We have so far 0 and 1 in K. 

We must also have 1 + 1, 1 + 1 + 1, … in K. That says the natural numbers are in K, from which 

their additive inverses are in K. Thus, all integers are in K. Hence all rational numbers mn
-1

 are also 

members. We deduce that if K is a subfield of R, then K contains Q; no subfield is smaller than Q. 
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The larger-field question is what Dedekind was actually studying. Pick a convenient real number 

outside Q, like 2. Let S be the subset of real numbers of the form r + s2, where r and s are rational. 

This subset is closed under subtraction and division: If a = r + s2 and b = t + u2  0 are in S, then so 

are a – b and a/b (Exercise 1a). We will show below that those properties guarantee S is a subfield of R. 

As such, it is a bigger subfield than Q and smaller than R. (See Exercise 1b-c, as well as Exercise 2.) 

[Let us call the members of S “the surd numbers.” “Absurd” would be a decent substitute. Normally 

the word is applied to any irrational combination of roots. It comes from the Latin for “deaf,” a usage 

that appears to go all the way back to al-Khwarizmi. He called such numbers “silent.”] 

Recall the theorem (section IX.A.2a(i)) that if a subset of a finite group is closed under the operation, 

then the subset is a subgroup. The set 

 {1, 1 + 1,  1 + 1 + 1, …} 

of natural numbers is closed under both operations in R, but is not a subfield (Exercise 3). The subfield 

criterion corresponding to that group theorem is the following. 

Theorem 4. If a subset of a field has at least one nonzero element and is closed under subtraction and 

division, then it is a subfield. 

Assume T is such a subset and a is any nonzero element in T. Then 0 = a – a and 1 = a/a are in T, 

satisfying the identity axioms. Therefore, 0 – a = -a and 1/a = a
-1

 are also in T, satisfying the inverse 

axioms. If b  T (zero or not), then b – -a = a + b and b/a
-1

 = ab are in T, so that addition and 

multiplication are (closed) operations in T. Associativity, commutativity, and distributivity are 

inherited from the parent. Thus, T satisfies the field axioms under the overlying operations. 

In this context, our primary interest is that the constructible numbers form a subfield. Assume that 

we can construct a and b. We easily construct a – b, with our previous 

convention about positive lengths toward one side and negative toward the 

other. For division, extend segment AB of length a by 1 (green) to C, as at 

right. Draw the perpendicular (dashed) at B, and match length b from B to D. 

Construct the circumscribed circle for triangle ACD, intersecting the other side 

of the perpendicular at E. Then the intersecting-chords property says 

 a(1) = b(BE). 

We have constructed BE = a/b. By Theorem 4, it follows that the constructible 

numbers constitute a subfield of the reals. (See also Exercise 4.) 

c(iii) Exercises IX.A.2

1. a) Show that if a = r + s2 and b = t + u2  0 are surds, then so are a – b and a/b. 
b) Show that Q is a proper subset (not all of) the field S of surds. 
c) Show that S is a proper subset of R. (Hint: Find a real non-surd.) 

2. Let U be the subset of real numbers of the form r + s2 + t3 + u6, with r, s, t, and u all 
rational. Show that U is a subfield of R bigger than S (the surds). (Hint: 

 r + s2 + t3 + u6  =  (r + s2) + (t + u2)3, 
and we already know the surds make up a subfield.) 

3. Show that the set of natural numbers is closed under addition and multiplication in R, but is 
not a subfield of R? 

4. Given a segment of length a > 0, construct a. 

 

1 
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D 
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(iv) algebraic numbers and squaring the circle 

At the beginning of section VIII.D.1, we cited the need to divide coefficients as reason to allow 

polynomials with rational coefficients. It turns out that the important thing is to restrict coefficients to a 

field; any field will do. 

In the set of “polynomials over a field,” we can write the induction proof we suggested back there 

for the division algorithm. From the division algorithm, we can prove the remainder theorem. (Look 

back at our proof. Observe that the key was setting x = u in 

 f(x) = q(x)(x – u) + v. 

The substitution makes (x – u) = 0. Consequently 

 f(u)  =  q(u)0 + v  =  v, 

because multiplication by 0 gives 0 in every field. That established the remainder theorem.) From 

the remainder theorem, we prove the factor theorem. 

A member of a field is said to be algebraic over a subfield if it is a root of some polynomial whose 

coefficients are in the subfield. Our interest is just R and Q, so we will simply say that a real number is 

algebraic if it satisfies (is a root of) some polynomial with rational coefficients. 

Every rational number is algebraic (Exercise 1). Each of the irrationals 2, ∛2, and cos 20  0.94 is 

algebraic: 

 2  satisfies x
2
 – 2, 

 ∛2  satisfies x
3
 – 2, 

 cos 20  satisfies 8x
3
 – 6x – 1  (section VI.C.4a). 

(It is ironic that for this definition, we could demand integer coefficients. If r solves 

 x
1234

/56 + 78x
910

/1112 – 1314/1516  =  0, 

then it solves the same equation multiplied on both sides by 56(1112)1516.) 

A number that is not algebraic is called transcendental. Proving transcendental numbers even exist 

is an advanced problem. Liouville proved their existence in 1844, then constructed one in 1851. In 1861, 

Charles Hermite established that e is transcendental. In 1882, Ferdinand von Lindemann exhibited a 

collection of transcendentals. (Wikipedia® has a [hopelessly advanced] proof.) One member of that 

collection was . 

View that fact in light of the Galois (constructible-number) proposition. Given that  is not 

algebraic, we infer that it is not constructible. Therefore  is not constructible. (Why?) Since  is not 

constructible, it is impossible to construct a square of area . Hence you cannot square the unit circle.  

In that way, a conclusion from the algebra of abstract structures answered one of the geometric 

puzzles Anaxagoras proposed some 2300 years before. 

c(iv) Exercises IX.A.2

1. a) Prove that every rational number is algebraic. 
b) Show that the Galois proposition guarantees every rational number is constructible. 

2. Show that √5
4

 is algebraic. 

3. Show that √7/8 + √10/1196

 is algebraic. 

https://en.wikipedia.org/wiki/Lindemann%E2%80%93Weierstrass_theorem#Transcendence_of_e_and_.CF.80
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(v) minimal polynomials and the other problems 

An algebraic number will satisfy a whole family of polynomials over Q. Because 2 solves 

 x
2
 – 2  =  0, 

it also solves 

 (x
2
 – 2)

2
  =  0  and  (x

2
 – 2)(x

8
 + 7x

6
 – 5x

4
 + 3)  =  0; 

it satisfies any multiple of x
2
 – 2. By the well-ordering principle, among the polynomials 2 satisfies, 

there must be some of smallest degree. Let g(x) be one of them. We will call g(x) a minimal 

polynomial for 2. 

Theorem 5. If g is a minimal polynomial for the real number b, then g divides every other polynomial 

that b satisfies. 

Assume g is minimal for b, and f is another polynomial b satisfies. By the division algorithm, 

 f(x) = q(x)g(x) +  r(x), 

with r(x) either zero or of smaller degree than g(x). Substitute x = b to rewrite 

 r(b)  =  f(b) – q(b)g(b)  =  0. 

That says b also satisfies r(x). We conclude that r cannot have a degree: It must be r = 0. Therefore g 

is a divisor of f. 

Now suppose h(x) ties g(x) for smallest degree. We still have 

 h(x) = Q(x)g(x). 

Of necessity, Q is of degree 0; Q(x) has constant value k. We conclude that every minimal polynomial is 

a nonzero numerical multiple of g. Therefore among the minimal polynomials, there is a unique monic 

(leading coefficient  =  1) one. We will call that one the minimal polynomial for b. 

What is the minimal polynomial for 2? If it were not x
2
 – 2, then by Theorem 5, it would be some 

smaller-degree factor of it. That factor would be a linear x – r with a rational r. By the factor theorem, 

that r would solve 

 x
2
 – 2  =  0. 

There is no such rational. Therefore x
2
 – 2 is the minimal polynomial for 2. (Compare Exercise 1.) 

The real number 2 is algebraic, and its minimal polynomial has degree 2. By the constructible-

number proposition, 2 is constructible. 

Let f(x) be the minimal polynomial for ∛2. Then by Theorem 5, f divides x
3
 – 2: 

 x
3
 – 2  =  q(x)

 
f(x). 

The degrees of f and q have to add up to 3. Neither of them can be the linear x – r, because that 

would imply a rational r whose cube is 2. Therefore one of them has zero degree. Necessarily it is q: 

q(x) = 1, and the minimal polynomial for ∛2 is x
3
 – 2. 

The real number ∛2 is algebraic, with minimal polynomial whose degree is not a power of 2. By the 

proposition, ∛2 is not constructible. You cannot double the unit cube. 

That leaves the problem of trisecting the angle. We know how to construct a 60 angle. As we noted 

in subsection (i), trisecting it is equivalent to constructing cos 20. We know cos 20 is one solution of 

 F(x)  =  8x
3
 – 6x – 1  =  0. 

By the proposition, if F is minimal for cos 20, then that number is not constructible. By our previous 

reasoning (for ∛2), F will be minimal if it has no rational roots. The trisection question has come down 

to a result of separate interest. 

Theorem 6. (The Rational Roots Theorem) Suppose m/n is a lowest-terms rational root of a poly-

nomial with integer coefficients. Then m divides the constant term and n divides the leading coefficient. 
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To prove it, suppose m/n is reduced and solves the equation 

 ak x
k
 + ak – 1 x

k – 1
 + … + a1 x + a0  =  0, 

in which each aj is an integer. Substitute x = m/n, multiply by n
k
, and rewrite the result as 

 ak m
k
 + ak – 1 m

k – 1
n + … + a1 mn

k – 1
  =  -a0n

k
. 

The left side is divisible by m. That means m divides a0n
k
. Because m/n is reduced, m is relatively 

prime to n. Therefore m is relatively prime to all powers of n. Since m divides a0n
k
, we conclude that 

m divides a0. If instead we rewrite the last equation as 

 ak m
k
 = -ak – 1 m

k – 1
n – … – a1 mn

k – 1
 – a0n

k
, 

then we reason similarly to conclude that n divides ak. 

Look back at Exercise V.B.2:4. The argument needed there for Fibonacci’s cubic is exactly as 

above, just in a specific setting. Both Leonardo and Omar must have known the idea underlying the 

rational roots theorem. (See Exercise 3 below.) 

Notice that the theorem does not find the solutions of an equation. It simply reduces the candidates 

to a manageable set. [We would have said “field of candidates,” but the word is taken.] 

We were chasing 

 F(x)  =  8x
3
 – 6x – 1  =  0. 

The theorem says that if m/n is a reduced rational solution, then m divides -1 and n divides 8. That 

forces 

 m = 1  and  n = 1, 2, 4, or 8. 

(Attaching the sign to m obviates the need to consider negative n.) Therefore the only possible 

rational solutions are the eight numbers 1/1, 1/2, 1/4, 1/8. None of those works (Exercise 4). 

We infer that F(x) does not have rational roots. 

That F has no rational roots tells us that it is the minimal polynomial for cos 20. By the proposition, 

the real number cos 20 is not constructible. Therefore you cannot construct a 20 angle. You cannot 

trisect a 60 angle. 

c(v) Exercises IX.A.2

1. Show that if b is algebraic, then its minimal polynomial is irreducible (not factorable into 
polynomials, having rational coefficients, of lower nonzero degree).  

2. How did the algebraic problems studied by al-Khwarismi differ from those studied by 
Galois? How did their methods differ? 

3. Use the rational roots theorem to show that Fibonacci’s cubic 
 x3 + 2x2 + 10x – 20  =  0 
has no rational solutions. 

4. Show that none of 1/1, 1/2, 1/4, 1/8 satisfies 8x3 – 6x – 1. 

5. Is √5
4

 constructible? Give Galois’s existential answer and a constructive answer. 

6. Is it possible to construct an angle of: 

a) 1  b) 2  c) 3? 
d) On the basis of those, find all the whole-number-degree angles that are constructible. 

7. For each number, describe how to construct a regular polygon of that many sides, or argue 
why it is impossible: 
a) 10  b) 18  c) 30  d) 36  e) 48? 



 Chapter IX. The Axiomatization 
Section IX.B. The Calculus  1. The Paradoxes 

272 

 The Calculus Section IX.B.
By 1820, the calculus was century-and-a-half old. In that time, nobody had settled d’Alembert and 

Berkeley’s objections to the ambiguous use of infinitesimals (section VIII.B.3a). Even greater ambiguity 

attached to the treatment of series as sums, despite paradoxes that arose here and there. In this section, 

we will see how the foundations of calculus—the principles that made it axiomatic—were laid. 

1. The Paradoxes 

We already noted the contrary values of “infinitesimal” quantities. The expression that became a 

derivative was the slope 

 [f (a + h) – f (a)]/h. 

There, h is not allowed to be zero, except that Fermat found it convenient to set it to zero. In the integral 

problem, Leibniz summed regions of zero width, sort of, to reach a positive area. 

For series, some paradoxes are not subtle. Recall (section V.B.3b) that 

 t = 1 – 1 + 1 – 1 + … 

leads to both t = 1/2 and t = 0. We also have an equation from Euler, 

 … + x
-3

 + x
-2

 + x
-1

 + x
0
 + x + x

2
 + x

3
 + …  =  0. 

At least, this one is easy to break (Exercise 1). 

The early practitioner with the best feel for series was Jacques Bernoulli. He concluded that the 

reciprocal-square series 

 1/1
2
 + 1/2

2
 + 1/3

2
 + 1/4

2
 + … 

represents a number, even if he could not evaluate it. He reasoned that it is smaller term by term than 

 1 + 1/1(2) + 1/2(3) + 1/3(4) + …, 

which adds up to 2 (based on Exercise VIII.B.3:2). He rediscovered Oresme’s argument for the 

harmonic series (also section V.B.3b), then reasoned by comparison that the bigger series 

 T = 1/1 + 1/2 + 1/3 + … 

must likewise sum to infinity. 

About this last series, he noted a paradox. Separate odds and evens to write 

 T = (1/1 + 1/3 + 1/5 + …) + (1/2 + 1/4 + 1/6 + …) 

  = (1/1 + 1/3 + 1/5 + …) + (1/2)T. 

Then 

 (1/1 + 1/3 + 1/5 + …) = (1 – 1/2)T  0.3T. 

It is not surprising that the odd terms add up to less than the total. However, you would expect them 

to contribute more than half; each odd term is bigger than the even one right after it. 

Paradoxes aside, pretending that series are sums had yielded such important mathematics as the 

binomial theorem and Euler’s complex exponential. The latter was not Euler’s strangest result. He 

evaluated Frère Jacques’s reciprocal-square series by analyzing the polynomial 

 p(x) = 1 – x/3! + x
2
/5! – x

3
/7! + …. 

Look at the series for sine, 

 sin t  =  t – t
3
/3! + t

5
/5! – t

7
/7! + …. 

Divide by t and set x = t
2
, to write 

 (sin x)/x  =  1 – x/3! + x
2
/5! – x

3
/7! + …. 
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On that left side, x  0 is not legal. On the right, it is a perfectly valid substitution. If x  0, then 

 p(x) = 1 + (-x)/3! + (-x)
2
/5!  + (-x)

3
/7! + … 

is a sum of nonnegative terms that are no greater than the terms in 

 e
-x

 = 1 + (-x)/1! + (-x)
2
/2!  + (-x)

3
/3! + …. 

Admittedly, p(x) is long for a polynomial. Nevertheless, if series are sums, then p must have 

polynomial properties. One of those, Exercise VIII.D.3a:3 , is that the sum of the reciprocals of its roots 

must be the negative of (linear coefficient divided by constant), irrespective of the degree or leading 

coefficient. (That last is a good thing, since p has neither.) 

For p, 

 -(linear/constant)  =  -[-1/3!]/1. 

The only possible roots are positive; we noted that if x  0, then p(x) is 1 + a sum of nonnegative 

terms. Therefore the roots of p are the positive solutions of 

 (sin x)/x  =  0. 

Those are the values of x with 

 x = , 2, 3, …,  namely  x = 
2
, (2)

2
, (3)

2
, …. 

By the reciprocal-sum property, 

 1/6 = 1/
2
 + 1/(2)

2
 + 1/(3)

2
 + …,  and 

 
2
/6 = 1/1

2
 + 1/2

2
 + 1/3

2
 + …. 

 Exercises IX.B.1

1. Use the formula for geometric series to write 
 1/(1 – x)  = 1 + x + x2 + x3 + …   and 

 [1/x]/(1 – [1/x]) = [1/x](1 + [1/x] + [1/x]2 + …). 
Add them to write 
 0 = 1/(1 – x) + 1/(x – 1) 
  = 1/(1 – x) + [1/x]/(1 – [1/x]) 
  = (1 + x + x2 + x3 + …) + (x-1 + x-2 + x-3 + …). 
Now, resolve the paradox. 

2. Fourier and The Fire 

The concerns over imprecise definitions came to a boil when (Jean-Baptiste) Joseph Fourier 

explained the movement of heat. 

Fourier (1768-1830) had an interesting career. He was a scientific advisor under Napoleon in the 

Egyptian conquest (1798). There, Napoleon named him to head the newly-created Egypt Institute. Back 

in France, Napoleon rewarded him in 1801with a prefecture Fourier did not want. In was in Grenoble, at 

the Alps; he would have much preferred to return to his previous position, Lagrange’s old post at the 

Polytechniqe. At Grenoble, he met Jean-François Champollion. Read Wikipedia® for an account of how 

he introduced the Rosetta stone to its eventual decipherer. 

a) the background in vibrations 

For some perspective, it helps to go back to Daniel Bernoulli. Recall (section VIII.B.1b) that he gave 

solutions to the string equation, the partial differential equation that governs the possible shapes of a 

vibrating string. His solutions had been combinations of sines and cosines. 

https://en.wikipedia.org/wiki/Jean-Fran%C3%A7ois_Champollion
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Call the length of the string L. One possible solution gives the vertical 

position y along the string by 

 y  =  F1(x, t)  =  sin (x/L) cos (2ft). 

The figure at right tries to suggest how it looks. The “standing wave” 

part [sin (x/L)] gives the enveloping arch. It is essential that the sine 

satisfies the boundary condition 

 F1(0, t)  =  F1(L, t)  =  0   for all t. 

That corresponds to the string, as in a guitar, held fixed at both ends. The oscillating part [cos (2ft)] 

gives the vibration of the string at a frequency f. The frequency depends on the string’s tension, 

length, and density (mass per unit of length). 

(Match the statement about the oscillating part with experience. Increasing tension on a guitar string 

raises its pitch: Greater tension means greater force restoring the string to equilibrium (middle) position, 

therefore higher acceleration, quicker vibration, higher frequency. Increasing length does the opposite: 

On the left side of a piano or harp, longer wires mean weaker restoring force (because the tension, lying 

more nearly along the equilibrium line, has smaller perpendicular component), lower acceleration, 

slower vibration, lower frequency. Increasing density also lowers pitch: On all three instruments, the fat 

strings offer greater inertia, undergo smaller acceleration, slower vibration, lower frequency.) 

You might recognize, from the angle-sum formula, that the stated F1 satisfies 

 2F1(x, t) = sin (x/[L/] + t/[2f ]
-1

) + sin (x/[L/] – t/[2f ]
-1

). 

That fits with d’Alembert’s formulation (mentioned without detail in Section VIII.B.3a) 

 F(x, t)  = f(x + t)    + f(x – t) 

for more general solutions. 

The possible solutions also include 

 y  =  F2(x, t)  =  sin (2x/L) cos (4ft), 

 y  =  F3(x, t)  =  sin (3x/L) cos (6ft),  

and so on. Those give the overlying shapes 

shown in the two figures at right. In those, 

the string is acting like two (or three or …) 

adjoining strings one-half (respectively one-third, …) as long as the original. Those produce tones at 

twice (three times, …) the original frequency. 

The string equation has one of the most important and fruitful of mathematical properties, namely 

“linearity.” Where the governing equation is linear, superposition applies. In less fancy language: 

If F1, F2, …, Fn are solutions, then so are the linear combinations 

 a1F1 + a2F2 + … + anFn,  with real constants a1, …, an. 

Those are the combinations Bernoulli had in mind. 

[In the sound of a string, F1 is the string’s “fundamental” vibration or “fundamental harmonic.” The 

“overtones” F2, F3, … are “second harmonic,” “third harmonic,” …. Corresponding to their frequencies, 

the wavelengths are 1/2, 1/3, ... of the original wavelength. That’s how the series 1 + 1/2 + 1/3 + … of 

reciprocals got its name.] 

b) heat conduction 

In 1807, Fourier presented a paper [titled] on the propagation of heat in solids. He introduced the 

PDE called the heat conduction equation.  By analogy with Bernoulli, d’Alembert, and Euler on fluid 

flow, the equation describes heat flow by tracking the distribution of temperature in space (within a 

solid) and time. In a way, the equation extends Newton’s law of cooling,  incorporating conductivity 

   

L 

y = sin (2x/L) 

O 

   

L 

y = sin (3x/L) 

O 

   

L 

y = sin (x/L) 

O 
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(the speed of heat flow) and specific heat (resistance to temperature change). Interestingly, by then the 

idea of heat as a fluid flowing through objects had been discredited. The theory of heat as manifestation 

of molecular motion had begun to gain acceptance. Fourier’s contemporaries were trying to describe 

heat transfer via interactions among discrete particles. Fourier instead treated the solid as a continuum. 

His solutions extended Bernoulli’s combinations to trigonometric series 

 (a1 sin x + a2 sin 2x + …) + (b0 + b1 cos x + b2 cos 2x + …). 

There, the Fourier coefficients a1, a2, … and b0, b1, … are determined by the boundary conditions, the 

temperature distribution at t = 0 on the surface of the solid. The success of these series in solving the 

conduction equation was the ultimate trigger to reform of the way the math world treated infinite series. 

Lagrange, one of the judges of the paper, never moved from his objections to Fourier series, based on 

the question of convergence (coming up. Remember Lagrange’s faith in Taylor series, for which 

Lagrange’s own remainder (section VIII.B.4b) gives an estimate of the error of the series. No similar 

estimate was available with Fourier series.) 

c) Fourier series 

Even more problematic (than convergence) was Fourier’s argument that every reasonable function is 

given by one of his trigonometric series. 

Take the most convenient example, 

 f (x) = x,    0  x  2. 

(You could work in any interval a  x  b, but then you would need to use sines and cosines 

of 2x/(b – a), to make one complete sine or cosine wave fit exactly into the interval.) 

Fourier defined the sine coefficients by 

 an = (1/) ∫ 𝑥 sin 𝑛𝑥  𝑑𝑥  from x = 0 to x = 2. 

The antiderivative of 

 g(x) = x sin nx  is  G(x) = (sin nx)/n
2
 – x (cos nx)/n. 

The change in G is 

 G(2) – G(0)  =  -2/n.   (Last two statements are Exercise 1.) 

Therefore an = -2/n. 

For the cosine coefficients, the zero’th one has a different multiplier, 

 b0  =  (1/2) ∫ 𝑥 cos 0𝑥  𝑑𝑥 = (1/2) (2)
2
/2  =  . 

Otherwise, 

 bn  =  (1/) ∫ 𝑥 cos 𝑛𝑥  𝑑𝑥. 

We omit the evaluations; see Exercise 2. All of these turn out to be zero. 

Fourier said that 

 f (x) = (a1 sin x + a2 sin 2x + …)   + (b0 + b1 cos x + b2 cos 2x + …) 

  = (-2/1 sin x – 2/2 sin 2x – 2/3 sin 3x – …) + . 

The cosine numbers are not a coincidence. If a function is odd relative to the halfway point, then its 

Fourier cosine coefficients after the one for [cos 0x] are all zero. “Odd relative to the halfway point” 

means 

 f ( + t) – f ()  =  -[f ( – t) – f ()]. 

More simply, it means the graph of f is symmetric about the point (, f ()). If the function is even 

relative to the midpoint—if 

 f ( + t)  =  f ( – t), 

so that the graph is symmetric about the line x = —then its Fourier sine coefficients are all zero. 

(See Exercise 3. Keep in mind that a function might be neither odd nor even.) 
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You can show a corresponding behavior in Taylor series. Thus, sin x is odd (sin (-x) = -sin x), 

and its Taylor series 

 sin x =  x – x
3
/3! + x

5
/5! – … 

has only odd-power terms. By contrast, cos x is even (cos -x = cos x), and 

 cos x =  1 – x
2
/2! + x

4
/4! – … 

has only even terms. 

To understand the meaning and limitations of the series, look at the “partial sums” 

 fn(x)  =    – 2/1 sin x – 2/2 sin 2x – … – 2/n sin nx. 

In the picture at right, we 

see the graph of f (black 

diagonal line), together with 

those of f2 (green), f10 (blue), 

f20 (red). You can see that 

the sums coil increasingly 

tightly around the graph of f, 

except near the two ends. 

The difference at one or 

both ends is unavoid-

able. Each fn has period 

2, whereas f is not 

periodic. 

From roughly x = 0.7 to 

x = 5.5,  f2  is a poor 

approximation to f, missing by up to 0.61. Over the same interval,  f10  misses by only 0.21,  f20  by 

only 0.13. On the bigger interval x = 0.45 to x = 5.75,  f10  still lies within 0.31 of f. On the yet bigger 

x = 0.35 to x = 5.90,  f20  is within 0.22 of f. The complete series matches f at every point of the 

interval other than the two ends. 

Fourier managed to refine his arguments by the 1822 publication of Theorie Analytique de la 

Chaleur (… of Heat). From there, at least Cauchy was convinced that the theory was correct. Still, it 

took fifteen years before Peter Dirichlet gave the first acceptable proof that a function does equal its 

Fourier series. (That was under some mild restrictions. Those included the requirement that the function 

be periodic.) 

 Exercises IX.B.2

1. a) Use calculus to find the antiderivatives of x sin nx. 
b) We have come to accept that if t is infinitesimal, then 
 [sin (u + t) – sin u]/t  =  cos u  and  [cos (u + t) – cos u]/t  =  -sin u. 
Use those relations to show, without using calculus, that 
 G(x) = (sin nx)/n2 – x (cos nx)/n 
has derivative 

 G(x) = x sin nx. 

c) Evaluate the integral of (x sin nx) between x = 0 and x = 2. 

2. a) Show with or without calculus that the antiderivative of 
 h(x) = x cos nx  is  H(x) = x (sin nx)/n + (cos nx)/n2.  

b) Evaluate the integral of (x cos nx) between x = 0 and x = 2. 
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3. Argue (via calculus or simply graphs) why, if a function F is odd relative to x = , then its 
Fourier cosine coefficients 

 bn  =  (1/) ∫ 𝐹(𝑥) cos 𝑛𝑥  𝑑𝑥  from x = 0 to x = 2,  n  1, 

are zero; and similarly for the sine coefficients if F is even relative to x = . 

d) the importance of Fourier series 

Return to our example with  f (x) = x. It has 

 f (x)  =  (-2/1 sin x + -2/2 sin 2x + …) + ( + 0 cos x + 0 cos 2x + …)  for 0 < x < 2. 

The series and the double sequence 

 (-2/1, -2/2, …), (, 0, 0, …) 

are both called the Fourier transform of f. Either encapsulates the continuum of data that f is, in a 

package of discrete elements. You can say that the series is the “spectrum” of f. Think of the function as 

the sound from an orchestra. Just as a prism separates sunlight into its constituent colors, so the 

transform separates f into its constituent wavelengths. Thus, f (x) mixes a portion -2/1 of the signal sin x 

(wavelength ), -2/2 of sin 2x (wavelength 2/2), …; and it adds no portion of any signals cos nx, except 

portion  of the steady tone with n = 0. [How would you characterize the last: infinite wavelength? Also, 

if you find it suspicious to add -2/1 of sin x, just add 2/1 of sin (x + ).] Alternatively, and in 

contemporary language, you can say that the sequence digitizes the function. 

Either of those interpretations helps explain why the series and the transform became important tools 

in solving the differential equations of mathematical physics. 

On a practical level, return to the last figure (in (c)). While 

 (-2/1, -2/2, …), (, 0, 0, …) 

carries all the data of f , you can get most of the information from a finite subsequence. We saw that 

 f2(x)  =   -2/1 sin x – 2/2 sin 2x 

is just a vague approximation to f. On the other hand, the graph of 

 f20(x)  =   -2/1 sin x – 2/2 sin 2x – … – 2/20 sin 20x 

hugs most of the graph of f. For more than 80% of the interval, we can approximate the continuum of 

information in f (x) with just the twenty-one numbers 

 (-2/1, -2/2, …, -2/20), (). 

This idea of squeezing most of an infinity of information into a finite, and not too big, set of data 

underlies many “compression” schemes, essential to certain uses of computing. To transmit images from 

spacecraft, or create images from “magnetic resonance” signals, you typically have to take a partial 

Fourier transform to reduce some vast dataset to what machines can conveniently chew. The processes 

called MP3 and JPEG do that to make sound and images, respectively, compact and (you hope) faithful 

to the originals. 

[Read T. N. Narasimhan’s wonderful article about Fourier’s life and influence, plus the relationship 

of his work to that of brilliant predecessors, like Lavoisier, and successors, like Kelvin and Einstein.] 

3. Cauchy and Infinitesimal Analysis 

We could have called this chapter “The Age of Rigor,” because that is what Cauchy ushered in. 

“Rigor” in mathematics refers to precise definitions and careful attention to axiomatic structure and 

logic. Its purpose is to avoid such traps as Euclid’s hidden assumptions (section III.A.5b) and the 

ambiguities of infinitesimals (what Berkeley criticized, section VIII.B.3a). We saw Cauchy bring it to 

the study of permutations, spanning roughly 1815-1844. Now we see how he brought rigor to calculus.  

http://www.h2ogeo.upc.es/Docencia/Mec%C3%A0nica%20de%20Acu%C3%ADferos%202008/FourierHEatConductionEquation_Nari.pdf
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a) limits, continuity, derivatives 

(i) limits 

Cauchy resolved the infinitesimals paradoxes by elaborating on d’Alembert’s notion of limits. 

(Remember that Newton and others had touched on the idea.) The resolution appeared in Cauchy’s 1821 

book Cours d’Analyse. (That became a well-used title, as “The Elements” had been in Greek times.) 

Definition of Limit.  The number L is the limit of the function f at the place x = a if the values f (x) 

can be forced to “[differ from L] by as little as one could wish” via keeping x correspondingly close to a.  

There are multiple synonymous usages, including: “f  approaches L” or “f  tends to L” or f  L; and 

“limit as x approaches a” or “as x tends to a” or as x  a. 

Take an elementary example. It is natural for us to say that if x  2, then x
2
  4. In limit language, we 

would say that the limit of x
2
 as x approaches 2 is 4. There is, of course, a notation: 

 lim𝑥  2 𝑥2  =  4. 

To justify the statement, name a tiny distance, like 10
-6

. Allowing x
2
 to be on either side of 4, we 

take the absolute value | x
2
 – 4 | of the difference. We want that to be smaller than 10

-6
. By a property 

of absolute values, 

 | x
2
 – 4 |  =  | (x + 2)(x – 2) | = | x + 2 | | x – 2 |. 

Suppose we first confine x to the interval from 1 to 3. Then x + 2 is between 3 and 5, so that 

certainly | x + 2 |    5. That means 

 | x
2
 – 4 |    5 | x – 2 |. 

We can make the left side less than 10
-6

 by making the right side that small. Thus, the corresponding 

requirement on x is 

 | x – 2 |  <  10
-6

/5  =  0.000 000 2. 

Among the x’s between 1 and 3, the ones we can guarantee to put x
2
 within 10

-6
 of 4 are those 

between 1.999 999 8 and 2.000 000 2. 

It is essential to see that in the last paragraph and the definition, there was no mention of the value 

of f at the actual place x = a. For the question of limit, that value need not exist. Above, x
2
 has value 4 

when x is 2. That value is irrelevant. What interests us is the range of values in the vicinity of x = 2. 

For g(x) = (sin x)/x, g(0) is not defined. Still, we have already given evidence that 

 lim𝑥  0 𝑔(𝑥) = 1. 

Specifically, we argued in section VII.B.3b(i) that as long as x  0, 

 1/(2 – cos x)  <  (sin x)/x  <  1. 

Therefore to keep (sin x)/x within say 10
-6

 of 1, it suffices to make 

 0.999 999  <  1/(2 – cos x),  or  cos x  >  2 – 1/0.999 999. 

Do Exercise 1 to decide how close to zero x has to be. See also Exercise 2. 

a(i) Exercises IX.B.3

1. To determine the values of x near zero (on either side) for which 
 cos x  >  2 – 1/0.999999: 
a) Use a scientific calculator to decide what x are needed. 
b) Skip calculation and use the acute-angle relation 
 cos x + x  >  cos x + sin x  >  1 
to decide what x will suffice. (Observe how much territory the simplification costs you.) 
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2. a) Use the series 
 sin x  =  x – x3/3! + x5/5! + … 

to confirm that (sin x)/x  1 as x  0. 

b) It would be circular reasoning to say that (a) proves that (sin x)/x  1 as x  0. Why? 

(ii) no limits 

Our most important functions—polynomials, sines and cosines, exponentials—always have limits 

(Exercise 1). It is important to see examples in which elementary functions fail to have limits. 

A function can oscillate near x = a, without approaching a fixed value. Put 

 F(x) = cos (1/x), for x  0. 

Consider the place a = 0, where we have deliberately left F without a value. At the nearby places 

 x = 1/([10
6
 + 1]), 1/([10

6
 + 2]),  1/([10

6
 + 3]), …, 

the values of F are -1, 1, -1, 1, …. You cannot force them all to lie within 0.1 of any possible L. 

More familiar is the situation where the values increase beyond bound. Call 

 G(x) = 1/x
2
,  for x  0. 

Here, the places 

 x = 10
-6

,  10
-9

,   10
-12

, … 

are all close to zero, but the values G(x) are far apart; they cannot be close to any particular L. In this 

case, we can salvage some information: We may choose to say that the limit of G “is infinity” 

(Exercise 2). 

For one last example, a function can have different tendencies on the two sides of x = a. Set 

 H(x) = | sin x |/x, for x  0. 

This H matches (sin x)/x for x > 0. Therefore it approaches 1 as x approaches zero from the positive 

side. For x < 0, though, H matches -(sin x)/x. That means H(x)  -1 as x  0 from the negative side. 

Again, we may choose to say that the limit from the right (or left) is 1 (respectively -1). 

(Sometimes we have no choice: We can only discuss h(x) = x from the right.) 

These limit-less examples reflect an observation Cauchy made. For f  to have a limit L someplace, 

the nearby values of f  have to be close to L. In that case, the nearby values are close to one another. The 

observation led to what we call “Cauchy’s criterion.” 

Proposition. (Cauchy’s Criterion) The function f has a limit at x = a iff pairs of values f(s), f(t) can be 

forced to differ by as little as desired by keeping s and t correspondingly close to a. 

It is fairly clear why (limit exists) implies (close values). The converse is harder, and we skip it. The 

important thing to note about the criterion is that it does not mention, and cannot figure out, the limit (if 

there is one). However, as we saw with 1/x
2
 and cos (1/x) at x = 0, it can guarantee that there is no limit. 

The most extreme limit-less example came from (Peter Gustav Lejeune) Dirichlet: He produced a 

function that never has a limit. Dirichlet made many contributions to mathematics; read about them from 

J J O'Connor and E F Robertson at St Andrews. [Two are as elementary as they are well-known. One 

settles Fermat’s last theorem for exponents 5 and 14. The other is often called “Dirichlet’s theorem.” It 

says that in any arithmetic progression in which the first term is relatively prime to the constant 

increment—in 4, 13, 22, 31, … just as in 1, 2, 3, ... —there exists an infinity of primes.] We already 

mentioned that Dirichlet, who met Fourier (and eventually succeeded Gauss at Göttingen), gave 

conditions to guarantee that a function’s Fourier series adds up to the function. To do that, he needed 

Cauchy’s definition of series adding up to something (still coming up). More fundamentally, he needed 

to establish what a function is. 

http://www-groups.dcs.st-and.ac.uk/~history/Biographies/Dirichlet.html
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Dirichlet’s definition is practically what we use today: A function is given by a rule (could be a 

formula, could be some complicated set of instructions) that assigns to each member of a chosen set 

(the domain) a unique member of a second set (the range). Our old cubic substitution 

 x = u + 27/u 

serves to give x as a function of u, because for a given nonzero u, it forces exactly one value of x. It 

does not give u as a function of x, because for x = 12, it allows the two values u = 9 and u = 3. 

The rule for what we call “Dirichlet’s function” is 

 D(x) = 1 if x is a rational real number, 

  = 0 if instead x is irrational. 

This function is the opposite of our favorites. It fails Cauchy’s criterion everywhere. At x =1, for 

example, the rational s = 1 + 10
-100

 and irrational t = (1 + 10
-100

) are exceedingly close (to 1 and to 

each other), but D(s) and D(t) do not “differ by as little as desired.” (Do Exercise 3.) 

(iii) continuous functions 

With limits in hand, Cauchy defined continuity. We say that f is continuous at x = a if 

 lim𝑥𝑎 𝑓(𝑥)  =  f (a). 

That last clause is simple (not compound), but it makes a triple demand. It requires that f  have a 

value f (a), that it have a limit as x  a, and that the value match the limit. On the evidence of 

Exercise 1, we see that our important functions are continuous everywhere. 

Calculus had gotten along well enough without defining function, let alone what it means for one to 

be continuous. The intuitive notion of function simply used formulas. Continuity was decided by their 

graphs. If the graph had no breaks—if you could sketch it without picking the pencil off the paper—then 

the function was continuous. That notion of continuity was helpful, but it leads to paradoxes. You can 

have a function whose graph has no breaks, yet you cannot (even theoretically) draw all of it in one 

move (Exercise 4a-c). 

Forget the possible deficiencies in the intuitive notion. Observe instead that Cauchy’s definition 

really does advance the rigor. It turns continuity into a quantitative notion. Lagrange would say it 

renders the concept analytical, meaning algebraic (section VIII.B.4a); Wallis would say it arithmetizes 

continuity (section VII.A.6). 

(iv) derivatives 

Finally, Cauchy arrived where infinitesimals had operated. Recall Fermat’s way: 

Take say f(x) = x
3
. Look at the slope of (what we now call) the secant joining the points 

 (a, f (a)) and  (a + h, f (a + h)), 

namely 

 [f (a + h) – f (a)]/h  =  3a
2
 + 3ah + h

2
. 

Then set h = 0. 

Cauchy overcame the objection to that last step by defining 

 f
 
(a)  =  limℎ0  ([𝑓(𝑎 +  ℎ) –  𝑓(𝑎)]/ℎ). 

That limit is 3a
2
, based on Exercise 1a, because we treat 3a

2
 + 3ah + h

2
 as a polynomial in h. (Cauchy 

used “variable quantity” in place of “function.” When many varying quantities (x, a, f, and h) are 

involved, the name is clearly a good idea.) 

Whenever the limit exists, we say f is differentiable at or f has a derivative at x = a, and call the 

limit the derivative of f there. For our important functions, finding the limit of the slope of the secant is 

direct and gives the derivatives we already know. Our favorites are differentiable everywhere. 
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We are deliberately skipping the precise definition of integral. It is the limit of a sum of terms—

actual numbers, not infinitesimals—but it is not worth our time to set it up here. Again, it is not hard to 

show that the limit exists for our functions and to find the limit. In fact, every continuous function has an 

integral. However, proving that statement requires discoveries that are at least thirty years ahead of us. 

The statement that our important functions are continuous and differentiable brings up an important 

point. For a function to be differentiable, it first has to be continuous. 

Suppose 

 [f (a + h) – f (a)]/h 

has limit L = f (a). Then 

 f (a + h) – f (a)    hL    0  as h  0. 

That says f (a + h)  f (a). It implies that f (a) is the limit of f (x), making f continuous. 

The converse is false. A function can be continuous at x = a and have f
 
(a) undefined (Exercise 4d). 

a(iv) Exercises IX.B.3

1. Take our example 

 lim𝑥2 𝑥2 = 22 

as evidence that for any integer n  0 and any a, 
 lim𝑥𝑎 𝑥𝑛 = an. 
Give evidence that 
a) If p is a polynomial, then 

 lim𝑥10 𝑝(𝑥) = p(10). 

b) lim𝑥𝑎 sin 𝑥 = sin a.  (Hint: 
 sin x – sin a = sin( [x + a]/2 + [x – a]/2) – sin( [x + a]/2 – [x – a]/2). 

c) lim𝑥𝑎 cos 𝑥 = cos a.  (Hint: Adapt the previous hint.) 
d) lim𝑥𝑎 𝑒𝑥 = ea. 

2. We can bring rigor to Wallis’s statement that “1/0 is infinity” with this definition: 
 The limit of G as x approaches a is infinity if the values G(x) can be forced to exceed 
 any number we wish by keeping x correspondingly close to a. 
Show how the values of G(x) = 1/x2 around x = 0 can be forced to exceed 10100. 

3. a) How far from the numbers 1 and s = 1 + 10-100 is the number t = s? 
b) Show is t irrational. 
c) For Dirichlet’s function D, how much is D(s) – D(t)? 

4. Set 

 G(x) = x cos (1/x) when x  0,  G(0) = 0. 

a) Make a sketch suggesting the graph of G(x), 0  x  3/. (Hint: Spot the places 
where G(x) matches either x or -x, and the intermediate places where G = 0.) 

b) Based on your picture, why is G continuous at every x from 0 to 3/? (Notice that it was 
essential to specify a value G(0).) 
c) From the picture, why is it impossible to draw the complete graph from end to end? 
d) Show that G is not differentiable at x = 0.    (Hint: No matter how 
tightly you restrict h near 0, the slopes of the secants from (0, G(0)) to (0 + h, G(0 + h)) can 
range from 1 to -1; there is no limit to the slopes of the secants.) 
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5. The greatest integer function or floor function is defined by the special bracket 
 ⌊𝑥⌋  =  the biggest integer that does not exceed x. 

(Thus, ⌊3/2⌋ = 1,  ⌊−3/2⌋ = -2, and ⌊−2⌋ = -2.) At what places is ⌊𝑥⌋ continuous? 

b) series 

Cauchy turned to limits again to give precise meaning to series. 

From the series 

 a1 + a2 + a3 + …, 

write the partial sum 

 sn = a1 + a2 + … + an. 

If the partial sums approach some real number s, then we attach the value s to the series. We need to 

specify in what sense they “approach.” Wallis would have said, when n = . Cauchy said, as n 

approaches infinity. That brings the question down to defining “n approaches infinity.” 

Definition of Series (Convergence). The series a1 + a2 + a3 + … converges to the real number s if we 

can force the partial sums sn to differ from s by as little as we wish by keeping n correspondingly large. 

If the series converges to s, we call s its sum or value. For convergence, the definition demands that 

eventually the partial sums get close to s and stay close.  

Immediately, we say goodbye to 

 1 – 1 + 1 – 1 + …. 

The partial sums are 1, 0, 1, 0, …. There is no real s for which the partial sums get and stay within 

even 0.4. The series diverges (does not converge), and we may not speak of its value. 

Even the Egyptians could sum a geometric series, like 

 1 + 1/3 + 1/3
2
 + 1/3

3
 + …. 

We know from multiple sources that 

 sn =  1 + 1/3 + … + 1/3
n–1

  =  (1 – 1/3
n
)/(1 – 1/3) 

           =  3/2 – (3/2)/3
n
. 

To keep sn within say 10
-10

 of 3/2, we just need 

 (3/2)/3
n
  <  10

-10
,  or  3

n
  >  1.5  10

10
. 

Since 3
3
 > 1.5  10, we have 3

30
 > 1.5

10
  10

10
. For at least n  30, sn is between 3/2 – 10

-10
 and 3/2. 

Under the definition, the harmonic series does not converge. (Reason?) Still, it makes sense to say it 

has a “value,” namely infinity. Accordingly, we will allow ourselves to say it “converges to infinity” 

(instead of “diverges to infinity”), under a definition that is Exercise 2. 

Naturally, Cauchy’s observation applies to these limits, too. If the partial sums are close to s, then 

they are close to each other. 

Proposition (Cauchy’s Criterion).  A series converges to a real sum iff we can force pairs sm and sn of 

its partial sums to differ by as little as we wish, by keeping both m and n correspondingly large. 

The rule is not complicated. Observe that if m > n, then the distance from sm to sn is 

 | sm – sn |  =  | (a1 + a2 + … + am) – (a1 + a2 + … + an) | 

      =  | an + 1 + an + 2 + … + am |. 

It is the absolute value of the sum of a finite bunch of consecutive terms. The criterion demands that 

such sums get small and stay small. 

Recall Jacques Bernoulli’s consideration of 

 1/1
2
 + 1/2

2
 + 1/3

2
 + …. 

It is hard to relate to the sum Euler’s screwball argument found, but easy to relate to the criterion. 
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Modifying Jacques’s observation, we have 

 1/1001
2
 + 1/1002

2
 + … + 1/(10

60
)
2
  <  1/1000(1001) + 1/1001(1002) + … + 1/(10

60
 – 1)10

60
. 

Here, we are not comparing series. Those are actual sums, albeit of a lot of terms. In each term on 

the left, the denominator exceeds its cousin on the right. Therefore the sum on the left is less than the 

one on the right. The latter is easy to evaluate: It is 

 [1/1000 – 1/1001] + [1/1001 – 1/1002] + … + [1/(10
60

 – 1) – 1/10
60

] 

  = 1/1000 – 1/10
60

.   (Why, again?) 

The sum of any string of consecutive terms starting with 1/(n + 1)
2
, no matter how many terms you 

sum, is less than 1/n. By Cauchy’s criterion, the series converges. (Note, incidentally, that the same 

is true for 1/(1  2) + 1/(2  3) +1/(3  4) + …, in agreement with Exercise 1.) 

Another interesting example is the alternating harmonic series 

 1 – 1/2 + 1/3 – 1/4 + …. 

If you start the string at a positive term, like 1/1001, you find 

 0 < 1/1001 – 1/1002 + …  1/m   < 1/1001. 

Just pair up the terms this way, 

 (1/1001 – 1/1002) + (1/1003 – 1/1004) + … + (1/[10
60

 – 1] – 1/10
60

), 

to see that the sum is positive, with or without the red term. Pair them this way, 

 1/1001 – (1/1002 – 1/1003) – (1/1004 – 1/1005) – … – (1/[10
60

 – 2] – 1/[10
60

 – 1]) – 1/10
60

, 

and you see that the sum is less than 1/1001. If instead you start a string at a negative term, you find 

 -1/998 < -1/998 + 1/999 + … + 1/[10
60

 – 1] – 1/10
60

 < 0 (Exercise 4). 

Either way, 

 0 < | (1/[n + 1] – 1/[n + 2] + …  1/m) |  <  1/[n + 1]. 

The sums of consecutive terms get small. 

Check in the previous paragraph’s argument that three facts are the keys to convergence: 

1. The series is alternating. The sequence of signs is +, –, +, –, …. 

2. The absolute values decrease. Forgetting the signs, 1/[n + 1] < 1/n. 

3. The terms approach zero as n approaches infinity. (Remember how those “approaches” are defined.) 

If a series has those three properties, then the argument shows that the series satisfies Cauchy’s criterion, 

is therefore convergent. That principle (criterion?) is called the alternating series test (or rarely, 

“Leibniz’s test,” after its discoverer.)  

Finally, the condition #3 above is necessary for any series to converge to a real. We said that for 

convergence, the sum of any string of consecutive terms has to get small. Such strings include single 

terms. For a1 + a2 + a3 + … to converge, it is necessary that an  0 as n  . At the same time, the 

converse if false: The series might diverge even if an  0. (Give an example.) 

b Exercises IX.B.3

1. Find the value of 

 1/(1  2) + 1/(2  3) +1/(3  4) + …, 
and show that your value satisfies the definition. 

2. a) Define what it means for a1 + a2 + a3 + … to converge to infinity. (Hint: Use 
Exercise  IX.B.3a(iv):2 as a model.) 
b) Prove that the harmonic series satisfies the definition in (a). 
c) Does the series 
 1 – 2 + 3 – 4 + … 
converge? Does it converge to infinity? 
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3. Use Cauchy’s criterion to prove that each series converges: 
a) 106 + (106)2/2! + (106)3/3! + ….  (What is its value?) 
b) 106 – (106)3/3! + (106)5/5! – ….  (Hint: If (a) meets the criterion, then (b) has to.) 

4. Show that with or without the red term, 
 -1/998  < -1/998 + 1/999 + … + 1/[1060 – 1] – 1/1060 < 0. 

5. Show that the partial sum 

 1 – 1/2 + 1/3 – 1/4 + …  1/n  (whichever sign is right) 
misses the value of the alternating harmonic series by no more than 1/(n + 1). (That works 
whenever the alternating series test applies: The error is no more than the next term.) 

6. Argue why: 

a) 1/1 + 1/2 + 1/3 + 1/4 + …  converges to infinity. 

b) 1/1 – 1/2 + 1/3 – 1/4 + …  converges. 
c) 1/(1 + 2) – 2/(2 + 3) + 3/(3 + 4) – 4/(4 + 5) + … 
does not converge to either a real number or to infinity. 

7. Use the example 
 (5 + 2)4/3  =  54/3 + (4/3) 51/32 + (4/3)(1/3)/2! 5-2/322 + (4/3)(1/3)(-2/3)/3! 5-5/323 + … 
to give evidence that the binomial series converges when the binomial’s second term has 
smaller absolute value than the first. 

4. Bolzano, Dedekind, and the Nature of the Real Numbers 

The axiomatization of the calculus evolved over more than fifty years. One of the key elements was 

precise definition of the real numbers. Here we will see some of the evolution. 

a) the ordered-field properties 

There are three properties that together characterize the reals. The first is that the set R, with its 

addition and multiplication, constitutes a field. The definition of field is in section IX.A.2c(ii). There 

you will also find statements—some proved, some left as exercises, some merely talk—to the effect that 

the algebraic manipulations we work on expressions or equations are consequences of the field axioms. 

For some examples, subtraction and division are definable, a – b + c and (a/b)/(c/d) make sense, and 

 a – b + c  =  a – (b – c)  and  (a/b)/(c/d)  =  (ad)/(bc). 

The second property is that the field of reals has an order. Here we are departing from the use of 

“order” in the sense of say 

 3
6
  1  modulo 7. 

We will use the word in the sense of “a comes after b,” so that we speak of a being larger than b. 

The Order Axiom. In a field K, an order is a relation “>” that obeys three rules: 

Rule 1. It is compatible with the addition. Specifically, for elements a, b, c, d in K: 

 If a > b and c > d,  then a + c  >  b + c  and a + c  >  b + d. 

Rule 2. It is compatible with the multiplication. Specifically, for elements a, b, c in K: 

 If a > b and c > 0,  then ac > bc. 

Rule 3. (The Trichotomy) It relates different elements one way or the other. That is, if a and b are 

elements of K, then exactly one of the following is true: 

 a > b,  or  a = b,  or  b > a. 

We read “a > b” as you expect, “a is bigger than b.” We may write “b < a” (“b is less than a”) to 

mean the same thing. We also write “a  b” to encompass the two mutually exclusive possibilities a > b 

and a = b, and similarly with b  a. Immediately, we have a result. 
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Theorem 1. 1 > 0. 

[This is one of my favorite statements, because it appears to say something we learn by age 3. By 

then, we know that one cookie is better than zero cookies, as surely as two cookies are better than one 

cookie. But the statement has nothing to do with cookies, or even with quantities. It is a technical 

mathematical statement. It says that in an ordered field, the multiplication identity bears the order 

relation to the addition identity. As such, it has to be addressed via the axioms.] 

The proof is simple. Rule 3 allows just three possibilities; we simply rule out the later two. The 

middle one is out: 1 = 0 is not allowed in a field (section IX.A.2c(ii)). The third one leads to a 

contradiction. Suppose 0 > 1. By Rule 1, 

 0 + -1  >  1 + -1. 

That says -1 > 0. By Rule 2, 

 (-1)(-1)  >  0(-1). 

That says 1 > 0. The contradiction lies there; the trichotomy does not allow 1 > 0 at the same time 

as 0 > 1. With 1 = 0 and 0 > 1 disallowed, the order has to be 1 > 0. 

When a > 0, we say a is positive. If 0 > a, then a is negative. [That’s the reason for preferring to 

read “-a” as “minus a,” rather than “negative a.” An additive inverse might be positive, like -(-1).] That 

leaves 0 by itself, neither positive nor negative. 

We can now say that most of the manipulations we do with inequalities follow from the field plus 

order axioms. We will prove an important one and leave others to exercises; view Exercise 1. 

Theorem 2. In an ordered field, the order is transitive: 

 If a > b and b > c, then  a > c. 

Assume a > b and b > c. By Exercise 1a, a – b  >  0 and b – c  >  0. By Rule 1, 

 (a – b) + (b – c)  >  0 + 0. 

The left side is a – c, the right side 0. Therefore a – c  >  0, and a > c. 

In view of the transitivity, we abbreviate (a > b and b > c) by 

 a > b > c. 

Based on the order axiom, we can distinguish the real field from some of the fields we named in 

section IX.A.2c(ii) . On one hand, R is bigger than all the finite fields. For a more fundamental 

difference, recall that the set Zp of residues modulo a prime p constitutes a field under addition and 

multiplication modulo p. The next theorem implies that there is no way to put an order on it. 

Theorem 3. Every ordered field is infinite. In fact, within any ordered field, there is a subfield that is a 

copy of the rational numbers. 

We know that a field has to have at least two elements, the two identities. In an ordered field, 

Theorem 1 says, 1 > 0. Therefore by Rule 1, 

 1 + 1  >  0 + 1  =  1. 

By transitivity, 1 + 1  > 0. Consequently in any ordered field, 0, 1, and (1 + 1) are three distinct 

members. Similarly, 

 0, 1, 1 + 1, 1 + 1 + 1, …  (henceforth 0, 1, “2,” “3,” …)  

is an endless list of unequal elements. Therefore the field is infinite, containing a copy of the natural 

numbers. The copy of the rationals is yours to find in Exercise 2. 

On the other hand, R cannot be as big as the complex field C. The latter includes negative nonzero 

squares, like i
2 

; by Exercise 1c, nonzero squares in R have to be positive. Indeed, nonzero squares have 

to be positive in any ordered field. Accordingly in C, as in the finite fields, there cannot be an order. 
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By Theorem 3, the rationals constitute a subfield of R. (Is it all of R?) By the previous paragraph, R 

is a subfield of C, and not all of C. We have the reals bracketed between the rationals and the 

complexes. That leaves us with the question of what distinguishes R from Q. We answer it next. 

a Exercises IX.B.4

1. Prove that for reals a, b, c: 
a) a > b iff a – b > 0. 
b) If a > b and c < 0, then ac < bc. 

c) If a  0, then a2 > 0. 
d) If a and b are nonzero, then a/b > 0 iff either (a > 0 and b > 0) or (a < 0 and b < 0). 

2. Show that an ordered field contains a subfield identical to the rationals. (Hint: Follow the 
“subfields of R” argument in section IX.A.2c(iii).) 

3. In an ordered field, the set of positive elements is not just a byproduct of the order. Its 
existence is actually equivalent to the existence of the order. Prove the equivalence: 
a) Assume a field is ordered. Show that its subset P of positive elements satisfies: 
 (i) It is closed under addition; if a and b are positive, then so is a + b.  
 (ii) It is closed under multiplication; if a and b are positive, then so is ab. 
 (iii) (Trichotomy) It partitions the field into three disjoint sets; for every element a, 
 exactly one of these is true: a is in P, or a = 0,  or -a is in P. 

b) Assume a field has a subset S that satisfies (i)-(iii). Show that the relation “” defined by 

 c  d  means  c – d is in S 
obeys Rules 1-3. 

b) the continuum properties 

The third property characterizes the ordered field of real numbers. It was discovered by a Bohemian 

(Czech), Bernard Bolzano (1781-1848). His work was completely unknown, perhaps because he was a 

priest and not a math professional, until Weierstrass (just ahead) rescued it from obscurity decades later. 

It is remarkable how it completes the picture of the reals. (“Completes” happens to be a technical, and 

most appropriate, term; see it at St Andrews.) 

(i) Bolzano’s axiom 

The ancient notion of real number was geometric. It coincided with length. It was in terms of length 

that the Pythagoreans cast their proof that the rationals do not account for all “numbers.” Around 1817, 

Bolzano was first to arithmetize the reals, to describe them in terms of numbers alone. 

Bolzano’s Axiom. Suppose there is a property that some, but not all, real numbers have. Assume that 

every real number with the property exceeds every real that lacks it. Then there is either a smallest real 

number with the property, or a largest real without it. 

[“Bolzano’s axiom” is not a standard name, but it fits. Remember that it is an assumption, not 

something to be proved.] 

“Some, but not all” is clumsy enough to suggest putting the axiom into the language of sets. 

Bolzano’s Axiom in terms of sets. Suppose you split the real numbers between nonempty sets L and R: 

R = L  R, L and R not empty. Assume that each element of R is rightward of every element of L: 

(r is in R and l is in L) forces r > l. Then either R  has a least element, or L  has a biggest one. 

(In either version: Can it be both—biggest l and smallest r? Do Exercise 1.) 

Notice that we did not specify that L  (as in “left”) and R (right) need be disjoint, but every l’s being 

leftward of each r forces it. Notice also “right” and “left”; we keep some of the language of geometry. 

http://www-history.mcs.st-and.ac.uk/~john/analysis/Lectures/L5.html
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The best way to illustrate the meaning of “continuum” is a principle we have invoked before, strictly 

on the basis of intuition. It relates directly to solutions of equations. 

Theorem 1. (The Intermediate-Value theorem) Suppose f is continuous everywhere from x = a 

to x = b. Assume that f (a) is different from f (b). If d is a real number between f (a) and f (b) (an “inter-

mediate value”), then there is a place c between a and b at which f (c) = d. 

(Here we need to note that we wrote Cauchy’s definitions of limit and continuity, plus Dirichlet’s 

definition of function, ahead of this subsection’s characterization of the reals. Review those 

definitions (section IX.B.3a) to see that they depend on just the ordered field properties. Thus, for 

example, to say that f (x) is within 10
-6

 of 1 is to say that  

 (10
6
)
-1

  >  f (x) – 1  and simultaneously  (10
6
)
-1

  >  1 – f (x). 

Those are equivalent to 

 1 + (10
6
)
-1

 > f (x) > 1 – (10
6
)
-1

. 

It could be that f is undefined left of x = a or right of x = b. In either case, “f is continuous” means 

that f (a) matches the limit of  f  from the right, and similarly at b from the left.) 

We illustrate the proof with an example. To use an old friend, recall Fibonacci’s cubic equation 

 x
3
 + 2x

2
 + 10x = 20. 

Call the left side f (x), with d = 20. We have f (1) = 13 and f (2) = 36. We will show that somewhere 

between x = 1 and  x = 2, there is a c where f (c) = d. (Try to see in the argument below that what we do 

is trace the graph of f, leftward from x = 2, until we hit a place where f (x)  20.) 

We know f is continuous for all x, and f (1) < 20 < f (2). Look at the set R of real r with the property 

 r  2,  or instead  r < 2 and from x = r to x = 2, f (x) > 20. 

Clearly 2 is in R and 1 is in the complement L. Suppose r is in R and l in L. Necessarily l < 2. It 

cannot be that r  l < 2; in that case, because f exceeds 20 at r and rightward, l would be in R. 

Therefore r > l, and the axiom applies. 

There cannot be a smallest r in R. If r is in R, then f (r) > 20. Say f (r) = 21. By the definition of 

continuity, we can force f (x) to stay within 1/2 of 21, meaning between 20 + 1/2 and 21 + 1/2, by 

keeping x between say r – 1/1000 and r + 1/1000. Hence at r – 1/2000 and rightward, f (x) > 20. 

Therefore r – 1/2000 is also in R, and r is not the smallest member. 

Consequently there is a biggest l in L. All the places above l are in R. That means l > 1, because the 

continuity implies that f (x) stays below 13 + 1/2 just to the right of 1. Because all the places above l 

are in R, f (x) has to exceed 20 rightward of l, at least until x = 2. That means f (l) > 20 is not 

possible; that would mean l is in R. But f (l) < 20 is also impossible. If it were true, then again by the 

continuity argument, f would stay less than 20 to the immediate right of l. There remains only one 

possibility: f (l) = 20. At the place c = l strictly between 1 and 2, f takes on the intermediate value. 

From Bolzano’s axiom, we find that the cubic has a real root. From Leonardo, we knew that the 

cubic has no rational root. If we did not realize it before, we know it now: The ordered field of real 

numbers includes members that are not rational, and the axiom points to where the difference originates. 

Finally, it is useful to observe that modern physics departed from classical physics by ceasing to 

think of the universe in continuum terms. For example, early in the twentieth century, Niels Bohr 

explained the behavior of electrons by hypothesizing that their speed—more accurately, their energy—is 

“quantized.” Classical physics would have thought a particle can have one unit of energy, or two units, 

or any intermediate value. Bohr said it can have a “ground state” energy or various levels of “excited” 

energy, but not anything in between. You can excite the electron by delivering to it a “quantum” of light, 
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a “photon,” of exactly the energy needed to reach the next level, but not with less; and from that higher 

level the electron can give back that quantum of energy (and return to the ground level), but not less. 

b(i) Exercises IX.B.4

1. Under the hypotheses of (the first version of) Bolzano’s axiom, show that there cannot exist 
both a smallest real with the property and a greatest real without it. 

2. a) Prove that R includes a number whose square is 2. 
b) More generally, prove that if n is natural and a > 0 real, then a has a real n’th root. 

(ii) the least upper bound property 

There is a property equivalent to Bolzano’s axiom that is now the usual one used to characterize the 

reals. It has the advantage of not needing to partition the entire field. 

The Least Upper Bound Property. If a nonempty subset of R has an upper bound, then it has a least 

upper bound. 

We say the real number u is an upper bound for the set S (empty or not) if every s in S has s  u. 

If S has an upper bound (in which case it has a lot of them), we say S is bounded above. Let 

 S = {1, 1/2, 1/3, 1/4, …}  and  T = {1/2, 3/4, 7/8, …}. 

Clearly 1 is the largest member of S. In that situation, 1 is an upper bound, and nothing smaller is. 

(Why?) Hence 1 is the least upper bound (or LUB or supremum) of S. Equally clearly, no member of T 

is biggest. But all members of T are below 1, and some members exceed say 1 – 1/2
50

. Therefore among 

the upper bounds T has, 1 is least. 

Theorem 2. In an ordered field, Bolzano’s axiom is equivalent to the LUB property. 

Assume first Bolzano’s axiom. Suppose S is nonempty and is bounded above. Let R be the set of 

field elements that are upper bounds of S, L the rest. By assumption, R has some members. There is 

at least one s in S, which means that s – 1 is not an upper bound. Hence at least s – 1 belongs to L. 

If r is in R and l in L, then r is an upper bound of S and l is not. That means there exists some t in S 

with l < t, and necessarily t  r. Therefore l < r ; Bolzano’s axiom applies. 

There is no biggest l. That is, if l is not an upper bound of S, then there is an s in S with l < s. 

Necessarily, the average (l + s)/2 is also less than s, is therefore not an upper bound either, and 

exceeds l. Because there is no biggest l, there must be a smallest member of R. Among the upper 

bounds, there is a least one. That proves the LUB property. 

Now assume the LUB property. Suppose R and L partition the field as the hypotheses of Bolzano’s 

axiom provide. Then L is nonempty and has as upper bounds all the members of R, of which there 

are some. By the property, L has an LUB; call it c. If c is in L, then it is the largest member of L, all 

the others being smaller. If c is not in L, then it is in R. In that case, any member r of R, being an 

upper bound for L, must have r  c. That says c is the smallest member of R. We infer that either L 

has a biggest member, or R has a smallest. That proves Bolzano’s axiom. 

Each of Bolzano’s axiom and the LUB property (the two “continuum properties”) implies the other. 

That is what Theorem 2 says. 

In section III.B.3, we noted that the “axiom of Archimedes,” which the Syracusan ascribed to 

Eudoxus, helps to complete our picture of the reals. That statement is a consequence of the description 

we have given here for R. 

Theorem 3. If a and r are real numbers, with a > 0, then some multiple of a exceeds r. 

The “multiples of a” are a, 2a, 3a, …. Here 2, 3, … are not natural numbers. We attached those 

names to the elements 1 + 1, 1 + 1 + 1, … of the ordered field of reals. 
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The number r cannot exceed all of the multiples. If it did, then 

 S = {a, 2a, 3a, …} 

would have an upper bound. It would therefore have a least upper bound l. If l were the LUB, 

then l – a would not be an upper bound. There would be a multiple na > l – a. That would make 

 (n + 1)a  =  na + a  >  l, 

contrary to l being an upper bound. It follows that one of the multiples must exceed r. 

Look to Exercise 1 for more of “our picture of the reals.” 

b(ii) Exercises IX.B.4

1. Show that in an ordered field with the LUB property: 
a) If r is positive, then there exists n = 1 + 1 + … + 1 such that 
 0  < 1/n  <  r. 
b) Between any two members, there exists a rational m/n. 
c) Between any two members, there exists an infinity of rationals. 
d) Between any two members, there exists an infinity of irrationals. 

2. Show that in the same field, every polynomial of odd degree has a root. 

3. Show that this statement is equivalent to Bolzano’s axiom: 
Suppose that R is a nonempty subset of R. Assume that there is a real u such that every 
real l < u is outside R. Then there is a biggest such u: a place U to whose left every real is 
outside R, but to whose right no place V has everything to its left outside R. (This is a set-
based version of what Kline, page 953, writes in terms of properties. Kline notes that this 
version establishes the least upper bound property.) 

4. We say the real number v is a lower bound for the set S if every s in S has s  v. Show 
that the LUB property is equivalent to the GLB property: If a nonempty set T has a lower 
bound, then it has a greatest lower bound. 

c) Dedekind’s realization 

(Julius Wilhelm) Richard Dedekind (1831-1916) was a student of Gauss, and later worked with 

Dirichlet. He made multiple advances toward setting precise definitions for our familiar number 

systems. The progress went from the natural numbers to the integers, to the rationals, to the reals, to the 

complex. Here we examine how in the 1860’s he “constructed” the real numbers from the rationals. 

(Check O’Connor and Robertson at St Andrews.) 

(i) constructing number systems 

It helps first to observe that we have already seen two instances of inventing a new system that 

encompasses an old one. 

The first was Brahmagupta’s creation of 0 and negative numbers (section IV.A.3). We said back 

there that you can make such things quantitative by thinking of levels (“The river is two feet below 

normal.”). What made 0, -1, -2, … numbers, and not merely symbols for levels, is that Brahmagupta 

specified how you add and multiply among them and with the original 1, 2, …. The result was a system, 

the integers, that extends the set of natural numbers. It also extends the operations, meaning that the sum 

or product of natural numbers as integers matches their sum or product as naturals. Finally, it extends 

the order, so that the system of integers has all the properties of an ordered field except one: Not all 

nonzero integers have multiplicative inverses. (Go back to the pertinent axioms and check.) 

The second, at the other extreme, was Bombelli’s invention of a symbol i whose defining property is 

that you can “multiply” it by itself, with product -1. It took three centuries to find quantities describable 

http://www-gap.dcs.st-and.ac.uk/history/Biographies/Dedekind.html
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by expressions like a + bi. However, Bombelli gave their arithmetic (section VI.B.4b). The result is a 

system that extends the (set and operations of the) field of reals and has the remarkable property that all 

its nonconstant polynomials have roots, but in which (because x
2
 + 1 has a root) no order is possible. 

(ii) Dedekind’s theorem 

Theorem 1. In an ordered field with the two continuum properties, suppose (only) the rational numbers 

 m/n  =  (1 + … + 1)(1 + 1 + … + 1)
-1

  (m identities divided by n identities) 

are spread between two nonempty subsets R and L. Assume that every member of R exceeds every 

member of L. Then the field has a member c such that for every rational q: 

 If q < c, then q is in L,  and   if q > c, then q is in R. 

Recall Theorem 3 from (a) : In every ordered field, those “rationals” have to exist. To prove 

Dedekind’s theorem, assume the LUB property. 

Suppose L and R are as stated. By hypothesis, L is a nonempty set, bounded above by any of the 

members R is required to have. Therefore L must have an LUB; call it c. 

Suppose q is rational and q < c. Then q cannot be an upper bound for L. Therefore there is some 

rational s in L exceeding q. Because q is leftward of s, q cannot be in R; it has to be in L. We have 

shown that if q < c, then q is in L. 

Suppose instead q > c. Because c is an upper bound for L, q cannot be from L. From q > c, we have 

concluded that q is in R. That establishes the stated property of c. 

The theorem is silent about where c belongs.  

For an example of where c may lie, take R to be the set of rational q having 

 q > 0 and q
2
 > 2, 

L the remaining rationals. (Notice that either of R and L implies the other; we could specify just one.) 

Then the predicted c cannot be rational: If q is in R, then there are members of R left of q; and if q is 

in L, then there are members of L right of q (both Exercise 1.) Therefore c belongs to neither R nor L. 

For a different example, define L-1 to hold the rationals Q with 

 Q < 0  and Q
 2

 > 1, 

R-1 holding the rest. Then c = -1 (Exercise 2); it is the smallest member of R-1. 

If the second example had allowed Q
 2

  1, then c would have been the largest element of  L-1. 

Theorem 1 assumes a partition of the rationals into left and right halves L and R. Such a partition is 

called a Dedekind cut, and the resulting c is the cut number, under one proviso: c is not allowed to be 

in L . (The reason for the rule will become clear in Exercise 3a.) We denote a Dedekind cut by L||R. 

(iii) Dedekind’s construction 

The continuum properties describe the ordered field of real numbers. We have gone further, saying 

that they and the ordered-field axioms characterize the reals. “Characterize” means that any two ordered 

fields with the continuum properties are identical, in the “isomorphism” sense we mentioned before.  

With two such fields, you can make a one-to-one correspondence x  y between the elements x in 

one and y in the other, in such a way that the additions and multiplications match: 

 If x1  y1 and x2  y2, then  x1 + x2  y1 + y2 and x1x2  y1y2 ; 

the orders match: 

 If x1  y1 and x2  y2, then  x1 > x2 iff y1 > y2; 

and LUB’s match: 

 x is the LUB of the subset X iff  the corresponding y is 

        the LUB of the corresponding subset Y. 
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In view of such correspondence, there exists just one ordered field with the Bolzano and LUB prop-

erties. However, what we know so far does not establish that such a field actually exists. Dedekind used 

the idea of cuts in the ordered field of rational numbers to create an ordered field with the properties. 

Later on, we will encounter an axiomatic description of the natural numbers. That description, like 

our description of the reals, does not establish that a number system obeying those axioms exists. Doing 

so requires abstraction we will not get into. Once the system of natural numbers is in place, though, 

Brahmagupta’s creation provides the extension (in the sense of (i)) to the integers. 

Once the integers are in place, some algebraic abstraction creates an expanded system, the “rational 

numbers.” As in the previous expansion, this one extends the set and the addition, multiplication, and 

order. Again, the action of the operations and order on the parent system (the integers) works as before. 

However, this system of rationals has the added feature of multiplicative inverses; it is a field. Upon that 

ordered field, Dedekind abstracted the system of “real numbers.” 

Dedekind defined a real number as a Dedekind cut on the rational numbers. Now, recall that a cut is 

a pair L||R of sets that separate the rationals into left and right. How can you call those things numbers? 

Remember our informal rule: You get to call things “numbers” if (and only if) you specify their 

arithmetic. Here goes. 

Defining addition is direct. 

Given two cuts L1||R1 and L2||R2, by definition their sum is 

 L1||R1  +  L2||R2 = (L1 + L2)||{all other rationals}. 

The symbol L1 + L2 on the right means the rationals l1 + l2 you can make by adding l1 from L1 and l2 

from L2. It is elementary to prove that (L1 + L2)||{others}is another Dedekind cut. (Exercise 3a gives 

an easy example, but still suggests how to figure the general case). Hence this addition is an 

operation on the set of cuts. It is clearly associative and commutative. Elementary, if lengthy, 

arguments establish an additive identity (Exercise 3b) and additive inverses (3c). 

Accordingly, the set of cuts is an abelian group under this addition. Within that group, addition 

among the cuts whose cut number is rational (wherefore it is necessarily in the right half) works exactly 

as addition of rational numbers (Exercise 3a for evidence). 

It is more complicated to define multiplication. 

The intuitively obvious definition, 

 (L1||R1) (L2||R2) = (L1L2)||{rest of the rationals} 

with L1L2 meaning the set of products l1l2, is not even a cut (Exercise 4a). Instead, you have to deal 

with separate cases. 

If both L1 and L2 include all the negative rationals, then the definition is 

 (L1||R1) (L2||R2) = [L1L2]
+ 

||{rest of the rationals}. 

There, [L1L2]
+ 

 has 

 (a) all the negative rational numbers and 

 (b) all the products l1l2 made from nonnegative l1 and l2 from L1 and L2 respectively, if there are  

  any nonnegative l1 and l2. 

(Do Exercise 4b. If in the cut L||R, L has all the negatives, then either L has nothing else, or L has 0. 

If it has only the negatives, then L||R is the “zero cut,” as in Exercise 3b. If it has 0, then it must also 

have some positives; otherwise 0 would be its biggest element.) 
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For the other cases, you have to use mirrors. If L1 includes all the negatives and L2 does not, 

then -[L2||R2] (defined in Exercise 3c) does include the negatives (same exercise), the product 

 (L1||R1) (-[L2||R2]) 

fits the previous definition, and we define 

 (L1||R1) (L2||R2) = -((L1||R1) (-[L2||R2])). 

We skip the evidence, as well as the details for the remaining two cases. 

Once you define the multiplication, it is elementary and lengthy to prove that it is distributive and 

that the nonzero cuts form an abelian group under it. Consequently the cuts constitute a field. 

Defining an order in that field is easy. 

 (L1||R1) > (L2||R2)  means  L1 contains (as a proper subset) L2. 

It is elementary to prove that this definition adheres to the order rules (Exercise 5 for evidence). 

It is then also easy to prove as Dedekind did: For any nonempty collection of cuts, all smaller than or 

equal to one fixed cut, there is a least cut that is still greater than or equal to all the cuts in the collection. 

Thus, for any nonempty set of cuts with an upper bound, there is a least upper bound. 

The construction does two things. It establishes the existence of an ordered field with the continuum 

properties. Since that field is unique, the construction also proves the converse of Theorem 1: In an 

ordered field where Dedekind cut numbers always exist, there the properties hold. The Bolzano and 

LUB properties are equivalent to the “Dedekind property.” 

Two quotes are worth seeing here. Struik (page 161) says that Dedekind “accomplished for modern 

mathematics what Eudoxus had done for Greek mathematics” (in characterizing irrational numbers).   

Struik (160) and Boyer both translate Leopold Kronecker’s remark about the construction process: 

“God made the whole numbers [ganzen Zahlen], all others are man’s creation [Menschenwerk].”  

c. In Exercises 2-5, abbreviate the subset of Q with some property by Exercises IX.B.4
{property}. Thus, {< 5/3} is the set of rationals q with q < 5/3. 

1. Show that for a positive rational q: 
a) If q2 > 2, then there is a smaller positive rational whose square also exceeds 2. 
b) If q2 < 2, then there is a bigger rational whose square is also less than 2. 
(Hint: Use the result of Exercise IX.B.4b(ii):1a.) 

2. Let L-1 = {< 0 and with square > 1}, R-1 = {remaining rationals}. Show that: 
a) L-1 and R-1 define a Dedekind cut. 
b) The cut number, as defined in the theorem, is -1. 
c) That cut number is the smallest element of R-1. 

3. Using the definitions in this subsection, show that: 

a) {< 5/3}||{ 5/3} + {< -1/2}||{ -1/2} 

is another Dedekind cut, namely {< 7/6}||{ 7/6}. 
(You need to prove that the [apparent] sum cut accounts for all the rationals. In doing that, 
you will see why the definition of Dedekind cut has to specify which half the cut number, if it 
is rational, is allowed to be in.) 

b) {< 5/3}||{ 5/3} + {< 0}||{ 0} = {< 5/3}||{ 5/3}. 
c) Assuming that (b) establishes the additive identity, 
 -(L||R)  = -R*||-L*. 
Here, -R* means the –r you can make with r from R, excluding the smallest r if there is one; 
and –L* consists of the –l you make with l from L, together with -r0 if r0 is the smallest r. 

http://www.archive.org/stream/AHistoryOfMathematics/Boyer-AHistoryOfMathematics#page/n632/mode/1up/search/work+of+man
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4. a) Show that {< 5/3}{< -1/2}, the set of products of a rational under 5/3 with one under -1/2, 
cannot be the left half of a Dedekind cut. 
b) Show that the product of 

 {< 5/3}||{ 5/3} and {< 3/4}||{ 3/4}, 
as defined in the text, is another Dedekind cut. What cut is it? 
c) Show that by the definition in 3c, 

 -({< -1/2}||{ -1/2}) = {< 1/2}||{ 1/2}. 

5. Show that by the definition of order among Dedekind cuts: 

a) {< 5/3}||{ 5/3} > {< -1/2}||{ -1/2}. 

b) {< 5/3}||{ 5/3}  +  {< 3/4}||{ 3/4} > {< -1/2}||{ -1/2}  +  {< 3/4}||{ 3/4}. 

5. Weierstrass 

The man who recovered Bolzano’s work was the most brilliant high school teacher that ever lived. 

Karl (Theodor Wilhelm) Weierstrass (VYER-shtross, 1815-1897) wandered into teaching. He taught 

in Gymnasia—roughly, Prussian secondary schools—from about 1841 to 1855. As his discoveries piled 

up and became known, he began to receive higher offers, culminating in the university post at Berlin. 

Starting there at age 41, he occupied the chair for more than thirty years. His lectures became legendary 

for their elegance and rigor, and he maintained a prodigious output of mathematics and mathematicians. 

The discoveries included fundamental contributions to the calculus of variations and the calculus of 

complex numbers. In the latter, he was the one to focus attention on the power-series representation of 

differentiable functions. 

For us, the big interest is the precision he brought to the definitions of limit (and the related concepts 

of continuity, derivative, convergence) and real number. In our undergraduate calculus, the definitions 

are always put in his terms. More generally, in modern analysis there is “full agreement and certainty” 

(David Hilbert’s words) about the logical validity of the foundations Weierstrass built. 

a) limits and continuity 

Weierstrass put symbols to Cauchy and d’Alembert’s descriptions of “as little as one could wish.” 

Definition of limit. The real number L is the limit of f  at x = a if the following is true: 

For any positive real  (Greek lower-case epsilon), there is a corresponding positive  (delta) such 

that f (x) stays within  of L as long as x, without equaling a, stays within  of a. In symbols, 

 0 < | x – a | <   guarantees  | f (x) – L | < . 

In examples, we always gave specific ’s, like 10
-100

. Such numerical specification is unnecessary. 

We argued that the limit of f (x) = x
2
 at x = 2 is 4. Let  be a positive real. 

If x is between 1 and 3, then 

 | f (x) – 4 | = | x
2
 – 4 | 

      = | x + 2 | | x – 2 |  5| x – 2 |. 

Therefore if 

 0 < | x – 2 | < /5, then   | f (x) – 4 | < 5 /5 = . 

We may take  = /5 (or  = 1, whichever is smaller. Why is it important that  not exceed 1?) 

Cauchy’s definition of continuity was value = limit. We now put it in the symbols of Weierstrass. 

(We are going to mention the set of real numbers from a to b often enough to need a symbol for it. 

Thus, we call the set of x with a  x  b the closed interval from a to b, and abbreviate it as [a, b].) 
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Definition of continuity. Suppose f is defined on (meaning at each place in) the closed interval [a, b]. 

Given c in that interval, we say f is continuous at x = c if for any positive real , there is a corresponding 

positive   such that 

 | x – c | <   guarantees  | f (x) – f (c) | <  

(it being understood that x is also in the interval). 

The Weierstrass notation would be an advance if all it did was give us generality, a way to avoid 

giving examples like  = 10
-6

. However, it also led to an important concept in continuity that Bolzano 

had foreshadowed. 

Look at f (x) = x
2
 on the interval [1, 3]. If c and x are in the interval, then 

 | f (x) – f (c) | = | x + c | | x – c |  6 | x – c |. 

Therefore given  > 0, we can force 

 | f (x) – f (c) | <  

by keeping  

 | x – c | < /6. 

Certainly, that says f is continuous at every c in [1, 3]. But the continuity has a special character. If 

you name a positive , then there is a corresponding  = /6 that works everywhere in the interval. In 

that situation, we say f is uniformly continuous on the interval. That is a distinction Cauchy’s verbal 

description did not make. 

Look at 

 g(x) = 1/x  (strictly) between x = 0 and x = 1. 

It is continuous at x = 0.9. Take any  > 0. If we restrict x to 0.8 < x < 1.0, then 

 | g(x) – g(0.9) |  =  | 1/x – 1/0.9 | 

    =  | 0.9 – x |/(.9x)    | 0.9 – x |/(.8)
2
. 

Therefore if x also satisfies 

 | 0.9 – x |  <  1  =  0.64, 

then necessarily 

 | g(x) – g(0.9) |  <  . 

It is also continuous at x = 0.009. Take that same  > 0. If we restrict x to 0.008 < x < 0.010, then 

 | g(x) – g(0.009) |  =  | 0.009 – x |/(.009x) 

      | 0.009 – x |/(.008)
2
. 

To guarantee that 

 | g(x) – g(0.009) |  <  , 

now we have to squeeze x into 

 | 0.009 – x |  <  2  =  0.000064 . 

Our g is continuous everywhere between x = 0 and x = 1, but keeping g(x) close to g(c) requires 

tighter restriction on x as c  0. On this interval, g is not uniformly continuous. (Compare Exercise 2.) 

You can supply for yourself the epsilon-delta definition of differentiability and derivative. The new 

element Weierstrass brought to them was an example of a continuous function that is not differentiable 

anywhere (see Wikipedia®). Recall the intuitive notion of continuous function: one whose graph you 

can draw without picking the pencil off the paper. (Recall also Dirichlet’s example of a function not 

continuous anywhere). Even after Cauchy’s definition of continuity, it was thought that a continuous 

function’s graph would be mostly smooth, having a non-vertical tangent at all but some separated points 

(as the graph of the cycloid has). The Weierstrass example destroys that notion. 

http://en.wikipedia.org/wiki/Weierstrass_function
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Oddly, or maybe appropriately, the Weierstrass example (1872) did not come to light until after 

Bernhard Riemann had published one, and itself came after another unknown example from Bolzano.  

a Exercises IX.B.5

1. Prove that if f and g are continuous at x = c, then so is the sum f + g. 

2. a) Show that f(x) = x2, as defined for all x, is not uniformly continuous. 

b) Show that g(x) = 1/x, defined for 1  x  2, is uniformly continuous. 

b) maxima and minima 

Weierstrass derived a property of continuous functions that advanced the studies of both the 

functions and the nature of the real numbers. 

Theorem 1. (The Extreme-Value theorem) Suppose f is continuous on the closed interval [a, b]. Then 

there are points c and d in the interval such that for every x there, 

 f (d)    f (x)    f (c). 

In words,  f has a smallest value and a biggest value in the interval. 

To see that the theorem is news, let exceptions prove (meaning “test”) the rule. 

First, the conclusion may fail if either endpoint is missing. Return to 

 g(x) = 1/x  0 < x < 1. 

If you name any a in the interval, then there are points x to its left (like x = a/2) where g(x) > g(a) 

and others to its right (Name one.) where g(x) < g(a). Therefore g has neither biggest nor smallest 

value. We can provide for the latter by allowing 0 < x  1, which would make g(1) the minimum. 

But with lim𝑥0 𝑔(𝑥) = , no maximum is possible without removing an interval rightward from 0. 

Second, the conclusion may fail if the function is not continuous. Recall (section IX.B.2c) how we 

said that the Fourier series 

 F(x) =  – 2/1 sin x – 2/2 sin 2x – … 

has values 

 F(x) = x if 0 < x < 2 

  =  if instead x = 0 or x = 2. 

From the F(x) = x part, we can see that 

 lim𝑥0 𝐹(𝑥)  =  0    F(0),  lim𝑥2 𝐹(𝑥)  =  2    F(2). 

The function is not continuous, and it does not have extreme values. On the interval [0, 2], there are 

places where F(x)  2. But F never reaches the value 2; no value of F is a maximum. Similarly, F 

lacks a minimum value. (Compare Exercise 1.) 

To prove Theorem 1, we first need a characteristic of the reals. It is one of the results of Bolzano that 

Weierstrass rediscovered. 

Theorem 2. (The Bolzano-Weierstrass Theorem) If an infinite set of real numbers is bounded, then it 

has an accumulation point. 

The set S is bounded if it is bounded below and above: There exist reals m and M such that every 

member of S is between them. The real number r is an accumulation point of S if, for any positive , 

the interval from r –  to r +  includes an infinity of members of S. 

Abbreviate “accumulation point” by “AC.” An AC of S may or may not be in S. The set 

 S = {1, 1 + 1/2, 1/4, 1 + 1/8, 1/16, 1 + 1/32, 1/64, …} 

has AC’s 0 and 1 (Exercise 2a) Of those two, 1 in in S, 0 is not. Note that 1/4 is in S, but is not an 

AC (Exercise 2b). 
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For an exception, observe that the natural numbers form an unbounded infinite set without AC’s 

(Exercise 2c). At the other extreme, every real number is an AC for the set of rationals. (Reason?) 

We will derive Theorem 2 from the LUB property. It happens that the theorem is equivalent to the 

continuum properties: In an ordered field where Theorem 2 is true, the LUB property holds. After you 

see the proof below, try to prove the equivalence in Exercise 3. 

To save some symbols, assume the infinite set S is bounded by 0 and 1.  

Look at the two intervals [0, 1/2] and [1/2, 1]. At least of them must have infinitely many members 

of S. Call it [a1, b1], and notice that 

 0    a1  <  a1 + 1/2  =  b1    1. 

One of the intervals [a1, (a1 + b1)/2], [(a1 + b1)/2, b1] must have infinitely many member of S. Call it 

[a2, b2], and notice that 

 a1    a2  <  a2 + 1/4  =  b2    b1. 

Continuing that way indefinitely, we end up with two sequences having 

 a1    a2   …,  b1    b2   …,  and bn = an + 1/2
n
. 

The (possibly finite) set of numbers 

 T = {a1, a2, …} 

is nonempty and bounded. Let c be its LUB. If  is any positive real, then c –  is not an upper bound 

for T. That means some ak exceeds c – . That implies in turn that 

 ak + 1, ak + 2, …, 

being at least ak and not more than c, are likewise right of c – . As soon as n  k is big enough to 

make 1/2
n
 < , we have 

 c –   <  an    c  and  bn  =  an + 1/2
n
  <  c + . 

Since the interval [an, bn] has an infinity of members of S, those members are all between c –  

and c + . That proves c is an accumulation point of S. 

With Theorem 2, we can prove an important property of continuous functions. 

Theorem 3. A function continuous on a closed interval is bounded there. 

We say a function is bounded if its values are all between some fixed reals. From the example of 

 g(x) = 1/x,  0 < x < 1, 

we already know that not all continuous functions are bounded. 

To prove Theorem 3, suppose that the values of f on [a, b] are not bounded above. Then 1 is not an 

upper bound, so there exists in the interval a place x1 where f (x1) > 1. For the same reason there is 

a place x2 where 

 f (x2) exceeds both 2 and f (x1), 

a place x3 where 

 f (x3) exceeds all three of 3, f (x1), and f (x2), 

and so on. By the method of selection, all of x1, x2, … are different numbers in [a, b]. Therefore the 

set S = {x1, x2, …}is infinite. The Bolzano-Weierstrass theorem guarantees an accumulation point r. 

This r has to be in the interval. It cannot be, for example, d = b + 0.001. The gap from d – 0.0005 to 

d + 0.0005 lies entirely outside [a, b], is therefore devoid of xn’s. That means d is not an 

accumulation point of S, and r ≠ d. 

At x = r, f is not continuous. If it were, then by the definition there would be a  > 0 such that 

 | x – r | <   guarantees  | f (x) – f (r) | < 1. 

In words, for every x between r –  and r + , f (x) would be between f (r) – 1 and f (r) + 1. But there 
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is an infinity of xn’s between r –  and r + ; and at each one with index n exceeding f (r) + 1, 

 f (xn)  >  n  >  f (r) + 1. 

We see that if f is not bounded above, then it is not continuous someplace in [a, b]. The same holds if 

f is not bounded below. The contrapositive is Theorem 3. 

Now we have what we need to prove the extreme-value theorem.  

Assume f is continuous on [a, b]. The set of values f (x) is certainly nonempty, and Theorem 3 tells 

us it is bounded. Therefore it has a least upper bound; call the LUB M. We are going to find a point c 

where f (c) = M. That will spot the biggest value of f, and similar reasoning finds the smallest. 

Because M – 1 is not an upper bound, there must be a place x1 where 

 f (x1) > M – 1. 

It might be that f (x1) = M. Then we take c = x1. The alternative is f (x1) < M. In that case, neither 

f (x1) nor M – 1/2 is an upper bound, so there must be a place x2 where 

 f (x2) > f (x1)   and  f (x2) > M – 1/2. 

Next, either f (x2) = M and we take c = x2, or instead f (x2) < M and we keep going. You see the 

pattern: We continue until some f (xn) = M, at which time we take c = xn and stop; or else we 

establish an unending sequence x1, x2, … that has 

 f (x1)  <  f (x2)  <  f (x3)  < … and  every  f (xn) > M – 1/n. 

If the process is unending, the numbers x1, x2, …  are all unequal, because they give different values 

of f. Hence they constitute an infinite set. By the Bolzano-Weierstrass theorem, the set {x1, x2, …} 

has an accumulation point c. By our argument for Theorem 3, c has to be in [a, b]. Because M is the 

LUB of the values, we must have 

 f (c)  M. 

It cannot be that f (c) < M. Imagine that f (c) were 1.999 and M were 2. Because f  is continuous 

at x = c, there would exist a positive  such that 

 c –   <  x  < c +   forces  1.9985  <  f (x)  <  1.9995. 

Because c is an accumulation point of {x1, x2, …}, there must be an infinity of xn between c –  

and c + . Infinitely many of those have n > 10,000. For any such xn,  

 f (xn)  >  M – 1/n  >  2 – 0.0001. 

We would have simultaneously 

 f (xn) > 1.9999   and  f (xn) < 1.9995, 

a contradiction. It must be that f (c) = M. 

b Exercises IX.B.5

1. We know f(x) = x2 – 3x is continuous on [0, 5]. What are its biggest and smallest values in 
the interval? (The answer is doable by just algebra.) 

2. Show that: 
a) 0 and 1 are accumulation points of 
 S = {1, 1 + 1/2, 1/4, 1 + 1/8, 1/16, 1 + 1/32, 1/64, …}. 
b) 1/4 is not an accumulation point of S. 
c) {1, 2, 3, …} has no accumulation points. 

3. In an ordered field, assume that Theorem 2 is true. Prove the LUB property. 
(The problem is elementary, relative to the level we have reached, but hard. Hints: If S is 
bounded above, then either it has a biggest member, or it does not; and if s is in S and M is 
an upper bound, then (s + M)/2 is an upper bound, or is not.) 
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c) arithmetization of the reals 

We had barely thought about sequences, and suddenly they popped up in all the arguments of (b) 

above. Weierstrass showed how to recast the definitions from calculus—function limit, continuity, 

derivative—into the language of sequences. Rather than doing the recasting, we will look at sequences 

themselves and some of their properties. That will allow us to show how Weierstrass defined the real 

numbers in terms of sequences. 

(i) convergence of sequences 

We will allow ourselves the intuitive notion of a sequence 

 a1, a2, a3, … 

(which we will mostly abbreviate by (an)) as a parade of real numbers. [The technical definition is that a 

sequence is a function A that assigns the real number A(n) to the natural number n. With sequences, it is 

usual to write an instead of A(n).] The difference between the sequence and the set {a1, a2, a3, …}is that 

in the sequence, order counts. Thus, 

 1, 2, 1, 2, 1, 2, …  and  1, 1, 2, 2, 1, 1, 2, 2, … 

are unequal sequences, even though the collections of values are the same. 

We say the sequence (rn) converges to (or tends to, approaches, or has as limit) the real number L 

if corresponding to any positive , there is a natural N such that 

 n > N   guarantees  | rn – L |  <  . 

We met the definition before, in the specific setting of the sequence (sn) of partial sums of a series 

(section IX.B.3b). Match the definition back there, which used Cauchy’s words, against the one here, 

which uses Weierstrass’s symbols. 

The most elementary theorem about sequences is for monotonic sequences. We say a sequence (rn) 

is increasing if 

 r1  r2  r3 …. 

We say (sn) is decreasing if 

 s1  s2  s3 …. 

Either kind is called monotonic. [With  instead of <, the correct mathematical term is nondecreasing, 

as is nonincreasing for . Since the usual mathematical choice is inclusiveness—as in the usage of 

“or”—we’ll stay with “increasing” and “decreasing.”] 

Theorem 1. If a sequence is monotonic and bounded, then it converges to a real number 

The proof is Exercise 1, but the needed argument is actually buried within our proof of the Bolzano-

Weierstrass theorem (section IX.B.5b). 

Theorem 1 applies directly to series of nonnegative terms. If each ak  0, then the partial sums 

 sn = a1 + a2 + … + an 

form an increasing sequence. If the sequence is bounded, then the series a1 + a2 + … converges to a real 

number. If instead (sn) is unbounded, then the series converges to infinity. See Exercise 2. 

(ii) Bolzano’s criterion 

One of the most fundamental ideas in all of analysis identifies the sequences that converge. 

Theorem 2. (Bolzano’s Criterion) The sequence (rn) converges (to a real limit) exactly if it has the 

property that for each  > 0, there is a corresponding N past which the terms are within : 

 If both m and n exceed N,  then  | rm – rn |  <  . 

Look back at “Cauchy’s criterion” (for series in section IX.B.3b). It was Bolzano’s idea first, 

rendered here with the symbols of Weierstrass. A sequence that meets the criterion is called a Cauchy 
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sequence. [Yes, it pains me not to say “Bolzano sequence.” Unfortunately, “Cauchy sequence” is 

universal, and the concept is enormously important. I have to yield.] Earlier, we argued by example why 

a function possessed of a limit must meet the corresponding (function) criterion. Do Exercise 3 for 

sequences. We will tackle the tougher part, proving that a Cauchy sequence must converge. 

To prove Theorem 2, assume that (rn) satisfies the criterion. 

First, we establish that the sequence has to be bounded. Name the specific  = 1. There must exist N 

beyond which 

 m and n both exceed N  forces   | rm – rn |  <  1. 

Write 

 K  =  | r1 | + | r2 | + … + | rN | + | rN + 1 | + 1. 

Clearly each of 

  | r1 |, | r2 |, … | rN |, | rN + 1 | 

is smaller than K. The remaining 

 | rN + 2 |, | rN + 3 |, | rN + 4 |, … 

all have 

 | rm – rN+1 |  <  1. 

That puts each such rm strictly between [rN+1 – 1] and [rN+1 + 1], so that 

 | rm |  <  | rN + 1 | + 1    K. 

Hence K is an upper bound, -K a lower bound. The sequence is bounded. 

Second, we show that there must be a real L such that for any  > 0, the interval between L –  

and L +  has an infinity of terms from (rn). (Be careful: You must remember that an infinity of 

terms might not constitute an infinite set of real values.) It could be that the set 

 S = {r1, r2, r3, …} 

is finite. There is only one way that could happen: At least one value is repeated infinitely many 

times. Imagine that 

 r2  =  r4  =  r8  =  r16  = …. 

In that case, we simply take L = r2. The alternative is that S is infinite. Then S is a bounded infinite 

set. By the Bolzano-Weierstrass theorem, S has an accumulation point L. By definition, infinitely 

many members of S—and therefore an infinity of terms of the sequence—lie between L –  

and L + . That proves the second contention. (Along these lines, do Exercise 4.) 

Third and last, we prove that the sequence converges to L. If  is positive, then so is /2. Because the 

sequence is Cauchy, there exists M such that 

 m and n both exceed M  forces    | rm – rn |  <  /2. 

Among rM + 1, rM + 2, …, infinitely many must be between L – /2 and L + /2. Let rN be any one of 

them. Then for all n > N, 

 rn is within /2 of rN   and    rN is within /2 of L. 

That puts rn within /2 + /2 of L. We have proved that L is the limit of (rn). 

c Exercises IX.B.5

1. Prove that if (rn) is increasing and bounded, meaning 

 r1    r2    r3   …  and  every rn < some fixed M, 
then the sequence converges to a real number. (Hint: LUB property.) 

2. Suppose a1 + a2 + … is a series of nonnegative terms. 
a) Show that if the sequence of partial sums 
 sn = a1 + a2 + … + an 
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is bounded, then the series converges. 
b) Show that if (sn) is not bounded, then the series meets the definition (answering 
Exercise  IX.B.3b:2) for convergence to infinity. 
c) Does either (a) or (b) stay true if some of the ak are negative? 

3. Prove that if (rn) converges to a real number, then for any  > 0, there exists N such that 

 m and n both exceed N  forces   | rm – rn |  <  . 

4. Show that if a sequence is bounded, then some subsequence of it converges to a real 
number. (A subsequence of (rn) is a sequence assembled by choosing terms from (rn) in 
correct order [in sequence?], as with 
 r2, r4, r8, r16, …. 
The statement here is also called “the Bolzano-Weierstrass theorem.” Try our methods, 
then look at the marvelous proof (using just Theorem 1) in Kenneth A. Ross’s Elementary 
Analysis: The Theory of Calculus (page 53, referring back to pages 51-52, in the 1980 
edition, published by Springer).) 

5. Show that if (wn) and (xn) are Cauchy, then so are (wn + xn) and (wn xn). (For the latter, it 
turns out to be important to recall that a Cauchy sequence is necessarily bounded.) 

(iii) the construction of the reals 

Recall Dedekind’s construction of an ordered field with the LUB property (section IX.B.4c(iii)). He 

interpreted pairs of sets partitioning the rational numbers, “Dedekind cuts,” as numbers. Weierstrass 

(1860’s) interpreted as numbers sets of Cauchy sequences. (That is a somewhat higher abstraction. A 

single Dedekind cut represents a real number. It takes an infinite set of sequences to do the same.) 

Let us, like Dedekind, begin by looking at just the ordered field of rational numbers. View the 

sequences 

 (qn): 1+1/2, 1+1/4, 1+1/8, 1+1/16, …,  (rn): 1/2, 2/3, 3/4, 4/5, …. 

They are unequal, but have the same rational limit, 1. Because they converge, they have to be Cauchy. 

We will call them “equivalent,” and they and the other sequences of rationals converging to 1 form their 

“(equivalence) class.” For Weierstrass, that class was the real number 1. 

Look next at the two sequences 

 (sn): 2, 7/4, 97/56, 18817/10864, …,   (tn): 1, 1.7, 1.73, 1.732, …. 

The (sn) sequence comes from the Babylonian square-root algorithm, reflected for 3 in section 

III.A.8a. It is the algorithm’s nature to produce decreasing rational overestimates whose separation 

from the next estimate approaches half the separation from the previous: 

 0  <  sn – sn + 1    1/2 (sn – 1 – sn). 

For that reason, (sn) is Cauchy. The (tn) sequence is from the Indian (decimal) square-root algorithm 

(section IV.A.2). Because the algorithm produces immutable digits, if m > n, then 

 0    tm – tn    10
-(n – 1)

; 

(tn) is also Cauchy. Judging from 

 s1
2
  =  4,  s2

2
  =  3.0625,  s3

2
    3.0003,  s4

2
    3.000 000 008, 

 t1
2
  =  1,  t2

2
  =  2.89,  t3

2
    2.9929,  t4

2
    2.999 8, 

each sequence approaches a number whose square is 3. There is no such number; our field of vision, 

remember, is limited to Q. However, from 

 sn
2
    3    tn

2
, 

we conclude 

 sn – tn  =  (sn
2
 – tn

2
)/(sn + tn)  0/3.5. 
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The full definition is that (un) is equivalent to (vn) if 

 lim𝑛∞(𝑢𝑛 − 𝑣𝑛) = 0. 

In the example above, (sn) and (tn) are equivalent. The set of Cauchy sequences equivalent to both is 

called their equivalence class. In the Weierstrass construction, this class is the real number 3. 

In that construction, the operations and the order are easy to define. Assume (wn) and (xn) are 

Cauchy sequences of rational numbers. Then the operations are defined by 

 [class of (wn)] + [class of (xn)]  =  [class of (wn + xn)], 

 [class of (wn)]  [class of (xn)]  =  [class of (wn xn)]. 

It is easy to prove that (wn + xn) and (wn xn) are also Cauchy sequences (Exercise 5 above). That is the 

end of the easy part. The hard part, requiring work with abstraction, is to show that these “+” and “” 

really do constitute operations on the collection of classes of Cauchy sequences. 

For an example of what is required, recall that (in our examples) 

 [class of (qn)]    and  [class of (rn)] 

are the same class. You would have to prove that “adding” either of them to [class of (sn)] gives the 

same result: 

 [class of (qn)] + [class of (sn)]  and  [class of (rn)] + [class of (sn)] 

are the same class. Part of the difficulty is that you have to become familiar with equivalence 

relations (see Exercise VIII.C.2a:3) and equivalence classes. We will skip the work, and merely state 

that under these “operations,” the set of equivalence classes constitutes a field. 

Next, define the order by defining 

 [class of (wn)]  >  [class of (xn)] 

to mean the wn eventually exceed the xn by at least a fixed margin. In symbols, there is a positive 

rational c and some natural N such that 

 for every n > N,  wn  >  xn + c. 

That ends the order’s easy part. It turns out to be a project to show that the definition is valid, that it 

turns the set of classes into an ordered field, and that the field has the LUB property. Thus did 

Weierstrass put together his model of the real number system. 

You might be wondering about “eventually” and that “margin” c. It is not necessary for all the terms 

of (wn) to exceed those of (xn), and it is not sufficient. 

In the two Cauchy sequences 

 (an): 10
100

/1, 10
100

/2, 10
100

/3, … and  (bn): 1 – 10
100

/1, 1 – 10
100

/2, 1 – 10
100

/3, …, 

the first (210
100

 – 1) terms of (an) exceed those of (bn). But eventually, namely beyond N = 310
100

, 

 an  <  1/3 and bn  >  2/3  >  an + 1/3. 

In our earlier examples, 

 every qn  =  1 + 1/2
n
   exceeds every rn  =  n/(n + 1). 

However, 

 [class of (qn)]  >  [class of (rn)] 

is not permissible; those two are the same class. The definition above, 

 [class of (wn)]  >  [class of (xn)] provided  eventually  wn > xn + c, 

guarantees that the limit of (wn)—a rational number or else a hole in the rationals—must exceed the 

limit of (xn). 

6. Riemann 

Struik (page 156) describes Georg Friedrich Bernhard Riemann (REE-mahn, 1826-1866) as “the 

man who more than any other has influenced the course of modern mathematics.” That is strong praise 
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for a man who did not live to forty. Riemann’s definition of integral, which is our interest, led to 

discoveries that made the theory of integration a whole new area of analysis. His work on surfaces, 

extending discoveries of Gauss, led to a whole new kind of geometry. That study is still an important 

area of research, and is essential to the theory of relativity. Part of his study of surfaces was based on his 

discoveries about functions of a complex variable, in which he elaborated the fundamental relations 

called the “Cauchy-Riemann equations.” Those are PDEs, influenced by Riemann’s interest in 

hydrodynamics, which was just one area of mathematical physics to which he contributed. 

Riemann submitted his doctoral dissertation in 1851, to Gauss. When Dirichlet died in 1859, 

Riemann succeeded him in Gauss’s old chair. Aside from the study of surfaces, Riemann pursued results 

of Gauss in number theory, specifically the prime number theorem (section VIII.C.2c). In that 

connection, Euler had looked at the function F defined for real x > 1 by the series 

 F(x)  =  1/1
x
 + 1/2

x
 +1/3

x
 + …. 

[Recall (section IX.B.1) that Euler had evaluated F(2). You see the levels where Riemann operated: 

Euler, Gauss, Cauchy, Dirichlet.] Riemann replaced x by the complex variable z, showed how the 

definition of F could be extended to all complex z, and studied the resulting “zeta function”   (Greek 

letter zeta). He conjectured that if 

 z = a + bi is not real (b  0)  and  (z) = 0, 

then necessarily a = 1/2. With Fermat’s last theorem settled, that “Riemann hypothesis” is the most 

famous unsolved problem in mathematics. 

Riemann’s definition, around 1850, completed rigorous characterization of integrals, just as 

Weierstrass had rigorously characterized continuity and differentiability. 

a) integrability and integrals 

(i) extreme values and limits 

Suppose f is defined on a closed interval. Recall Fermat (section VII.A.4e) and Leibniz 

(section VII.B.2): They broke up the interval into subintervals; formed sums of the form 

 (value #1 of f )[width of subinterval #1] + (value #2 of f )[width of subinterval #2] + … 

(albeit, for Fermat, with an infinity of terms); and in effect found the limits of the sums as the widths 

dropped toward zero. The convenient values of f were the maximum and minimum within the 

subintervals. For friendly functions, those extremes are easy to spot, and they help determine the limits. 

(ii) bounds instead of extremes 

By the time of Riemann, two difficulties were glaring. First is that a function might not have 

extremes in a subinterval. Our favorite functions are monotonic—they increase, or they decrease—

whose extremes are at the ends. If a function is at least continuous, then we know its extremes exist. 

(Reason?) But recall that a discontinuous function may fail to have extremes, even if it has bounds. 

To illustrate the difficulty, modify Dirichlet’s function D (section IX.B.3a(ii)) on [0, 1] to write 

 d(x)  =  xD(x)  = x if x is rational, 

    0 if x is irrational. 

Clearly d is bounded: 0    d(x)    1. 

The function is discontinuous everywhere except at x = 0. Near the rational a = 1/2, between 

x = a – 10
-9

 and x = a + 10
-9

, there are rational s with d(s) within 10
-9

 of d(a), but also irrational t 

with d(t) fully 1/2 from d(a). The mirror image happens near the irrational b = 2/2. Only at c = 0 is 

it true that d(x)  d(c) for all nearby x, so that d is continuous. 
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On the subinterval [a, b], d has a smallest value but no largest. At any irrational t there, d(t) = 0, 

reaching the minimum. At any rational s, d(s) < 2/2, and just left of x = b there are rationals r 

where d(r)  2/2. Thus, 2/2 is the least upper bound, but not itself a value, of d on the subinterval. 

See also in section IX.B.5b the description of the values over [0, 2] of the Fourier series 

 F(x) =  – 2/1 sin x – 2/2 sin 2x – …. 

Riemann finessed the extreme-value difficulty by defining upper and lower estimates of integrals in 

terms of least upper bounds and greatest lower bounds. 

Assume now that f is bounded on its interval of definition, say 

 m    f(x)    M  for all x in [a, b]. 

Subdivide (hereafter “partition”) the interval into k subintervals (which might have unequal widths). On 

subinterval #i, whose width is wi, symbolize the least upper bound of  f  by Li and the greatest lower 

bound by Gi. Form the partition’s upper sum 

 u = L1w1 + L2w2 + … + Lk wk  

and lower sum 

 l = G1w1 + G2w2 + … + Gk wk . 

Those correspond to our old upper and lower estimates for the integral. 

(iii) bounds instead of limits 

Having such estimates, Fermat and Leibniz had proceeded to their common limits. The second 

difficulty lies there. We now know that variable quantities may fail to have limits. 

However, our sums definitely have bounds: Both l and u lie between 

 mw1 + mw2 + … + mwk  =  m[b – a]   and   M w1 + M w2 + … + M wk  =  M [b – a]. 

Therefore they have least upper and greatest lower bounds. Riemann called the GLB of the possible 

upper sums, considering all possible partitions of [a, b], the upper integral of f. Similarly he called the 

LUB of the lower sums the lower integral. If those match, then the function is integrable on [a, b], and 

their common value is by definition the integral. 

b) three examples 

To see the significance of the definition, it helps to see a function that does not fit it. 

Example 1. Return to the function on [0, 1] given by 

 d(x) = x if x is rational, 

  0 if x is irrational. 

Partition the interval into the three subintervals [0, 1/2], [1/2, 2/2], [2/2, 1]. 

In each subinterval, d reaches a minimum value 0 at any irrational. Therefore the lower sum is 

 0 [1/2 – 0] + 0 [2/2 – 1/2] + 0 [1 – 2/2]  =  0. 

That happens no matter how you slice it—no matter what the partition is. Therefore the lower 

integral, the LUB of the lower sums, is 0. 

In the first and last subintervals, d reaches a maximum at the right endpoint. In [1/2, 2/2], there is 

no maximum, but the LUB of d is 2/2. Therefore the upper sum is 

 1/2 [1/2 – 0] + 2/2 [2/2 – 1/2] + 1 [1 – 2/2]. 

View the figure at right. It tries to suggest the graph of d with one 

dotted red part for rational x, one horizontal dotted blue for irrational. 

The upper sum, adding the areas of the green rectangles, exceeds the 

area of the triangle with vertices (0, 0), (0, 1), and (1, 1). Regardless of 

the partition, the upper sum 

   

O 
1/2 1 

2/2 

1 
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 (right-end value #1)[width #1] + … + (right-end value #k)[width #k] 

exceeds 1/2. Therefore the upper integral is at least 1/2. (Do you see why it is exactly 1/2?) The 

upper integral does not match the lower. The function is not integrable. 

As you might expect, our old friends do not misbehave that way. 

Example 2. Look (as in section IX.B.5a) at f(x) = x
2
 on the interval [1, 3]. 

Partition the interval into k = 10
9
 equally wide subintervals. Call their endpoints 

 x0 = 1,  x1 = 1 + 210
-9

, x2 = 1 + 410
-9

, …, xk = 1 + 2k 10
-9

. 

In subinterval #j, f reaches its maximum xj
2
 at the right endpoint and its minimum xj–1

2
 at the left. 

Those values differ by 

 xj
2
 – xj–1

2
 = (xj – xj–1) (xj + xj–1) 

   = 10
-9

 (xj + xj–1) 

   < 10
-9

 (3 + 3). 

Therefore the upper sum 

 u = x1
2 
[10

-9
] + x2

2 
[10

-9
] + … + xk

2 
[10

-9
] 

and the lower sum 

 l = x0
2 
[10

-9
] + x1

2 
[10

-9
] + … + xk–1

2 
[10

-9
] 

differ by 

 u – l  = (x1
2
 – x0

2 
)[10

-9
] + … + (xk

2
 – xk–1

2 
)[10

-9
] 

  < 10
-9

 (3 + 3) [1]. 

Take that paragraph as evidence that you can find upper sums as close as you want to lower sums. 

Therefore the GLB of the upper sums is less than or equal to the LUB of the lowers: 

 upper integral    lower integral. 

[Next take my word for it that the upper integral cannot be less than the lower.] It follows that upper 

and lower integral are equal; f is integrable on its interval. 

Compare the short treatment of the same function in section IX.B.5a. You should see that the key to 

the middle paragraph in Example 2 is that f(x) = x
2
 is uniformly continuous on [1, 3]. The same argument 

will show that any uniformly continuous function is integrable on its interval.  

In 1872, Heinrich Eduard Heine (1821-1881) published the statement and proof that if a function is 

continuous on a closed interval, then it is uniformly continuous there. That result showed that Riemann’s 

characterization of integrable functions encompasses all continuous functions. 

[Bolzano knew the statement by the 1830’s, and Dirichlet produced proof in 1854. 

Heine, who studied under Weierstrass, is sometimes called by his middle name, to distinguish him 

from the poet Heinrich Heine. Following Dirichlet’s method, Eduard established a certain property of 

closed intervals. Émile Borel (1871-1956) abstracted that property. In analysis, the Heine-Borel property 

proved to be a powerful weapon. In topology, it became one of the most fundamental concepts.] 

Integrability of continuous functions might lead us to believe that continuity is essential. Riemann 

produced a remarkable example to show that the connection is not so easy. 

Example 3. Riemann defined the function given by 

 R(x) = 0 if x is irrational 

  1/n if x is the reduced fraction m/n. 

Look at it on the interval [3, 4] (because we want to refer to ). 

First, the function has the odd property of being discontinuous at the rationals but continuous at all 

irrationals. It is discontinuous at a = 3.5 = 7/2, because R(a) = 1/2 whereas R(x) = 0 at the nearby 

irrationals. It is continuous at , because R() = 0 and at all nearby x’s R(x) is small. 
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To see that last part, hark back to Exercise III.A.6b:4. It asked for fractions closer to  than 22/7 is. 

A spreadsheet or programmable calculator can determine this for you: Of the fractions between 3 

and 4 whose denominators are 100 or less, the closest to  is 3 + 14/99 = 311/99. Now 

  – 311/99    3.141 593 – 3.141 414  >  0.000 178. 

Therefore if x is between  – 0.000 17 and  + 0.000 17, then either x is irrational and R(x) = 0, or 

else x is a rational number whose reduced denominator exceeds 100 and 

 0  <  R(x) – R()  <  1/100. 

Analogously we can show that R(x) can be put within any chosen  of R(); R is continuous at x = . 

Second, this highly discontinuous function is integrable. Consider the list of fractions 

 3 + 1/2 

 3 + 1/3, 3 + 2/3 

 3 + 1/4, 3 + 2/4, 3 + 3/4 

 … 

 3 + 1/100, 3 + 2/100, 3 + 3/100, …,  3 + 99/100. 

Every rational number strictly between 3 and 4 with reduced denominator 100 or less is listed there, 

some repeatedly. The list has 99  100/2 = 4950 entries. Surround each with a subinterval 100
-3

 

wide, and include the subintervals [3, 3 + 100
-3

] and [4 – 100
-3

, 4]. Together, those subintervals 

cover less than 4952  100
-3

 < 1/100 of the length of [3, 4]. (Can you tell that if two of them are not 

identical, then they have to be disjoint?) The uncovered remainder of the interval is a bunch of 

subintervals devoid of rationals having reduced denominators 100 or less. 

All the subintervals together constitute a partition. In that partition, the lower sum is 0, because as 

with Example 2 every subinterval has places where R = 0. In the upper sum 

 (LUB #1)[width #1] + (LUB #2)[width #2] + …, 

some terms come from subintervals that include rationals with denominators 100 or lower. For each 

of those, the LUB of R is an actual maximum of 1 (as at 3/1 and 4/1) or less. Their contribution to 

the upper sum is therefore at most 

 (1)[width] + (1)[next width] +…  =  [sum of widths]  <  1/100. 

The remaining terms of the upper sum come from subintervals in which all the rationals have 

reduced denominators exceeding 100. In those subintervals, the maximum of R is less than 1/100, so 

that their contribution to the upper sum is less than 

 (1/100)[WIDTH] + (1/100)[NEXT WIDTH] + …  <  (1/100)[1]. 

The upper sum for R on the partition is less than 2/100. 

Carry out the same argument with 10
99 

in place of 100 to see that the upper sums can be pushed 

arbitrarily close to 0. Since all the upper sums are positive, it follows that their greatest lower bound 

is 0. The upper integral matches the lower, and R is integrable. 

b Exercises IX.B.6

1. Prove that Dirichlet’s function is not integrable. 

2. What is the value of the integral of f(x) = x2 on [1, 3]? 

c) looking back, looking ahead 

Riemann’s method is unassailable, built on the continuum properties of the reals. Still, it is 

worthwhile to connect it to the earlier methods of Fermat, Leibniz, Newton—even back to the method of 

exhaustion—all of which rely at least implicitly on the idea of limit. 
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The connection came from Jean-Gaston Darboux [dahr-BOO] (1842-1917). He showed that if (and 

only if) a function f is integrable, then the sums 

 (first value of f )[width of first subinterval] + … + (last value of f )[width of last subinterval] 

have a limit as all the widths approach zero, which limit necessarily equals the common value of the 

Riemann upper and lower integrals. 

Ahead from Riemann, the question of how continuous a function has to be to be integrable went 

unanswered for half a century. In his doctoral thesis of 1902, Henri Léon Lebesgue [luh-BAYG] (1875-

1941) answered that what is needed is for the function to be continuous almost everywhere. [That’s not 

just a rough description. “Almost everywhere” is the actual, precisely-defined technical phrase that 

applies.] Lebesgue built on the work of Borel and others to define integration in terms of measure, a 

generalization of “width.” Part of Riemann’s legacy is how Lebesgue’s work on Riemann’s integrals led 

to the creation of measure theory, the invariable basis for types of integrals, as a separate subdiscipline. 

Oddly, Lebegue’s initial interest was not what it takes for a function to be integrable, but what it 

takes to be differentiable. One of the things he proved is that a monotonic function—as ours tend to be 

over at least some intervals—is not merely continuous almost everywhere (so that it is integrable), it is 

differentiable almost everywhere. 

[Lebesgue’s advisor was Borel, even though the latter was just four years older. Borel had studied 

under Darboux. Darboux contributed in multiple fields, and eventually served as secrétaire perpetuel to 

the Academy.] 

 New Deductive Systems Section IX.C.
By about 1890, two brand new axiomatic systems appeared. 

1. The Natural Numbers 

The Weierstrass and Dedekind constructions of the real number system culminated the 

arithmetization of analysis. Dedekind also played an important part in the arithmetization of arithmetic. 

In the 1880’s, he proposed a set of axioms for the system of natural numbers. Today we adopt the 

refinement published in the 1889 Arithmetices principia nova methodo exposita (The Principles of 

Algebra, Presented via a New Method) of Giuseppe Peano [peh-AH-no] (1858-1932).  

a) the  Peano axioms 

Peano put forth the natural numbers as a set N of elements satisfying five axioms.  

Axiom 1. Every element has a follower. 

It is easier if we put the axiom in the language of functions. The axiom says that there is a follower 

function F that assigns to every element n of N its follower (or successor) F(n), also in N. 

Axiom 2. Different elements have different followers. 

Here the advantage of function language is evident. Axiom 2 says that F is one-to-one. 

Axiom 3. Every element is a follower … 

There is another half to the statement, and it is crucial. Still, it is useful to look at some examples of 

sets and follower functions that obey the axioms so far, yet look nothing like the natural numbers. 

Example 1. , the empty set, with the “empty function,” satisfies the three axioms. (Verify.) 

Whenever you write universal sentences—sentences that say “Every this …” or “All of those …”—

the empty set satisfies them. It satisfies them “vacuously”; there are no elements to fail to satisfy 

them. For that reason, nothing in these first three axioms rules out the possibility that N is empty. 

http://en.wikipedia.org/wiki/Measure_(mathematics)
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Example 2. {}, with F2() = , likewise satisfies all three axioms. (Verify.) 

Example 3. R, the set of reals, with F3(x) = -2x, also fits. Again, verify that it satisfies the axioms, 

even though it literally turns our usual understanding of “follower” around. 

The statement of Axiom 3 ends with: 

Axiom 4. … with exactly one exception. 

Again in the language of functions, this one says that the range of F has all but exactly one element 

of N. The function misses being onto by one element. 

Like the identity axiom for groups (section IX.A.2a(i)), Axiom 4 requires the existence of a special 

element in N. Thereby, it rules out the empty set. That eliminates Example 1. Axiom 4 also rules out the 

other examples. The functions in Examples 2-3 are onto; neither of them allows an exception. 

Let us give the exceptional natural number a name. “XCPTN” is suggestive but has too many letters. 

Choose instead the name “one”, along with the symbol “1”. 

This exception has to have a follower F(1). That follower cannot be the same as 1. (Explain why, 

remembering that the only source of explanations is the collection of axioms.) Give it a new name, 

say “two”, denoted “2”. 

This second element has to have a follower F(2). That follower cannot equal 1, for the same reason 

that 2  1. It also cannot equal 2, because it is the follower of 2, whereas 2 is the follower of 1; 2 

and 1 are different, and different elements have different followers. [Follow?] Call F(2) = F(F(1)) 

“three”, denoted “3”, and so on. 

We have produced a list, 

 1, 2 = F(1), 3 = F(2),  4 = F(3), …, 

in which each entry is different from all the previous ones. The set of natural numbers is infinite. 

Does that list all of them? Let us agree to the name counting (up) from k for the process of 

beginning with k and proceeding follower by follower: 

 k, F(k),  F(F(k)), …. 

Counting from 1, we listed an infinity of natural numbers. In our usual picture of the natural numbers, 

that certainly covers them all. However, our picture does not count; only the axioms matter. Do the 

axioms guarantee that there are no other naturals? The next example shows that the answer is no. 

Example 4. Take the set W of “words” you can make by stringing together one or more a’s, or 

instead one or more a’s and a terminal b, or instead an initial b followed by zero or more a’s. Thus, 

 a, aa, aaa, …   and  …, aaab, aab, ab, b, ba, baa, baaa, … 

are words. Convince yourself that those two lists comprise all the possible words. 

On W, define a follower function by 

 F([word]) = [the next word in dictionary order]. 

Check for yourself that each of our two lists is in follower order. If you have accepted that the two 

lists cover all of W, you can easily see that all four axioms are satisfied. 

Now, count up from the exception, the lone element a that is not a follower. You get only the all-a 

half of the set; you never reach the list of words with b. Axioms 1-4 are not enough. 

We need one more axiom to characterize N. 

Axiom 5. (The Induction Axiom) Suppose S is a subset of N with two properties: 

 First, 1  S (1 “belongs to” S; the symbol is going to get a lot of work); 

 second, if n is any element of S, then also F(n)  S. 

In that case, S is all of N. 
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This elegant way of formalizing mathematical induction completes the characterization of the set of 

natural numbers. Notice that our Example 4 violates it. In that example, the subset S = {a, aa, aaa, …} 

has the two properties, but does not fill up W. Still, because the example satisfies Axioms 1-4 and not 

Axiom 5, it is one valuable step toward proving that the axioms are independent: No combination (non-

empty subcollection) of them implies any of the others. In different words, for each combination, you 

can concoct an example in which its axioms are satisfied, and not the remaining ones. In an independent 

set of axioms, none is redundant; that is the ideal for a deductive system. Remarkably, everything 

humans have come to know about arithmetic follows from this compact collection of axioms. 

Theorem 1. Counting from 1 lists all the natural numbers. 

For proof, let S be the subset of N consisting of all the numbers in the sequence 

 1, F(1), F(F(1)), …. 

Clearly 1 is in S. Next, assume k  S. Then F(k) is listed next; that is how the list is made. By 

Axiom 5, S = N. All the natural numbers are on the list. 

The same argument establishes our principle of proof by mathematical induction (Exercise 1). From 

now on, we will skip the subset S in the axiom. We will seek to show, for example, that a sentence P(n) 

about natural numbers is true for all n, rather than that the set of n for which it is true is all of N. 

a Exercises IX.C.1
Use the five axioms to prove the statement in Exercise 1. That will establish mathematical 
induction as a valid method of proof, which we may thereafter use freely. 

1. Let P(n) be a sentence, based on the natural number n, that satisfies: 
 (“base case”)  P(1) is true. 
 (“inductive case”) Whenever P(k) is true, then P(F(k)) follows. 
Then P(n) is true of all natural n. 

2. Prove that in N, no element is its own follower. 

3. Prove that in N, the sequence 
 1, 2 = F(1), 3 = F(2), … 
has each term different from all the previous terms. 

b) addition 

From the axioms, we define that most elementary of operations.  

Definition of addition. Fix a natural number m. By m + 1, we mean F(m). After m + k has been defined, 

we define m + F(k) to mean F(m + k). 

In view of the definition, we may choose to write m + 1 in place of F(m). Nevertheless, the function 

notation has advantages, including keeping the axioms in our minds. Notice, though, that the definition 

seems to give a separate significance to “adding to m = 1”, “adding to m = 2”, …. The separation is not 

objectionable; the definition attaches a meaning to every expression m + n. That is important: It does 

attach a meaning. It is an example of recursive definition.  Such a description specifies a base case, 

then states not what the subsequent instances are, but how they are produced from previous cases. We 

encountered that kind of definition for the Fibonacci numbers (section V.B.2b): base cases f1  =  1  =  f2, 

subsequent fn + 2  =  fn + 1 + fn. It is possible to prove from the axioms that a recursive definition yields a 

unique sequence of terms; we skip the proof. 

The definition is a formal statement. We will soon give formal proofs to two properties of addition, 

then speak almost entirely informally. Peano’s axioms were part of a larger effort to build arithmetic 

from elements, as a formal system. A formal system encompasses a language that allows expression of 
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definitions, axioms, and rules of inference. Such a system would be genuinely deductive, with no 

inference depending on assumptions that are hidden (not explicit among the axioms).  We will come 

back to formal systems eventually, but restricting ourselves to one is laborious. We will allow ourselves 

the liberty to drop formality. Indeed, we have done so at least twice: Formally, the “list” 

 1, 2 = F(1), 3 = F(2), … 

calls for recursive definition (Exercise 1); and the Fibonacci recursion uses several additions, even 

though we are still in the process of defining addition. 

Put the addition definition informally. It says that 

 m + 1  =  F(m),  m + 2  =  F(F(m)),  m + 3  =  F(F(F(m)), …. 

In words, the way you get m + n is to count n numbers up from m. Did you ever see a child—or even an 

adult—add by counting on his fingers? If yes, did it make you think that he could not add? Observe now 

that adding is precisely what he was doing. If you see “5 + 3” and immediately decide “8”—even 

picturing a figure-8 in your mind—then you are not adding. You are not processing an algorithm. You 

are recalling or accessing a memorized fact. The counting child simply has not stored that datum. 

On the formal track, let us establish addition’s most basic properties. 

Theorem 1. Addition is associative: Suppose k, m, and n are in N. Then 

 (k + m) + n  =  k + (m + n). 

The proof method of choice is obvious; induction is the only weapon we have. 

n = 1 case:  (k + m) + 1 =  F(k + m)  (by the definition of adding 1) 

    =  k + F(m)  (inductive part of addition definition) 

    =  k + (m + 1)  (definition of adding 1). 

That establishes the n = 1 case. 

inductive case: Assume (k + m) + n  =  k + (m + n). Then 

 [k + m] + F(n)  =  F([k + m] + n)  (definition of addition) 

    =  F(k + [m + n])  (by assumption) 

    =  k + F([m + n])  (addition) 

    =  k + [m + F(n)]  (same). 

That establishes the inductive case, completing the proof by induction of associativity. 

In the middle of the argument, we concluded from the assumption 

     [k + m] + n  =      k + [m + n] 

that F([k + m] + n)  =  F(k + [m + n]). 

The reason is nowadays built into the definition of function: x = y forces F(x) = F(y). Peano explicitly 

listed the principle among the totality of axioms, as part of the project to assemble a formal system. 

Theorem 2. Addition is commutative: If m and n are natural, then m + n  =  n + m. 

case n = 1: We will prove that m + 1  =  1 + m by “double induction,” induction on m within the 

induction on n. 

case m = 1: That one says 1 + 1  =  1 + 1; sounds reasonable. 

inductive case for m: Assume m + 1  =  1 + m. Then 

 F(m) + 1  =  F(F(m)) (definition of adding 1) 

   =  F(m +1) (same) 

   =  F(1 + m) (assumption) 

   =  1 + F(m) (inductive part of addition definition). 

That establishes the inductive case; it proves by induction on m that m + n  =  n + m in the case 

we are considering, n = 1. 
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inductive case for n: Assume that m + n  =  n + m. Then 

 m + F(n)  =  m + (n + 1) (adding 1) 

   =  (m + n) + 1 (associativity) 

   =  1 + (m + n)  (the n = 1 case) 

   =  1 + (n + m) (assumption) 

   =  (1 + n) + m (associativity) 

   =  (n + 1) + m (the n = 1 case) 

   =  F(n) + m (adding 1). 

That establishes the n-induction, proving for all natural m and n that m + n = n + m. 

b Exercises IX.C.1

1. Give a formal definition of our “list” 
 1, 2 = F(1), 3 = F(2),  4 = F(3), …. 

2. Prove that addition allows cancellation: 
 If k + n  =  m + n, then necessarily k = m. 

3. a) Write a formal definition of F n(m), what we write informally as F(F…(F(m))). 
b) Use your definition to prove that 
 m + n  =  F n(m). 
We spoke that equality as, “You get m + n [by counting] n numbers up from m.” 

c) order and arithmetic 

To define an order (relation), remember that the list 

 1, 2 = F(1),  3 = F(2), … 

comprises all natural numbers. There, each term differs from all the previous ones. In other words, every 

element of N appears exactly once on the list. Accordingly, if m and n are distinct natural numbers, then 

one of them appears before the other. We will say that m is smaller than n, and write m < n, if m 

appears before n on the list. (Make a formal definition in Exercise 1.) Equivalently, we say n is greater 

than m and write n > m. We add j  m to signify that either j = m or j < m; similarly for k  n. 

We can now state some familiar properties of the order. Formal proofs are possible, but mostly we 

either skip them completely or leave formal (or informal) argument to the exercises. 

Theorem 1. For natural numbers m and n, the following are equivalent: 

a) m < n. 

b) You can count from m up to n. 

c) You cannot count from n up to m. 

d) There exists a natural number k such that n = m + k. 

In view of (d), we can now define subtraction: If m < n, we write n – m to signify the one natural y 

such that n = m + y. (See Exercise 3.) Subtraction has familiar properties. 

Theorem 2. For natural k, m, and n: 

a) If k > m + n, then 

 [k – m]  and  [(k – m) – n] 

are both defined, and 

 k – (m + n)  =  (k – m) – n. 

b) If k > m and m > n, then 

 k – (m – n) 

is defined, and 

 k – (m – n)  =  (k – m) + n. 
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For part (a), assume k > m + n. By Theorem 1(d), m + n > m. By transitivity (adapt Exercise 2), 

k > m. Therefore k – m is defined. Further, k – m > (m + n) – m (Exercise 5a). That says k – m > n, 

which implies that [(k – m) – n] is defined. 

Write k – (m + n)  =  x. Then 

 (m + n) + x  =  k (definition of subtraction) 

   =  m + (k – m) (same) 

   =  m + (n + [(k – m) – n]) (same) 

   =  (m + n) + [(k – m) – n] (associativity). 

By cancellation (Exercise IX.C.1b:2), 

 k – (m + n)  =  x  =  (k – m) – n. 

For part (b), do Exercise 5b-c. 

The other operations get the definitions you would expect. Multiplication is defined by 

 mn = m + m + … + m     (n summands; compare Exercise 6). 

Division is its partial inverse. If there is a k such that m = kn (for which we use the usual language, like 

“n divides m”), then there will be just one such k (Exercise 6c), and mn means k. 

c Exercises IX.C.1
This is a big set of exercises that are either long or sophisticated. Pick your spots. Except 
where formality is specifically required, informal proof will suffice. For any proof, you may 
refer to any previous ones. 

1. a) Give a formal definition of m < n. (Hint: Work as in Exercise IX.C.1b:3a.) 
b) Use the definition to prove that if m < n, then there exists a natural k such that 
 n = m + k. 

2. Show that  is a partial order; that is, it is: 

a) reflexive:  m  m for every m. 

b) antisymmetric: If m  n and n  m, then m = n. 

c) transitive:  If k  m and m  n, then k  n. 

3. Prove that if there is some y with n = m + y, then there is only one such y. 

4. Prove that subtraction is not associative. 

5. a) Show that for natural x, y, and z, 
 if x > y > z,  then  x – z > y – z. 
(Why does “x > y > z” makes sense?) 
b) Show that if m – n is defined, then m – n < m. 
c) Prove part (b) of Theorem 2. 

6. a) Give a formal definition of multiplication. 
b) Prove that mn is always greater than m, except that m1 = m. 
c) Prove that multiplication allows cancellation: If kn = mn, then k = m. 

7. Prove that multiplication is: 
a) associative: (km)n  =  k(mn) 
b) commutative: mn = nm 
c) distributive over addition: k(m + n)  =  km + kn 
d) “compatible” with >: If m > n, then km > kn. 
e) distributive over subtraction: If m > n, then km – kn is defined, and 
 k(m – n)  =  km – kn. 
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8. Show that in N, 32 is not defined, but 42 is. 

9. A partial order on a set (refer to Exercise 2) is called a total order if every pair of elements 
is comparable: Given x and y (not necessarily distinct), either x is related to y, or y is 
related to x. 

a) Show that on N,  is a total order. 
b) Show that on N, “m divides n” defines a (relation that is a) partial order. 
c) Show that “m divides n” does not define a total order. 

d) the well-ordering and other principles 

We end our discussion of the axiomatization of N with three principles. It is easy to prove them from 

the five axioms. It is harder to prove formally that in the presence of Axioms 1-4, they all imply the 

induction axiom. In other words, they are actually equivalent to Axiom 5. We will settle for an informal 

chain of reasoning leading to the equivalence. We list first the most important, the one we have invoked 

most frequently. The other two are worth expressing because they are (fairly) well-known and useful.  

The Well-Ordering Principle. Under the five axioms, every nonempty subset of N has a least element.  

Suppose T is a subset of N. (Peano introduced the notation T  N.) We need to show that if T is 

nonempty, then T has a least element. We prove instead the contrapositive, by the induction axiom. 

Suppose T  N has no least element. Look at the set S of natural numbers n such that every number 

smaller than or equal to n is outside T. In symbols, 

 S = {n: 1, 2, …, n are not in T}. 

First, 1  S. The only natural number smaller than or equal to 1 is 1, and it has to be outside T. If it 

were in T, then it would be the smallest element there; T does not have a smallest. Second, if k  S, 

then F(k) must likewise be in S. If k  S, then 1, 2, …, k are all outside T. Accordingly, F(k) must 

also be outside T: If F(k) were in T, it would be the least element there. That puts F(k) in S. 

We see that S satisfies the hypotheses of the induction axiom. Therefore S is all of N. That is, all 

natural numbers are outside T. We have proved T is empty. 

If we rely on just Axioms 1-4, then we lose the recursive definition of the list 

 1, 2 = F(1), 3 = F(2), … 

(Exercise IX.C.1b:1) and the proof that the list covers of all N (Theorem 1 in section IX.C.1a). Still, we 

can informally define what it means for m on that list to be smaller than n. One of them has to come 

first. If the first is m, then n = F(F…(F(m))), and we use that to define m < n. With that in mind, we can 

prove that the well-ordering principle implies the next principle (Exercise 1a). 

The Principle of Complete Induction. Suppose P(n) is a sentence, about the natural number n, with 

these two properties:  

 (base)  P(1) is true. 

 (inductive) If P(1), P(2), …, P(k) are all true, then P(k + 1) is true. 

Then P(n) is true for every n  N. 

This principle describes another approach to proof by induction. You might think that it is harder to 

apply than our usual method. Actually the opposite is true. This version does not require more 

information. Instead, it allows you to assume more information. For that reason, it is sometimes easier to 

apply, as in proving the next statement (Exercise 1b). 

The Principle of Infinite Descent. Suppose Q(n) is a sentence, about the natural number n, such that:  

 If Q(n) is true, then there is a smaller natural m for which Q(m) is likewise true. 

Then Q(n) is never true, for any number n. 
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We may put the principle informally by saying that N does not allow infinite descent. Our first 

encounter with it happened in Egypt; it underlies the explanation why the “biggest-fit method” ends with 

a fraction’s decomposition into unit fractions (Exercise II.A.4:6b). For a less ancient example, from a 

practitioner who frequently invoked the principle, view Fermat’s proof (section VII.A.4f(iv)) that 

 x
2
 + y

4
  =  z

4
 

has no integer solution. 

To paraphrase Fermat, let R(n) represent the sentence: 

 For the natural number n, there exist integers x and y with x
2
 + y

4
  =  n

4
. 

Fermat established that this sentence satisfies the hypothesis of the principle: If the equation has a 

solution for one natural number n, then it also has a solution for some smaller m. Therefore by the 

principle, R(n) is always false. 

Look back at Example 4 in section IX.C.1a. There, we found that the set 

 W = {a, aa, aaa, … together with  …, aab, ab, b, ba, baa, …} 

satisfies Axioms 1-4. We saw further (via Theorem 1 there) that it violates Axiom 5. Observe now that it 

also violates the principle of infinite descent; it allows infinite descent along the b-line. 

We saw that the induction axiom implies the well-ordering principle. Well-ordering implies 

complete induction, which implies the infinite descent principle. All of those assume Axioms 1-4, and 

the last two are Exercise 1. Below, we will prove that the principle of infinite descent implies the 

induction axiom. That chain of inferences, 

 Axiom 5 implies well-ordering  (proved above) 

  implies complete induction  (Exercise 1a) 

  implies infinite descent  (1b) 

  implies Axiom 5   (below), 

establishes that the four principles are equivalent. 

Assume the principle of infinite descent. To prove the induction axiom, assume further that S is a 

subset of N with the properties: 

 (base)  1  S; 

 (inductive) Whenever k  S, then also F(k)  S. 

Look at the sentence R(n) that says: 

 n  S  (n is not an element of S). 

Suppose R(n) is true, meaning n is not in S. First, n cannot be 1. R(1) is not true: 

 What R(1) says is 1  S; that is false by the base condition. 

Second, since n  1, n is a follower, say n = F(m). The statement R(m) has to be true: 

 What R(m) says is m  S. If that were false, meaning m  S, then the inductive condition 

 would force  n = F(m)  S, contrary to the assumption that R(n) is true. 

From the assumption that R(n) is true, we have concluded that R(m) is true, m being smaller than n. 

By the overlying assumption, namely the principle of infinite descent, the sentence R(n) is false for 

all n. That is, every natural number is in S; S = N. That proves the induction axiom. 

d Exercises IX.C.1

1. Assuming the first four Peano axioms, prove that: 
a) The well-ordering principle implies the principle of complete induction. 
b) The principle of complete induction implies the principle of infinite descent. 
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2. Peano held a university post at Turin (and later at the Military Academy, as had Lagrange). 
Why were mathematicians in the nineteenth century more likely than in previous centuries 
to be academics? 

e) evolution of “axioms” 

For two thousand years after Euclid, the word “axiom” held one meaning. An axiom was a statement 

whose truth was so plain as to be undeniable, something nobody could doubt.  A good example is, 

“When equals are added to equals, the results are equals.” We have seen from the creations of Bolzano, 

Cauchy, Galois, Weierstrass, Dedekind, and Peano that before the nineteenth century ended, the 

meaning had become “working assumption.” A working assumption is a statement to which the reader is 

asked to agree for the time being, presumably because some mathematical profit lies in acceptance. The 

latter meaning was what Euclid had given to the word “postulate.” You would need a great sense of 

humor to think of “Euclid’s postulate” as plainly true. Euclid’s geometry showed what you could 

conclude if you chose to accept the postulate. As we will see later, the creators of “non-Euclidean 

geometry” showed what you could conclude if you chose to deny it. 

Remarkably, the evolution in the meaning of “axiom”—from undeniable truth to assumption worth 

considering—was reflected in two of the most important writings in the life of the United States. In 

1776, Thomas Jefferson’s Declaration included the words, “We hold these truths to be self-evident, that 

all men are created equal …”. Eighty-seven years later, Abraham Lincoln’s “few appropriate remarks” 

at the consecration of the Gettysburg cemetery included, “Now we are engaged in a great civil war, 

testing whether that nation, or any nation so conceived and so dedicated, can long endure.” 

[Italics added. I heard the comparison from the late Alvin Hausner. Read about how the Gettysburg 

Address is grounded in the Declaration of Independence and in Pericles’s Funeral Oration in Lincoln at 

Gettysburg, by Garry Wills.] 

2. Sets 

The second new axiomatic system covered the theory of sets. It grew from the work of Georg 

(Ferdinand Ludwig Phillip) Cantor (1845-1918) in the last quarter of the nineteenth century. 

Cantor’s first interest was number theory. Then at the behest of Heine, he successfully tackled the 

question of uniqueness of trigonometric series. Recall (section VIII.B.4a) that if a function is given by a 

power series, then that series has to be the Taylor series. Cantor showed that the Fourier series is the 

only trigonometric series that can give a function. That result had eluded all comers, including Dirichlet 

and Riemann. While attacking the problem, Cantor became interested in infinite sets. 

Cantor tried to axiomatize set theory. Much as mathematicians had been willing to work with 

intuitive ideas of “function” and “continuity,” so had they been satisfied with the intuitive notion of 

“set.” Consider: 

 A set is a collection of objects with some defining characteristic. 

You can see that the last sentence is hopeless as a definition, simply substituting “collection” for the 

target word plus adding such undefined words as “characteristic.” 

Cantor’s system proved to be too broad. He himself saw the logical difficulties that arise if you allow 

sets that are “too big,” like the set S of all sets. That set would have S itself as a member, inside of which 

member  there would be a member S, inside of which …. Among other contradictions, an elementary 

and serious one is the Russell paradox. 

http://en.wikipedia.org/wiki/Pericles%27_Funeral_Oration
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There are sets that are elements of themselves. If we allow S above, we have an example. The set of 

infinite sets is another, since it has an infinity of members. On the other hand, the set N of natural 

numbers is not a natural number, is therefore not one of its own members. Looking now at the set U 

of sets that are not members of themselves, we see that 

 U is a member of U  iff  U is not a member of U. 

(See also Scientific American.) 

It took decades for the work of Bertrand Russell, Ernst Zermelo, and Abraham Fraenkel to 

restructure the Cantor axioms to avoid such contradictions. 

The part of Cantor’s theory we will study has to do with numbers of elements in sets. This part 

astounded the mathematical world because it established that there is not just one infinity, that some 

infinite sets are more infinite than others. Irrespective of the paradoxes, this part of his work was 

subjected to tremendous (and vicious) criticism on mathematical and philosophical grounds. (Read 

Boyer on Kronecker’s reaction.) It was years before the mathematical world came to agree on the 

validity—indeed, brilliance—of Cantor’s work. 

a) numerousness 

In developing the idea we called “number of elements,” Cantor found it easier to begin with “equal 

numbers of elements.” Einstein did something similar later when he found that the idea of time was 

easier to describe in terms of “equal-time-ness,” or simultaneity. 

(i) sets and functions 

We must recall some vocabulary from sets and functions. 

We have already much used the intuitive (“naïve”) concepts of “set” and “belonging to” (same as 

“being a member or element of”) a set, and will continue to use them. A set T is a subset of set S if 

every member of T belongs also to S. If S has all the members of T plus others, then we say T is a 

proper subset of S. 

Given sets U and V, a function from [or mapping] U to (or into) V assigns to every element of U a 

single element of V (Dirichlet’s definition). If the function f assigns to u in U the element v in V, then we 

write v = f (u) (per Lagrange) and say v is the image of u under f. If different members of U necessarily 

have different images in V—if 

 u  t  forces  f (u)  f (t)— 

then f is one-to-one. If every element v in V is the image v = f (u) of some u in U, then f is onto. If f is 

both one-to-one and onto, then f is called a one-to-one correspondence. (View Exercise 1.) 

(ii) equinumerousness 

Now we can give Cantor’s definition, from around 1874. The sets U and V are equivalent, or have 

the same cardinality, if there exists a one-to-one correspondence between U and V. (Do Exercise 2 to 

see that the relation of equivalence really is symmetric. Cantor also used the German word for “power” 

in place of “cardinality.” When U and V are equivalent, we will informally say that they are equally 

numerous or have the same number of elements. Because we have to say “one-to-one correspondence” 

so often, we will abbreviate it to “correspondence.”) 

Consider the set {a, e, i, o, u} of English lower-case vowels, the set of complex roots of z
5
 – 1, and 

the set of Peano axioms. Those are collections of very different kinds of objects, but they are all 

equivalent to the subset {1, 2, 3, 4, 5} of N. We could define the cardinal number 5 or “fiveness” as 

the quality that all such equivalent sets share. 

http://www.scientificamerican.com/article/what-is-russells-paradox/
http://en.wikipedia.org/wiki/Zermelo%E2%80%93Fraenkel_set_theory
http://www.archive.org/stream/AHistoryOfMathematics/Boyer-AHistoryOfMathematics#page/n631/mode/2up/search/Leopold
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(iii) infinite numerousness 

Look at the correspondence from N to the set E of even natural numbers described by 

 1  2,  2  4,  3  6,  …. 

Already by 1600, Galileo had observed that it suggests that E is as numerous as the complete N. Clearly 

the latter is a bigger set in the sense that it has all the elements of the former and more; in other words, E 

is a proper subset of N. But matching them up as in the arrow diagram, we cannot escape the idea—

which Cantor’s definition now makes precise—that E has as many elements as N. 

Galileo seemed to view it as a curiosity. Bolzano saw a paradox. Dedekind, instead, realized that it 

captures the very nature of the infinite. Accordingly, Dedekind gave this definition (1872): A set is 

infinite if it can be put in correspondence (Cantor’s later language) with a proper subset of itself. 

Consider R. Since it contains a copy of N, we certainly think of it as infinite. Let us put it to 

Dedekind’s definition. 

In the figure at right, we lay out the real numbers along the x-

axis and highlight (blue) the open interval (0, 1) of real x with 

 0 < x < 1. 

[European notation for the interval without its endpoints 

is “]0, 1[”. That has great advantage in avoiding conflict with 

coordinate notation like the figure’s (1/2, 1).] Draw the lower 

half (shown dotted) of the circle  of radius 1/2 centered 

at (1/2, 1). Given x strictly between 0 and 1, draw the vertical 

(green) from (x, 0) on the axis to the point P(x) on the circle. 

Then draw the half-line (red) from (1/2, 1) through P(x) and 

onward through the axis, meeting the axis at g(x). That red ray sweeps out the entire x-axis without 

repetition; g is a correspondence. Therefore R satisfies Dirichlet’s definition. 

a Exercises IX.C.2

1. Show that as functions from R to R: 
a) f (x) = x2  is neither one-to-one nor onto. 
b) g(x) = ex  is one-to-one but not onto. 
b) h(x) = x3 – 3x  is onto but not one-to-one. 
b) H(x) = x3  is both. 

2. a) Show that equivalence of sets is a symmetric relation: If there is a correspondence 
from U onto V, then there is a correspondence from V onto U. 
b) Show that equivalence is an equivalence relation (defined in Exercise VIII.C.2a:3). 

3. Write a formula that gives a correspondence between the closed intervals [3, 7] and [1, 11]. 

4. In the correspondence x  P(x)  g(x) given by the last figure: 
a) Find the formula for the y-coordinate of P(x). 
b) Find a formula for g(x). 

5. In view of the correspondence between (0, 1) and R, find a correspondence between the 
closed interval [0, 1] and R. (A verbal description will suffice. Hint: H(n) = n + 2 describes a 
correspondence between N and {3, 4, 5, …}.) 

6. Show that if T is a subset of S and T is infinite, then S is infinite. 

   

O 
1 

(1/2,1) 

x 1/2 

P(x) 

g(x) 
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b) how many 

(i) unique number 

To define “number of elements,” the obvious starting point is to define “oneness,” the property of 

having one element. We will say the set S has exactly 1 element to mean that S is nonempty and that, if 

a and b belong to S, then a = b. (The use of “1,” representing the lone non-follower in N, is deliberate.) 

If that defining sentence looks strange, remember that things can have different names. In a field, 

 u(v + w) and  uv + uw 

name equal elements. 

The definition puts oneness in terms of the more elementary notion of equality, which perhaps has to 

be left undefined. Equality can be used in the definitions of function (if a = b, then f (a) = f (b)), one-to-

one function (if f (a) = f (b), then a = b), and 1 (if a and b are non-followers in N, then a = b). [The idea 

is to avoid a circular definition of oneness. If you can convince me that this approach is circular anyway, 

or instead that it is not, I will be happy to put your argument in this place.] 

To define “number of elements” recursively, assume we know what it means for a set to have the 

natural number n of members. Then the set S has n + 1 members if it has a singleton (1-member) 

subset T whose complement T* (comprising the members of S outside T) has n members. 

Theorem 1. S has n members iff it is equivalent to {1, 2, …, n}. 

It will be handy to abbreviate {1, 2, …, n} by Sn. We call Sn a segment of N. 

As long as we are counting by means of such natural number sets, the natural method of proof is 

induction. We will argue that if S has n members as just defined, then there is a correspondence between 

S and Sn. For the converse of the theorem, we work the base case, and leave evidence for the inductive 

case to Exercise 1. 

(base case)  Suppose S has 1 member. Set f (a) = 1 for every a in S. That defines a function 

from S to {1} = S1, because if a = b in S, then 

 f (a)  =  1  =  f (b). 

The function is one-to-one, because if f (c) = f (d), then c = d; the latter equality is automatic in S. 

The function is onto, because S has some member e, and that member has f (e) = 1. Therefore f is a 

correspondence between S and S1. 

(inductive case) Assume that every set of 100 elements is equivalent to S100. Suppose S has 101 

elements. By definition, S contains a singleton T whose complement T* has 100 members. By the 

base case, there is a correspondence h1 between T and {1}. By the inductive hypothesis, there is a 

second correspondence h2 between T* and S100. Define h on S by 

 h(s) = h1(s)  if s  T 

  = h2(s) + 1 if s  T. 

Then h maps S one-to-one onto S101: The lone image 1 from T does not match any of the 

images 2-101 from T*, and 2-101 come from different members of T*. Hence S is equivalent to S101. 

Conversely, suppose g is a correspondence from {1} to S. First, S is nonempty, because A = g(1) is a 

member. Next, if B is also a member of S, then B is an image g(b), because g is onto. This b is 

another non-follower in {1}, so b = 1. Because g is a function, B = g(b) must equal A = g(1). 

Therefore S has 1 member. 

Now we see the natural numbers not just as creatures of Peano, but as measures of “how many.” We 

must next show that a set determines its number of elements, that S cannot have m and n  m members. 

Theorem 2. A function from Sn + 1 to Sn cannot be one-to-one. 
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Notice that Theorem 2 implies that you cannot map Sn + k one-to-one to Sn, no matter what natural 

number k is. [Proof doesn’t even need induction] The last guarantees that S cannot have both m 

and n  m members. If that were so, you could map S  Sm and S  Sn, both one-to-one onto.  Then 

from symmetry and transitivity (Exercise 2b above), we would have a correspondence Sm  Sn. 

Theorem 2 amounts to a formal statement of the pigeonhole principle. See the informal statement at 

the end of section VII.A.4f(ii). As expected, our evidence is inductive. 

(base case)  Let f map {1, 2} into {1}. The latter set has just one member, so f (1) = f (2). We 

know 1 and 2 are unequal elements of {1, 2}, because 2 is a follower. Hence f is not one-to-one. 

(inductive case) We assume that no function from S100 to S99 is one-to-one, and let g map S101 to 

S100. The argument below is abstruse, but it amounts to something simple: g cannot be one-to one, 

because either g(101) matches one of the images g(1), …, g(100), or one of those matches another. 

If g(101) matches any of the images g(1), …, g(100), then g is not one-to-one. 

Suppose instead that g(101) does not match another image, say g(101) = 52 and 52 is not any of 

g(1), …, g(100). In that case, those 100 images are red numbers from 1 to 51 or 53 to 100. Define 

function H from S100 = {1, …, 100} to S99 {1, …, 99} by the formula 

 H(i) = g(i)  if   1    g(i)      51 

  = g(i)  – 1 if 53    g(i)    100. 

Check for yourself that H is a function and maps 1-100 to 1-99. 

By the inductive hypothesis, H is not one-to-one. That means there are j and k  j in S100 such that 

 H(j)  =  H(k). 

That equality forces g(j) = g(k). That tells us g is not one-to-one, completing the induction. 

Another consequence of Theorem 2 is that you cannot map Sm one-to-one into a proper subset of 

itself. That means Sm fails Dedekind’s definition, as does every set equivalent to it. We therefore 

describe them as finite (“uninfinite”?). (We call the empty set finite as well. Notice that we have 

confirmed the statement from section IX.A.1d(i) that a permutation, defined as a one-to-one mapping of 

Sm into itself, is necessarily onto.) 

(ii) counting elements 

In any nonempty set, we can count (map one-to-one onto some segment of N) some elements. Given 

set S, we may choose some element; call it a1 to indicate the correspondence {a1} {1}. If there are 

other elements, we choose a2  a1, and correspond {a1, a2}  {1, 2}. (That such “choices” are possible 

is so important that it constitutes an axiom in the later development of set theory. We have no hope of 

delving into it here.) It is possible that this process eventually runs out of candidates, with a1, a2, …, an 

distinct and exhausting S. In that case S is finite and has n elements. 

Alternatively, the process might never terminate. In that case, {a1, a2, …} is a  subset of S equivalent 

to N. We may write: 

Theorem 3. A set is infinite iff there is a correspondence between some subset of it and N. 

Remember that “infinite” means satisfying Dedekind’s definition. 

Assume S is infinite. Then the choosing process above can never end. If it did, then we would find 

 S = {a1, a2, …, an}, 

equivalent to Sn. Since S maps one-to-one onto a proper subset, there would be a corresponding map 

of Sn onto one of its subsets. We ruled that out based on Theorem 2. Therefore the choosing goes on 

without end, and produces a subset of S equivalent to N. 
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Conversely, assume there is such a subset T = {b1, b2, …}. Define f on S by 

 f (s) = s if s is outside T 

   bn + 1 if s is the element bn inside T. 

Observe that f (s) is uniquely defined for every s; f is a function on S. It is one-to-one, because 

images from T are distinct; images from the complement T* are distinct; and an image from T cannot 

match an image from T*, since they are in T and T* respectively. No member of S has b1 as image. 

Consequently, f is a one-to-one mapping of S onto a proper subset of S. That makes S infinite. 

b Exercises IX.C.2

1. Assuming that every set equivalent to S100 has 100 members, show that every set 
equivalent to S101 has 101 members. 

2. Show that if S has m + n elements, then there is a subset T of S having m elements and 
complement T* with n elements. 

c) countable sets 

We saw that you can count some elements in any nonempty set. If you can count them all—if there 

is a correspondence between S and either some segment or all of N—then we say S is countable (or 

denumerable). It is usual to, well, count the empty set as countable. 

It is perhaps not surprising that the set Z of integers, despite having what looks like twice the 

population of N, is countable. The function given by 

 g(i) = 2i + 2  if i  0 

  = -2i – 1  if i < 0 

(nonnegatives go to the evens, negatives to the odds) is a correspondence between Z and N. 

Such correspondences are typically not easy to establish. It is better to rely on the next result. 

Theorem 1. If S is an infinite set and either: 

 a) There is a function mapping N (not necessarily one-to-one) onto S, or 

 b) There is a function mapping S one-to-one into (not necessarily onto) N, 

then S is countable (or for more specificity, countably infinite). 

a) Assume h maps N onto S. Write a1 = h(1). We know S has other members, so h(1) is not the only 

image: There are numbers k  1 for which h(k)  a1. By the well-ordering principle, there is a 

smallest such number k2  2. That means 

 a1  =  h(1)  =  h(2)  = … =  h(k2 – 1)  but a2  =  h(k2)    a1. 

(Here, a1 may well be the image of numbers beyond k2.) Again, S has to have members other 

than a1 and a2. There must be numbers whose images are not those two, and so there is a smallest 

such number k3  3. Accordingly, 

 each of h(1), h(2), …, h(k2 – 1) is a1, 

 each of h(k2), h(k2 + 1), …, h(k3 – 1) is either a1 or a2, 

 but a3 = h(k3)    is different from both a1 and a2. 

The process goes on indefinitely. We see that h maps every natural from 1 to kn  n to a1, …, an. 

Therefore a1, a2, … are all the images under h. Since h is onto, that implies {a1, a2, …} = S. The set 

is countable. 

b) Exercise 1. 

Think of Theorem 1a as a statement that if you can make a natural-numbered list of all the members 

of a set, then the set is countable. (Clearly the converse is also true.) With that viewpoint, we 

demonstrate that the infinite infinity of nonnegative rational numbers is nevertheless countable. 
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Look at the following list of rationals, arranged in rows by sum of numerator and denominator: 

row #1  0/1 

row #2  0/2, 1/1 

row #3  0/3, 1/2, 2/1 

…. 

Every nonnegative rational is there. For example, 705/453 is in row #(705 + 453), at position 706 

from left. (Indeed, every rational is there multiple times; do Exercise 2.) The first 1157 rows have 

1157(1158)/2 entries, so 705/453 is the [1157(1158)/2 + 706]’th rational on the list. The array 

defines a function from N onto the set of nonnegative rationals. By Theorem 1a, those rationals 

constitute a countable set. (Do Exercise 3.) 

Next example is a greater surprise. Consider the set  of finite sequences of natural numbers. It 

includes the one-term sequences (1), (2), …; and the squared infinity of ordered pairs (m, n); and the 

cubed infinity of triples …. Still,  is countable. 

Write a list of prime numbers p1, p2, …. It does not matter if they are out of size-order or if some 

primes are missing, provided they are distinct. (Why is such an infinite list possible?) Given the 

sequence s = (m1, m2, …, mk), define 

 h(s) = p1
m

1 p2
m

2 … pk
m

k. 

This h assigns to s a unique natural number. If s  t, then h(s) and h(t) are different prime-power 

factorizations, are therefore unequal natural numbers. Thus, h maps  one-to-one into N. By 

Theorem 1b,  is countable. (Compare Exercise 4.) 

Notice that the same argument, restricted to just the ordered pairs (m, n), would have demonstrated 

that the rationals are countable. 

It is customary to symbolize the number of natural numbers—the cardinality of N—by 0. The 

symbol is read “aleph null,” using the Hebrew letter aleph. From the last example, we see that 0 is big 

enough to make, not just 

 0  =  0
2
  =  0

3
  = …, 

but in fact 

 0 = 0 + 0
2
 + 0

3
 + …. 

[Maybe we should say it “is small enough.”] 

Our last example is the set of algebraic real (or even complex) numbers. Recall (section IX.A.2c(iv)) 

that a real or complex number is called algebraic if it is a root of some polynomial with rational 

coefficients. Every such polynomial p(x) has a unique standard form 

 p(x) = rn x
n
 + rn – 1 x

n – 1
 + … + r1 x

 
+ r0, 

with the exponents decreasing and any missing powers written in with zero coefficients. The function 

given by 

 f (p) = (rn, rn – 1, …, r1, r0) 

maps the set P of those polynomials one-to-one onto the set Q of finite sequences of rational numbers. 

Because the rationals are countable (Exercise 3), there is a correspondence between Q and  (finite 

sequences of naturals). We just saw that there is a correspondence between  and N. The composition of 

all those gives a one-to-one function from P to N. By Theorem 1b, the set of polynomials is countable. 

By Exercise 5, the set of algebraic numbers is countable. 

c Exercises IX.C.2

1. Prove that if function H maps the infinite set S one-to-one into N, then S is countable. 

2. We stated that 705/453 is at position 706 in row #1158 in our array. Where else is it? 
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3. Show that there is a correspondence between N and all of the rationals. 

4. Show that the class (set) of finite subsets of N is countable. 

5. Show that the algebraic numbers form a countable set. (Partial hint: For every algebraic 
number, there is a unique monic minimal polynomial [section IX.A.2c(v)].) 

d) uncountable sets 

Just as “acoustic guitar” exists only because there are now other kinds, so does inventing the 

adjective “countable” make sense only if some sets are not. The followers of Kronecker and 

Wittgenstein would have dismissed the idea of “actually infinite” sets, as opposed to infinite in some 

unreachable limiting sense; they would have considered it, at best, nonsense. When Cantor proposed that 

there exist not merely infinite sets, but different levels of infinity, they just about called the idea unholy. 

The opposition harmed Cantor’s academic career. However from around 1900, and with the support of 

Hilbert, the mathematical validity of Cantor’s work has been beyond doubt. 

(i) the reals 

The fundamental uncountable set is the set of real numbers. It has as many members as the open 

interval (0, 1). To see the latter’s cardinality, represent each of its reals as a decimal. 

Take the numbers 1/8 and 2/2. For each, look among 0/10, 1/10, …, 9/10 for the last one smaller 

than it. Thus, we find numerators a1 = 1 and b1 = 7 with 

 a1/10  <  1/8    2/10   and  b1/10  <  2/2    8/10. 

Next, find the last of 

 a1/10 + 0/100,  …, a1/10 + 9/100 

smaller than 1/8, and similarly with 22. You find a2 = 2 and b2 = 0 with 

 a1/10 + a2/100  <  1/8    1/10 + 3/100 and   b1/10 + b2/100  <  2/2    7/10 + 1/100. 

Continuing that way, we find two sequences (ai ) and (bi ) of digits (0 to 9) such that 

 a1/10 + a2/100 + … + an/10
n
  <  1/8   a1/10 + a2/100 + … + (an + 1)/10

n
, 

 b1/10 + b2/100 + … + bn/10
n
  < 2/2   b1/10 + b2/100 + … + (bn + 1)/10

n
. 

By the definition of series convergence, the two series 

 a1/10 + a2/100 + …   and  b1/10 + b2/100 + …  

equal 1/8 and 2/2 respectively. We abbreviate the series by the symbols (decimals) .a1a2… 

and .b1b2…. It is in this sense that 

 1/8  =  .1249999…   and 2/2  =  .707[non-repeating sequence of digits]. 

Every member of (0, 1) is given by a decimal. 

Given how we chose it, the decimal for such a real is unique. Had we written “smaller than or equal 

to” in place of “smaller than,” then we would have arrived at 

 1/8  =  .1250000…. 

It is not hard to show that this example gives the only way different decimals can have equal values: 

 .1250000…  =  .1249999…, 

in which one decimal ends in an unending string of 0’s, the other in a string of 9’s; the former’s last 

non-0 is 1 greater than the latter’s last non-9; and the value is a decimal fraction m/10
n
, like 

 1/8  =  125/1000, 

whose reduced denominator necessarily has no prime factors other than 2 and 5. 

Cantor’s argument for the uncountability of R was so ingenious that it became a technique and 

acquired a name, Cantor’s diagonal argument. 
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Look at any natural-numbered list of reals written as decimals. Write it as 

 r1 = .c1c2c3… 

 r2 = .d1d2d3… 

 r3 = .e1e2e3… 

  …. 

The real number 

 r = .(c1 + 5 mod 10)(d2 + 5 mod 10)(e3 + 5 mod 10)… 

(signifying succession of decimal digits, not multiplication) is not on the list. This r is not r1. The 

first digits of r and r1 differ by 5, and we just stated that two such discrepant decimals cannot have 

the same value. Similarly r is different from r2, r3, …. 

We conclude that no list can name all the reals. It follows that no one-to-one function maps N 

onto R. The set of real numbers is uncountable. 

(ii) power sets 

Casting about for other uncountable sets, we come upon the set of subsets of N. For any set S, the 

class of its subsets is called the power set of S, symbolized by P(S). Cantor showed that for every set, 

the power set has more members than the set. 

It is worthwhile doing N separately, just to revisit the diagonal argument. Suppose 

 S1, S2, S3, … 

is a list of subsets of N. Define a subset S by putting into it: 

 1 iff 1 is not in S1, 

 2 iff 2 is not in S2, 

 3 iff 3 is not in S3, …. 

Then S disagrees with every subset on the list. Hence P(N) is unlistable. (Compare Exercise IX.C.2c:4.) 

For a general set T, let f be a one-to-one function from T to P(T). (There certainly are such functions: 

 t  {t}  for all t  T 

describes one. Consequently P(T) is as least as numerous as T.) Let U be the subset of T consisting 

of those members t that are not elements of their images f (t). Then U cannot be an image under f. If 

there existed u in T such that U = f (u), then we would have a contradiction: 

 u would be a member of U exactly if u is not a member of f (u) = U. 

Therefore f cannot be onto. We conclude that P(T) has greater cardinality than T. 

In view of this result, there is a whole scale of increasingly bigger infinities. Write “” to mean has 

smaller cardinality than. Then 

 N  R    P(R)   P(P(R))  …. 

Cantor saw the associated paradox in his set theory. The theory did not rule out a set S “of all sets.” This 

set would have the biggest possible cardinality, because its members would include every set’s 

singletons. But P(S) would necessarily have bigger cardinality. 

(iii) the two basic sets 

We now show that the reals and the subsets of N are equally numerous. 

First, match each subset of T of N with a sequence (a1, a2, …) of 0’s and 1’s, according to the rule 

 ak = 1 if k is in T, 

   0 if k is not in T. 

For example, the set of even naturals goes with (0, 1, 0, 1, 0, 1, …). Decide for yourself why the result is 

a correspondence between P(N) and the set Q of all such 0-1 sequences. 
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Next observe that just as any real in (0, 1) is given by a decimal 

 .b1b2b3…  =  b1/10 + b2/10
2
 + b3/10

3
 + …, 

so it is given also by a binimal 

 $c1c2c3…  =  c1/2 + c2/2
2
 + c3/2

3
 + …. 

[There is no such mathematical word, so we invent “binimal”?] You find the binimal, in which the 

permissible digits c1, c2, … are all 0 or 1, by adapting the “biggest fit” algorithm that worked for 10. 

A given real’s binimal is unique, except for the binary fractions m/2
n
. For those, say 1/8, 

 1/2
3
 = $0010000… 

  = $0001111… = 1/2
4
 + 1/2

5
 + …. 

Using the binimals that do not end in all 0’s, we match 

 $c1c2c3…  (c1, c2, c3, …). 

That defines a function from the interval (0, 1) to Q. The function is clearly one-to-one. 

The members of Q that are not images under the function are those of the form 

 (d1, …, dk, 0, 0, 0, 0, …), 

plus (1, 1, 1, …). That subset of Q is countable (Exercise 1). We have found a one-to-one function 

from (0, 1) to Q that covers all but a countable subset of Q. It follows (Exercise 2) that there exists a 

one-to-one function mapping the interval onto Q. Therefore (using “” for is equivalent to) 

 R  (0, 1)  Q  P(N). 

The finite set {1, 2, …, n} has cardinality 2
n
 (Exercise 3). We have symbolized the cardinality of N 

by 0. Accordingly, it is usual to symbolize the cardinality of P(N)  R by 2
0, which is in turn 

sometimes called 1. (Then P(R) has 2 = 2
1 members, P(P(R)) has 3 = 2

2, ….) 

We now know that N is less numerous than R. Cantor could not find any intermediate cardinality. 

He conjectured that none exists. The conjecture was called the continuum hypothesis. (More broadly, 

the generalized continuum hypothesis says that if S is infinite, then P(S) has the next biggest 

cardinality.) It was one of the deepest questions mathematics ever encountered. The answer took a 

remarkable form and required half a century to decide. 

d Exercises IX.C.2

1. Prove that the sequences of 0’s and 1’s with just finitely many 1’s (so that they end in 
all 0’s) constitute a countable subset of Q. (Hint: Either the real numbers given by the 

corresponding binimals or Exercise IX.C.2c:4 can lead to the proof.) 

2. Assume S is infinite. Suppose f maps S one-to-one into T, such that the images under f 
make up all but the countable (maybe finite) subset {t1, t2, …} of T. Show that there exists a 
correspondence between S and T. 

3. Show why the power set of {1, 2, …, n} has 2n members. (By Cantor’s argument, 2n > n. 
Does that agree with our previous comparison?) 

4. Show that there is a correspondence between R and the set C of complex numbers. (Hint: 
The class of subsets of N that hold only even numbers, its complement (the class of 
subsets that hold some odds), and the full P(N) are all equally numerous.) 

5. Which is more numerous, the set of algebraic numbers, or the set of transcendentals? 
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 The Oldest Deductive System Section IX.D.
In geometry, the first third of the nineteenth century brought a revolution that took most of the rest 

of the century to gain understanding and acceptance. 

1. Non-Euclidean Geometry 

a) Bolyai and Lobachevsky 

Lambert’s lament notwithstanding, attempts to prove the parallel postulate continued. The next 

noteworthy try came independently and almost simultaneously from a Russian academic and a 

Hungarian cavalry officer. Nikolai Ivanovich Lobachevsky (Lovachevskii?, 1792-1856) and János 

[YAH-nosh] Bolyai (1802-1860) made their discoveries in the 1820’s (Bolyai first), then published them 

in 1829 and 1832 (Lobachevsky first). They denied the parallel postulate, in Playfair’s form, and sought 

to find a contradiction. 

The Bolyai-Lobachevsky Postulate. Given a point off a line, there exist multiple lines through the 

given point parallel to the given line.  

(i) the Bolyais 

One of those working at the parallel postulate was Farkas Bolyai, a Hungarian teacher who had been 

a classmate of Gauss and kept in touch with him. Farkas tried to steer János, his son, into physics. When 

János told his father that he had become obsessed with the postulate, Farkas begged him to abandon it; 

see Boyer. János instead went on to build an unimpeachably logical geometry built on the Bolyai-

Lobachevsky (hereafter “multi-parallel”) postulate. He expanded the theory into a tract called The 

Absolute Science of Space. It must have been impossible to find a publisher for such revolutionary ideas, 

because the document finally appeared as an appendix to his old man’s textbook of 1832. 

(ii) Lobachevsky 

Lobachevsky became professor at Kazan (400? miles east of Moscow). He saw how contrary to 

accepted wisdom his ideas were, and called them “imaginary geometry.” Maybe he need not have 

worried: Published in Russia, his work was at first practically unnoticed in the French-German 

mathematical world. 

(iii) some theorems 

Under the multi-parallel postulate, the geometry of Saccheri applies. (See section VIII.A.1.) Thus, 

the angles in a triangle sum to less than a straight angle, and the shortfall below a straight angle 

measures the area. In a Saccheri quadrilateral, the base and summit diverge to either side of the median, 

the two sides exceed the median, and the summit angles are acute. 

The postulate has some striking consequences. [There is a great place to see them 

online, Henry Parker Manning’s 1901 Non-Euclidean Geometry at Project 

Gutenberg.] For example, if P is off line L, then there are two lines (red in the figure 

at left) that are the limiting positions for parallels to L. That is, the two lines and any 

line through P into the (pink) zone between them are parallel to L, and any line 

through P going outside the zone necessarily meets L. 

   

P 

 

L 

http://www.archive.org/stream/AHistoryOfMathematics/Boyer-AHistoryOfMathematics#page/n603/mode/1up
http://www.gutenberg.org/files/13702/13702-pdf.pdf?session_id=362f680bbd4c68dacfd1ab7c5fa5c0ce9450ef03
http://www.gutenberg.org/files/13702/13702-pdf.pdf?session_id=362f680bbd4c68dacfd1ab7c5fa5c0ce9450ef03
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At right, we have point P off line L, the perpendicular (dotted) from P meeting 

L at Q, and the perpendicular PR (dashed) to PQ at P. Line PR is parallel to L, 

because it makes congruent a/i angles.  By the postulate, there must be other 

parallels (green) to L through P. Look at just those parallels that go down to the 

right, making acute angles to the right of segment PQ at P; analogous 

statements hold for the ones going down to the left. 

Those acute angles are all positive. Hence their measures have (what we now call) a greatest lower 

bound . Let M denote the line (red in the figure) at that angle. Because  is a lower bound, any line 

making a smaller angle at P is not a parallel to L. Its meeting with L has to be to the right, because to 

the left such a line stays above PR.  

Any line making a bigger angle must be parallel to L. Imagine that the green line makes an acute 

angle  + 1 with PQ. Because  is the GLB, that bigger angle is not a lower bound. Therefore there 

is a parallel N (not shown) that makes a smaller angle, say  + 0.2. To the right, the green line stays 

above N ; to the left, it stays above PR; and N and PR both stay above L. Therefore the green line 

does not meet L. 

As for M itself, take a line that intersects L at say S, as in the figure at right. 

Put T further right along L. Angle QPT has to be less than or equal to ; if it 

exceeded , then PT would not meet L. Therefore 

 angle QPS  <  angle QPT    . 

That says M is not line PS. We conclude that M does not meet L to the right. 

It turns out that just as M is the limiting parallel to L at P, so L is the limiting parallel to M at Q. 

Indeed, at every point on either line, that line is the limiting parallel to the other. Lobachevsky referred 

to M as the parallel toward the right at P; for him, the lines above M (including PR) were simply “non-

intersecting lines.” Accordingly, he would have said that if M is parallel to L, then L is parallel to M ; 

and that parallel lines are parallel at every one of their points. (We will stick to our usage: “Parallel” 

refers to lines in one plane that have no common point.)  

Angle  is called the angle of parallelism for L at P. Considerations of symmetry show that  

depends just on the distance from P to L, not separately on the point and line (Exercise 1). Lobachevsky 

produced the formula 

  = 2 tan
-1

 (e
-[length of PQ]

). 

(See its development starting at Harding’s page 42.) That function decreases from limit /2 when the 

length of PQ is almost 0 (and PR is practically the only non-intersecting line) toward limit 0 as the 

length of PQ tends to infinity (PQ is practically the only intersecting line). 

Because  decreases with distance, we can infer that M is asymptotic to L in a peculiar way. 

Draw the perpendicular (blue) N to PQ rightward at V, a small distance  

above Q. By the formula, the angle of parallelism for N at P is more than . 

Therefore M crosses N, no matter how small  is. 

That does not say the distance from M to L approaches zero. At the place 

where M crosses N, the distance to L has to be more than . The perpendicular 

from that place to L is the right side of a Saccheri quadrilateral with median 

VQ; that side must exceed VQ. 
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(iv) Gauss 

No doubt worried that his son’s contrarian geometry would damage the boy’s reputation, Farkas 

Bolyai wrote for advice to his old friend Gauss. The latter acknowledged being impressed that János had 

been bright enough to rediscover what Gauss had thought up fifteen years before. (He modestly forbore 

to praise his own ideas.) It was not merely a catty remark: Gauss had always kept journals, and they 

clearly showed his own development of what he named “non-Euclidean geometry.” 

None of the three—Gauss, Bolyai, or Lobachevsky—arrived at a contradiction. It is clear that by 

1830, all three believed that Lambert’s suspicion was right, that the parallel postulate is independent of 

(not provable from) the others of Euclid. It is remarkable, both Struik (page 167) and Boyer observe, 

that three men separated by geography and culture should nearly simultaneously discover ideas that had 

eluded geometers for more than twenty centuries. 

a Exercises IX.D.1

1. Show that if the distance from point P to line L equals the distance from point U to line K, 

then the angle of parallelism for L at P equals that for K at U. 

2. In the figure at right, S is moving rightward along L. Show that as S 

goes out toward infinity, angle QPS approaches the angle  of 
parallelism for L at P. 

b) Riemann 

In 1854, Riemann had his habilitation, a sort of introductory presentation where a recent doctor 

shows off his capacity for discovery. Titled On the Hypotheses That Lie at the Foundation of Geometry, 

it was a watershed. Riemann introduced an overarching view of geometry based on the concept of 

“manifold,” an analytic generalization of space and of surface, not restricted to three dimensions. This 

global outlook makes it possible to view all models of geometry, Euclidean or not, as particular 

instances of more general structures. 

(i) different models 

To illustrate “particular instances,” look at three of them. 

Picture first an ant at one corner of a basketball court painted onto the middle of a large area of flat 

cement. As he sees it, he is standing on an endless plane. The lines delineating the court look perfectly 

straight. Opposite sides of the court are equidistant lines. Adjacent sides meet at right angles, so the 

boundaries form a quadrilateral with angle sum 360. His is a Euclidean world. 

Picture next an exceptionally tiny ant standing at the middle of an 

ordinary horse saddle. (The picture at right is from aliexpress.com.) The few 

square inches surrounding him look to him like part of a plane, in which 

Euclidean geometry reigns, at least approximately. It is necessarily that way 

in any geometry. At small scale, triangles have small area, have therefore 

angle sums indistinguishable from 180. 
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We, standing back and able to see the big picture, know the saddle’s surface curves. (Indeed, it 

curves in a strange way. Toward front or back, the path curves upward. To either side, the path curves 

down.) There are no Euclidean lines confined to the surface. Instead, the ant’s “lines” 

are those curves that offer the shortest distance between points on the saddle, the 

geodesics. We can see that a geodesic from the left side toward the front curves to the 

left (green-arrowed curve in the figure at left), one from the right side curves right 

(red). The (black) connector between their starting points completes a triangle whose 

angles sum to less than 180. 

The saddle’s surface is called a parabolic hyperboloid. Because the geometry on it has the features 

studied by Saccheri, Bolyai, and Lobachevsky, that kind of geometry is called “hyperbolic.” 

Last, picture a creature confined to a sphere, like an ant standing on a globe—or a pre-ballooning 

human standing on a slightly flattened sphere 8000 miles across. As we observed in section VIII.A.2, on 

a sphere the “straight” paths are great circles. Their geometry is considerably different from Euclid’s. 

There are no parallels; indeed, any two distinct great circles meet at two points. From a given point off a 

“line,” there are at least two perpendiculars to the line. That means there are triangles with angle sums of 

nearly 360. From the association with spheres and ellipsoids, the geometry is called “elliptic.” 

(ii) one elliptic model 

The standard example of Riemannian geometry avoids the sphere’s problem—“lines” having two 

intersections—by considering diametrically opposite points to be identical. Equivalently, view only 

Earth’s northern hemisphere with the understanding that a point on the Equator and the point halfway 

around the Equator from it are one and the same. [Save yourself a headache: Refer to a globe.] Thus, if 

you fly due south from New York along the 74 West meridian of longitude, some 2500 miles gets you 

to Bogotá, Colombia. After another 400 miles, you arrive at the Equator and instantaneously appear at 

the 106 East meridian. [Think of those video games wherein you can flee the pursuer by disappearing 

into the right side of the screen, rematerializing on the left.] From that spot (150 miles southeast of 

Singapore) you fly 6300 miles north along 106E to the North Pole. Then you continue on the same 

heading, 3300 miles due south along 74W back to New York. 

In this example, all the lines have the same length, 

 2500 + 400 + 6300 + 3300 miles  =  half the sphere’s circumference. 

Equality of lengths is not always the case; think of an ellipsoid, which in fact Earth resembles. However, 

always all the lines have finite length. That means that if you go far enough along a line without turning 

around, you return to where you started. By the same token, no line separates the “plane” into sides. In 

the Euclidean plane, each line separates the plane into two “sides,” from either of which you have to 

cross the line to get into the other. On the Riemannian hemisphere, given a great circle going roughly 

east through Miami, you can avoid crossing it on your trip from New York to Bogotá by flying the 

10,000-mile North Pole-Singapore-Equator route. 

c) Klein 

During his long life, including twenty-seven years at Göttingen, Felix Klein (1849-1925) unified 

much of the mathematics we have ascribed to the nineteenth century. He helped achieve wide 

understanding of Riemann’s synthesis of analysis and geometry, and brought group theory into it. 

(i) invariants under transformations 

In what amounted to an inaugural address at Erlangen in 1872, Klein introduced the idea (the 

Erlangen Programm) of classifying geometries by means of the features that persist (invariants) under 

groups of transformations. 
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The transformation in the coordinate plane that assigns 

 (x, y)    (x + a, y + b),     a and b fixed, 

is a translation. For a fixed angle , 

 (x, y)    (x cos  – y sin , x sin  + y cos ) 

defines a rotation. A reflection is given by 

 (x, y)    (-x, y). 

The combinations of all those (rigid) transformations form a group under composition. 

Each transformation in the group maps any line segment into another of equal length. By preserving 

length, it also transforms any triangle into a congruent copy (by SSS). Therefore it preserves areas, 

angles, parallelism—all the elements of Euclidean geometry. It might not preserve all the elements 

of Lobachevskian geometry: A reflection reverses the direction in which some pairs of lines are 

(Lobachevskian) parallels, and not others. 

Finally, the group comprises all the transformations that preserve Euclidean relationships. That is, 

for any such preserving transformation, you can name a reflection, rotation, and translation (all: if 

necessary) that combine to give it. This group characterizes Euclidean geometry in the plane. 

By exhibiting Bolyai-Lobachevsky properties and Riemannian properties as what remains invariant 

under other groups of transformations, Klein ended any controversy about the validity of hyperbolic and 

elliptic geometry. 

(ii) one hyperbolic model 

There is a simple picture by which Klein set up a model of Bolyai-Lobachevsky geometry within the 

Euclidean plane. Take the interior of some circle to act as (what we will call) the “K-plane” of points. 

For “K-line,” take the part interior to the circle of any ordinary line that crosses the circle. Thus, a K-line 

is a chord of the circle, but with its endpoints removed. 

Look first at relations among K-lines and points. 

At right, we draw the circle dotted, to indicate that its points are not 

in the K-plane. The chord AB, minus its two ends (small white dots), 

constitutes a K-line <AB>. [The notation is not standard, but it does 

suggest endlessness.] Point P is not on <AB>. Clearly there are many 

K-lines through P K-parallel to <AB>, meaning that they have no 

points in common with (Euclidean) line AB in the interior of the 

circle. Draw the (red) extensions of AP past P to C on the circle and 

of BP past P to D on the circle. Those chords locate the K-lines 

<AC> and<BD> that are the leftward and rightward limiting 

K-parallels to <AB> through P. 

You have to give distance a special definition to avoid having lines of finite length. 

Imagine point Q (grey in the figure) on the segment PC. Klein defined the K-distance (our name) 

from P to Q, or the K-length l(PQ) of the K-segment PQ, by 

 l(PQ)  =  loge ( |PC| |QA| / |PA| |QC| ). 

(There, |segment| means the Euclidean length of the segment.) 

Observe that the definition gives K-lines infinite K-length: As Q  C (or P  A) along <AC>, one 

factor in the denominator approaches zero, the two factors in the numerator approach positive limits, 

and l(PQ)  . 
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With a changed definition of length, you have to accept that circles—defined as usual by 

equidistance from a point—get deformed toward the center of the overlying circle. You then have to 

define angle measure according to those other circles; you have to characterize the measure in terms of 

length. To illustrate the needed adjustments, consider characterizing perpendicularity. 

Use the coordinate-plane circle (figure below right) whose interior is given by 

 x
2
 + y

2
  <  100. 

Put P at (8, 0). The K-line x = 5 (red) is the K-perpendicular bisector of K-segment OP. The 

K-perpendicularity is clear from symmetry, but remember that we want to characterize it by means 

of K-distance. The characterization is that x = 5 is the locus of points K-equidistant from O and P. 

The K-segment OP has K-length 

 l(OP)  =  loge ( 10[10 + 8] / 10[10 – 8] )  =  loge 9. 

The place M(m, 0) halfway to P satisfies 

 loge ( 10[10 + m] / 10[10 – m] )  =  1/2 loge 9  =  loge 3. 

That forces m = 5; (5, 0) is the K-midpoint of OP. (See Exercise 1.) 

To illustrate that points along x = 5 are K-equidistant from O and P, 

Q(5, 3.75) is convenient, because it is on the radius ending at (8, 6). 

[In this model it is helpful to work with chords having integer 

coordinates at the ends, but it is essential that the coordinates be 

rational.] We have 

 l(OQ) =  loge ( 10[10 + (5
2
 + 3.75

2
)] / 10[10 – (5

2
 + 3.75

2
)] ) 

  =  loge (13/3).  (Check the fractions.) 

(Notice that by Euclidean similarity, we can use x-differences instead of lengths: 

 l(OQ) =  loge ( 8[8 + 5] / 8[8 – 5] )  =  loge (13/3).) 

Points P and Q are on the chord ending at (0, 10) and (400/41, -90/41) (Exercise 2). Using the 

x-differences, we get 

 l(PQ) =  loge ( [400/41 – 5][8 – 0] / [5 – 0][400/41 – 8] ) 

  =  loge (13/3).  (Check.) 

Thus, Q is K-equidistant from O and P. The same holds for all points on K-line x = 5. 

Finally, put R at (8, 3.75), S at (0, 3.75) (ends of the green line). Since PR is on the vertical chord 

ending at (8, 6), the y-differences give us 

 l(PR) =  loge ( 6[6 + 3.75] / 6[6 – 3.75] )  =  loge (13/3). 

Because PR is K-congruent to PQ, x = 8 is not K-perpendicular to y = 3.75. Instead, the 

K-perpendicular from P to SR goes to the K-midpoint of QR. [If you want to see how hard it is to 

work with K-lines along chords ending at irrational coordinates, try to calculate that K-midpoint.] 

Numerous features of hyperbolic geometry show up in the figure. Triangle PQR is K-isosceles, so 

the base angles PQR and PRQ must be K-congruent K-acute angles. Quadrilateral OPRS is a Lambert 

(section VIII.A.2), with K-right angles at O, P, and S; it has to have a K-acute angle at R. Last, both 

pairs of K-lines having a common perpendicular diverge away from the perpendicular. 

RP and SO are both perpendicular to the x-axis, and they get further apart as you go up: OP has 

length loge 9, whereas l(SR) is 

 loge ( [(10
2
 – 3.75

2
)][(10

2
 – 3.75

2
) + 8] / [(10

2
 – 3.75

2
)][(10

2
 – 3.75

2
) – 8] )    loge 13.6. 

Similarly, RS and PO are both perpendicular to the y-axis, and they diverge to the right: 

 l(OS) =  loge ( 10[10 + 3.75] / 10[10 – 3.75] )  =  loge 2.2, 

 l(MQ) =  loge ( [75][75 + 3.75] / [75][75 – 3.75] )    loge 2.53, 

 l(PR) =  loge (13/3). 
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c Exercises IX.D.1

1. Show in our circle that the K-distance from (5, 0) to (8, 0) matches the K-distance (namely 
loge 3) from (0, 0) to (5, 0) 

2. a) Show that (5, 3.75) and (8, 0) are on the line given by 
 y = -5/4 (x – 8). 
b) Show that the line in (a) and the circle x2 + y2 = 100 intersect at x = 0 and x = 400/41. 

3. Use a scientific calculator to check that in right triangle OMQ, 

 l(OM)2 + l(MQ)2    (loge 3)2 + (loge 2.53)2 is less than   l(OQ)2 = (loge 13/3)2. 
The Pythagorean theorem is true in, and only in, Euclidean geometry. 

(iii) the implication 

The picture gives a model with all the features of Bolyai-Lobachevsky geometry. The fact that the 

model is built out of Euclidean parts yields a remarkable inference. 

Recall what Bolyai and Lobachevsky had in mind: Denying the parallel postulate for the purpose of 

using Euclid’s other postulates to reach a contradiction. If such a contradiction exists, then it is to be 

found in Klein’s picture. But Klein’s picture is assembled from Euclidean elements. If the multi-parallel 

postulate leads to a contradiction, then that contradiction exists in Euclidean geometry. 

Klein’s model establishes relative consistency.  It does not guarantee that Bolyai-Lobachevsky 

geometry is a consistent deductive system. What it shows is that if Bolyai-Lobachevsky geometry is 

inconsistent, then so is Euclidean geometry. To look at it a different way, Klein demonstrated that non-

Euclidean geometry is as defensible and useful, as either a deductive system or a description of the 

world, as what the intellectual heirs of the Greeks had revered for two millennia. 

2. The Way of the World 

In the face of the non-Euclidean geometries, it was still possible to believe that Euclid gave, if not 

the only valid system, at least the true picture of the geometry of the universe. Bolyai did not share that 

opinion. He thought his geometry was as likely as Euclid’s to describe the actual universe at large scale. 

He made an interesting prediction: The determination of which system was the right description would 

come from science, not mathematics—from experiment, not deduction. He was mostly right. The 

experiment came in 1919, and it left no doubt that a Riemannian geometry gives the most accurate 

description of the universe. 

a) Maxwell’s equations 

We go first to the Scotsman James Clerk [pronounced “Clark”] Maxwell (1831-1879). Maxwell and 

some fellow Brits were great contributors to mid-nineteenth-century algebra and partial differential 

equations. (Look up William Hamilton, George Green and Lord Kelvin,  and George Stokes.) His 

contributions to mathematical physics were out of this world. 

By 1859, he had applied Lagrange’s mechanics to show that the rings of Saturn cannot be solid. A 

solid ring, he proved, would be unstable. It would be torn apart by gravity, which would send pieces 

falling to the planet or escaping to space. Instead the rings must be thin bands—small in thickness, 

compared to width and diameter—of rocks, ice balls, and other such loose debris orbiting the big planet. 

(Modern times produced evidence from the two Voyager spacecraft, travelling roughly 1977-1981. Now 

we have confirmation, plus many new mysteries of orbital mechanics, from the Cassini probe NASA put 

into Saturn orbit in 2004. “Cassini” honored Giovanni Domenico [later Jean Dominique] Cassini, who 

visually discovered that the seeming “ring” of Saturn has a gap separating it into, by his count, two 

rings.) 

http://www.archive.org/stream/AHistoryOfMathematics/Boyer-AHistoryOfMathematics#page/n639/mode/2up/search/William+Hamilton
http://www.archive.org/stream/AHistoryOfMathematics/Boyer-AHistoryOfMathematics#page/n599/mode/2up/search/Green
http://www.archive.org/stream/AHistoryOfMathematics/Boyer-AHistoryOfMathematics#page/n625/mode/2up/search/Stokes
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In 1867, Maxwell adapted Gauss’s normal distribution to the energies of particles in an enclosed gas. 

The result related properties of gas molecules to properties of the gas as a whole (meaning global, 

average properties we can measure, like pressure and temperature. Look up the ideal gas law.) 

His crowning achievement was Maxwell’s equations, published in 1873. They are four partial 

differential equations that completely describe electricity, magnetism, and the relation between the two. 

From around 1825, aspects of electricity, magnetism, and their connection had been studied by, among 

others, the Frenchman André-Marie Ampère, the Germans Gauss and his (physics) collaborator Wilhelm 

Weber, and the great English experimentalist Michael Faraday. All their discoveries—about charges and 

electric fields, charge flow (current) creating magnetic fields, and magnetic fields inducing current and 

electric fields—were subsumed into Maxwell’s four PDE’s. (Here again Maxwell synthesized local, 

micro-scale phenomena with global, large-scale. Differential equations are necessarily local 

descriptions. Ampère, Gauss, and Faraday had put their laws in global forms.) 

In addition, the equations implied that a variable current would create an electromagnetic signal. The 

signal would consist of a joint vibration, a wave carrying an electric field of sinusoidally varying 

strength, moving together with (but at right angles to) a similarly variable magnetic field. Those “radio 

waves” were undetectable until Heinrich Hertz (Wikipedia®) established their existence in the 1880’s. 

According to the equations, the speed of propagation of such waves depends on two parameters that 

you can measure in the laboratory. Roughly speaking, one (“permeability”) is the resistance of space to 

electric fields, the other (“permissivity”) the receptivity (opposite of resistance) to magnetic fields. From 

the measured values, the calculated speed of electromagnetic waves is precisely the speed of light. The 

conclusion was inescapable: Light is simply one form, covering a tiny range of wavelengths, of 

electromagnetic radiation. As such, light is in some way fundamentally connected to space. 

b) Fermat’s principle 

That name is attached to a minimization principle that explains all that was known in 1662 about the 

behavior of light. (Check Wikipedia®, which says that the concept had already appeared in the immortal 

ibn al-Haytham’s Book of Optics (mentioned in section V.A.4a).) 

Fermat’s Principle. Light travels from point to point by the path that requires the least time. 

Apply the principle to reflection first. In the figure below right, we have a ray of light from point A 

in the air, travelling to C after reflecting from a mirror at unknown point B. All the route is in air, at 

constant speed. Therefore the path of least time is the path of least distance from A to the mirror to C. 

Let the perpendicular from C reach the mirror at P, and let C* be 

the mirror image of C, located on the extension of CP by an equal 

length. Wherever B is, the right triangles CPB and C*PB are 

congruent by SAS. Therefore the broken line ABC is as long as 

ABC*; the shortest length ABC goes with the shortest ABC*. We 

know the latter occurs when ABC* is a straight line. In that case, 

the acute angle between AB and the mirror is vertical to angle 

C*BP, which is congruent to angle CBP. To take the least time, 

light travels so as to make the incoming angle with the mirror 

equal to the outgoing. 

   
A C 

C* 

mirror 

air 

B P 

http://en.wikipedia.org/wiki/Ideal_gas_law#Statistical_mechanics
http://en.wikipedia.org/wiki/Heinrich_Hertz#Electromagnetic_research
http://en.wikipedia.org/wiki/Fermat's_principle
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To explain refraction, we have light travelling from point A in one medium, call it air, to C in a 

different medium, say water. Clearly the fastest path is a straight segment AB to B on the surface, then a 

second segment BC. Putting B on the line AC gives the smallest distance. However, if the speed v of 

light in water is smaller than the speed V in air, then the drawn path, with a shorter water segment than 

the straight, might afford a reduced time. Let us find where B has to be. 

First, there really is a path of least time. Let AP be the perpendicular 

from A to the surface, CQ the perpendicular from C. Write the constant 

lengths as AP = r, CQ = s, QP = w. At speeds V and v, the travel time is 

 AB/V + BC/v. 

Assume B is x (possibly negative) to the right of Q. Then the time is 

 t(x)  =  √𝑟2 + (𝑤 − 𝑥)2 𝑉⁄  + √𝑠2 + 𝑥2 𝑣⁄ . 

You can check that t(x) > t(0) if x < 0 and t(x) > t(w) if x > w, but think 

of it more simply. If B is leftward of Q, then the air segment AB 

exceeds AQ and the water segment BC exceeds QC; the path has to take 

more time than AQC. Similarly, if B is rightward of P, then the path 

takes longer than APC. Hence the least time, if there is one, is to be found for 0  x  w. We know 

that for that interval of x, the continuous function t(x) must have a minimum value. 

By Fermat’s theorem [even if we aren’t handling a polynomial], the minimum occurs where the 

derivative of t is zero. We find the derivative by Fermat’s method. [What else?] We have 

 t(x + h) – t(x)  = √𝑟2 + (𝑤 − [𝑥 + ℎ])2 𝑉⁄  + √𝑠2 + [𝑥 + ℎ]2 𝑣⁄  

      – √𝑟2 + (𝑤 − 𝑥)2 𝑉⁄  – √𝑠2 + 𝑥2 𝑣⁄ . 

Combining by like denominators and rationalizing the numerators, we get 

 t(x + h) – t(x)  = 
[𝑟2+(𝑤−[𝑥+ℎ])2]−[𝑟2+(𝑤−𝑥)2]

𝑉(√𝑟2+(𝑤−[𝑥+ℎ])2+ √𝑟2+(𝑤−𝑥)2)
 

      +  
[𝑠2+[𝑥+ℎ]2]−[𝑠2+𝑥2]

𝑣(√𝑠2+[𝑥+ℎ]2+ √𝑠2+𝑥2)
. 

Simplifying and dividing by h, we get 

 
𝑡(𝑥 + ℎ) – 𝑡(𝑥)

ℎ
 = 

−2𝑤+2𝑥+ℎ

𝑉(√𝑟2+(𝑤−[𝑥+ℎ])2+ √𝑟2+(𝑤−𝑥)2)
 

      +  
2𝑥+ℎ

𝑣(√𝑠2+[𝑥+ℎ]2+ √𝑠2+𝑥2)
. 

We set h = 0 on the right, and we reach 

 t (x)   = 
𝑥−𝑤

𝑉√𝑟2+(𝑤−𝑥)2
 +  

𝑥

𝑣√𝑠2+𝑥2
. 

That derivative is zero if 

 
𝑤−𝑥

𝑉√𝑟2+(𝑤−𝑥)2
 =  

𝑥

𝑣√𝑠2+𝑥2
. 

Look at the picture: That last line says 

 cos (angle ABP)/V = cos (angle CBQ)/v. 

That is the refraction law; check it against the (literally) normal version in Exercise V.A.4:1. 
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c) Einstein’s theories 

In 1905, Albert Einstein (1879-1955) published four papers. One was on the size of molecules, along 

the lines of some work (1815 and after) by the great chemist Amedeo Avogadro. The next one, building 

on the previous, explained Brownian motion. That would already have made science remember 

Einstein’s name. A third paper, actually written first, explained the photoelectric effect (which had been 

discovered by Hertz). That one received the Nobel Prize in physics for 1921. (It took that long for 

science to verify—and more fundamentally, understand—Einstein’s explanation. The paper was also a 

triumph for Newton’s particle theory of light, four decades after Maxwell had staged the triumph for 

Huygens’s wave theory.  Ever since, much of physics has needed to account for “wave-particle 

duality.”) Finally, Einstein wrote the big one. 

[Our next must-read for anybody interested in science and its history is Annus Mirabilis, by John and 

Mary Gribbin. It gives history and description for Einstein’s discoveries of that year, including how a 

letter Einstein wrote later noted that the fourth paper implies the most famous equation of all time.] 

(i) the special theory 

The fourth paper introduced the special (same as “restricted,” to unaccelerated motion) theory of 

relativity. This was a revolution: It established that Newton’s equations fail at the atomic scale, where 

speeds comparable to the speed of light are possible. 

Einstein took Maxwell’s equations as basic properties of space, holding unchanged in every 

unaccelerated frame of reference. With that assumption comes the postulate that light has the same 

speed in every frame. The postulate implies that in a frame moving relative to us, mass, length, and 

time are all changed from their values in our frame. 

For mass, the change is that a mass we would measure at m0 becomes 

 m = m0/(1 – v
2
/c

2
),    c denoting “the” speed of light, 

in a frame we see moving at speed v. In Newtonian mechanics, mass is constant. If you do work on 

mass m0, the added energy shows up in kinetic energy m0v
 2

/2. In relativistic mechanics, some of the 

added energy turns up as added mass. Indeed, as v increases toward c, the changed mass m 

approaches infinity; added energy goes more and more to added mass, not to increasing v. 

The changes in length (in the direction of motion) and time force a change in the way speeds 

combine. In 2006, a spacecraft named New Horizons left Earth at about 

 v1  =  36000 mi/hr  =  10 mi/sec. 

That was the highest speed ever produced by human-made propulsion. Earth orbits the Sun at about 

 v2  =  67000 mi/hr    19 mi/sec. 

What was the craft’s speed relative to the Sun? Newton would have combined the speeds as Galileo 

prescribed, by what physics calls the “Galilean transformation”: 

 v  =  v1 + v2, 

about as fast as Mercury orbits the Sun. Einstein said you have to apply the “[Hendrik] Lorentz 

transformation”: 

 v  =  (v1 + v2)/(1 + v1v2/c
2
). 

Notice that the correction is by a factor of 

 (1 + v1v2/c
2
)
-1

    [binomial theorem]  1 – (10)(19)/(186000)
2
  0.999 999 994; 

even at speeds enormous by human standards, Newton is almost perfect. But if we were talking 

about a hydrogen nucleus moving at V1 = 2c/3, somehow firing off its proton in the same direction at 

speed V2 = 3c/4, then our reading of the combined speed would be 

 V  =  (2c/3 + 3c/4)/(1 + [6c
2
/12]/c

2
)  =  17c/18. 

That is still below c, and much different from the Newtonian value. 

http://en.wikipedia.org/wiki/Brownian_motion
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Notice that if the nucleus, moving at speed V1 away from us, emitted a photon back toward us at 

speed c relative to the nucleus, then we would measure the photon’s (signed) speed as 

 (V1 + -c)/(1 + V1[-c]/c
2
)  =  c

2
(V1 – c)/(c

2
 – V1c)  =  -c. 

In both frames of reference, light has the same speed. 

Thus, light—and all electromagnetic radiation—is tied up inextricably with both space and time. 

(ii) the general theory and the geometry of space 

In his last few years, the German mathematician Hermann Minkowski (1864-1909; visit 

St Andrews) showed that you could model the interrelated whole geometrically as a Riemannian four-

dimensional continuum that he called space-time. In space-time, Fermat’s principle suggests, light 

follows the geodesics. Those geodesics have to conform to the curvature of the Riemannian structure. 

Hence you can determine the geometry of space by checking the extent to which light follows curved 

paths instead of Euclidean lines. Einstein (originally unhappy with the idea of Minkowski’s geometry’s 

swallowing up Einstein’s physics) later embraced the geometry and proposed a way to check.  

Continuing work on relativity, Einstein by 1915 developed the general theory.  Part of it explained 

gravity, not as force acting at a distance (a notion even Newton disliked), but as a warping of space-

time. For an analogy, think of the Sun deforming its neighborhood in space-time into a bowl shape. The 

planets and other wanderers must follow closed orbits conforming to the curvature of the bowl, or fall to 

the bottom, or travel curved paths fast enough to escape over the edge. Einstein concluded that light is 

likewise confined to certain curved paths. 

Newton, with his light “corpuscles,” figured gravity should pull light. Einstein made certain with a 

thought experiment worthy of Galileo (section VI.D.3a(i)).  Imagine, Einstein reasoned, being in an 

elevator cab way out in space, away from any sources of gravity. A force is tugging at the cable on the 

cab’s roof, accelerating it at 32 ft/sec
2
. You inside the cab feel your feet pressing against the floor. If you 

hold a ball in your hand, its inertia resists the acceleration; your hand has to provide the force to make it 

stay, as you see it, in place. If you release the ball, it continues moving up—as we outside the elevator 

see it—at constant speed, while you gain 32 ft/sec every second. Accordingly, it seems to you that the 

ball is “falling” exactly as it would have if the elevator had been stationary at the surface of Earth. You 

cannot distinguish between your elevator situation and what would happen in Earth’s surface gravity. 

Einstein formalized that inability to distinguish into the equivalence principle: There is no physical 

experiment you can do  to decide whether you are stationary in a gravitational field or accelerating 

where there is no matter-induced gravity. (Notice, then, that the equivalence between gravitational field 

and accelerated frame puts the former under the general theory rather than the special.) 

[For the combined-speed issues in (i), Einstein’s examples always had a train, going say 50 mi/hr, 

with a passenger throwing a ball forward at 40 mi/hr, or throwing a light beam at c. Similarly, for 

accelerated frame of reference, he put a person on a lifting platform. Maybe he had not ridden elevators 

or cars. Our experience includes elevators with stomach-churning starts or stops. We have also enjoyed 

cars going too fast around curves, so that the hamburger we set on the next seat slides toward the outside 

of the curve, pulled by a “g-force” Huygens would put at 

 (mass of burger)(speed of car)
2
/(radius of curvature). 

We can visualize also the g-forces we know act on astronauts as they speed up at launch or slow down 

on reentry, events Einstein definitely missed.] 

Now imagine that we who are outside the elevator set up a beam of light perpendicular to the cable. 

As the elevator passes the beam, a short burst of light enters the cab through a small hole in the side. 

We, looking into the cab, see the burst proceed across in the line of the beam, parallel to the (moving) 

planes of floor and ceiling. You, because the floor is accelerating toward the burst and the ceiling 

http://www-history.mcs.st-andrews.ac.uk/Biographies/Minkowski.html
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accelerating away, conclude that the light is accelerating downward. That is what the ball did, under the 

same gravity that is holding your feet to the floor. You conclude, by the equivalence principle, that light 

deflects under gravity, just as material objects do. 

Keep some perspective. Light travels about 10
9
 ft/sec. If your elevator is 6 ft across, then the burst 

takes 6  10
-9

 sec to cross the cab. In that time, the burst falls 

 at
2
/2  =  32 ft/sec

2
 (6  10

-9
 sec)

2 
/2    6  10

-16
 ft. 

It takes a lot more gravity than Earth has to create measurable deflection . Even the Sun is somewhat 

weak, but for Einstein it had to suffice.  He predicted that tight measurements of star positions near the 

Sun would demonstrate the effect: As the figure at right suggests, the 

curvature of the light paths (green) puts the apparent positions of the stars 

along the dashed lines, further from the Sun than their known positions 

imply. The opportunity to test came with the total eclipse of May 29, 1919. 

The Sun was within the vee-shaped group of stars (“the Hyades”) that 

define the Bull’s face, stars with precisely-known locations. The measured 

displacements were in sufficient agreement with Einstein’s calculations to 

confirm his prediction. Bolyai’s prophecy had come true: Scientific 

experiment decided what model best describes the geometry of space. 

3. Revisiting Euclid 

Even losing its place as descriptor of the universe, Euclidean geometry remains valuable. One factor 

in its favor is that it approximates practically any geometry at small-enough scale. (See Exercise 1. The 

mathematical term is that geometries are “locally Euclidean.”) There is almost always a threshold below 

which Euclidean geometry is, like Newtonian mechanics if you stay slower and farther from the Sun 

than Mercury, good as gold. 

In the nineteenth century’s spirit of axiomatization, we will look at some logical deficiencies in 

Euclid’s system and a late-century deductive system that addressed them. 

a) unstated assumptions 

We noted in section III.A.5b that even contemporaries of Euclid objected to inferences that were 

intuitively undeniable but not justified by reference to axioms and theorems. We had an example back 

there. Let us view a similar one. 

The proposition at hand is that the diagonals of a parallelogram bisect. 

At right is parallelogram ABCD. First draw diagonal AC. Triangles 

ABC and CDA are congruent by ASA. (Remember that we are back 

in Euclid-land: Parallels form congruent a/i angles.) Therefore the 

opposite sides are congruent. 

Now draw BD (dashed), intersecting AC at M. Triangles ABM and 

CDM are congruent by ASA. Therefore AM = CM and BM = DM. 

That says the diagonals bisect. 

The proposition is true, but the argument strays out of the deductive system. It assumes that the 

segments AC and BD intersect within the parallelogram. (Their lines do have to meet.) As we observed 

earlier, words like “within” are not defined in Euclid. [It isn’t just Euclid. We said that Lobachevsky’s 

limiting parallel (section IX.D.1a(iii)) to AB through D would descend toward AB going, say, 

rightward, but would then have to stay “above” DC going leftward.] 
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Typically, it is possible to substitute unbiased arguments. Given parallelogram ABCD, draw only 

AC and let M be its midpoint. Draw the two segments BM and DM. Because opposite sides are 

congruent, triangles MAB and MCD are congruent by SAS. Therefore angles AMB and CMD are 

congruent. Since AMC is straight, angles AMB and CMB add up to a straight angle. Hence 

 angle CMD + angle CMB  =  straight angle. 

In other words, DMB is one segment, the second diagonal. By the triangle congruence, DM = BM; 

M is the common midpoint of the diagonals. 

Notice that the second argument depends on determining a midpoint and drawing two segments. 

Both are justifiable from the axioms and theorems. 

b) paradoxes 

The trouble with unstated assumptions—they are always suggested by pictures—is that they lend 

support to fallacious arguments, leading to seeming contradictions. We look at three well-known 

examples of such “proofs.” 

The first claims to build a triangle with two right angles. 

Let two circles intersect at P and Q, as in the figure at right. 

Draw the diameters (green) PA in one circle and PB in the 

other. Let AB intersect the two circles at C and D. Then 

angle PCB, being inscribed in a semicircle, is a right angle. 

Similarly, angle PDA is a right angle. Therefore triangle 

PCD has two right angles. 

Clearly the figure must be ill drawn. However, you do have to make sure that the pictured situation 

is impossible; do Exercise 2. 

The next one purports to show that a point interior to a circle is actually on the circle. 

At right, we have a circle of radius 1 centered at O. Point A is 

at (positive) distance OA < 1 from O. Choose B on the 

extension of OA so that OB = 1/OA. Let M be the midpoint of 

AB, and let the perpendicular at M meet the circle at C and D. 

Using the Pythagorean theorem twice, we have 

 AC
2
 = AM

2
 + CM

2
 

  = AM
2
 + (OC

2
 – OM

2
) 

  = 1
2
 – (OM

2
 – AM

2
) 

  = 1 – (OM – AM)(OM + AM). 

The first factor (OM – AM) equals OA. Since AM = MB, the other factor 

 OM + AM  =  OM + MB  =  OB. 

Therefore 

 AC
2
 = 1 – (OA)(OB)  = 1 – 1, 

and A = C is actually on the circle. 

Resolve the paradox with Exercise 3. The evidence against the picture is plentiful. 

The last one shows that every triangle is isosceles. 
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Triangle ABC has BC > AC. The bisector (green in the figure) 

of angle C cannot be parallel to the perpendicular bisector (red) 

of side AB (Exercise 4). Let them meet at D. Drop the 

perpendiculars (blue dashed) from D to AC and D to BC, ending 

respectively at E and F; and draw the segments DA and DB 

(dotted). 

Points on an angle bisector are equidistant from the sides of the 

angle. Hence DE and DF are congruent. On a segment’s 

perpendicular bisector, points are equidistant from the endpoints. 

Hence DA and DB are congruent. By hypotenuse-leg, right 

triangles DEA and DFB are congruent, as are DEC and DFC. We then have lengths 

 CE = CF  and  EA = FB. 

By addition, CA = CB. (Now do Exercise 5.) 

 Exercises IX.D.3

1. Refer to the non-Euclidean definitions in section IX.D.1c(ii). In Exercise 3 there, in right 

triangle OMQ the square l(OQ)2  2.15 of the hypotenuse exceeds the sum 

 l(OM)2 + l(MQ)2    2.07 
of the squares of the legs by about 4%. Calculate the corresponding excess for the right 
triangle with vertices at O(0, 0), T(0.4, 0), U(0.4, 0.3). [For your information: TU is on a 

chord whose ends are the points (0.4, [100 – 0.42]).] 

2. In this subsection’s second figure, with the two circles, show that Q has to be the place 
where AB crosses the circles. That dissolves “triangle PCD.” 

3. In the third figure, with B chosen to make (OA)(OB) = 1, show that the midpoint M of AB 
has to be outside the circle. That makes C, D, and the triangles disappear. (The problem 
amounts to showing that OA = s < 1 forces 
 [s + 1/s]/2  >  1. 
You can do that any of three ways: by algebra, by calculus, or with a picture of squares.) 

4. In the fourth figure, in which triangle ABC has BC > AC, show that the bisector of angle C 
cannot be perpendicular to side AB. 

5. In the triangle figure, you might first suspect that D is improperly placed. It does, however, 
belong where shown, below the triangle. (If it were on AB or inside the triangle, the same 
argument would still appear to work.) 
a) At right, we have added the triangle’s circumcircle. Arc AB—the 
arc that does not have C—is necessarily outside the triangle, and we 
see its midpoint M. Show that D = M: The bisector of angle C and the 
perpendicular bisector of side AB must meet at M. 
b) Given BC > AC, show that F (end of perpendicular from M to BC) 
has to be between B and C, whereas E (from M to AC) has to be 
past A along the line CA. That blocks the key addition at the end of 
the argument. (Hint: Use the circle to show that angle MBC has to be 
acute and angle MAC has to be its supplement.) 
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4. Hilbert’s Fix 

The last of the dons at Göttingen was David Hilbert (1862-1943). In 1900, he was the most influen-

tial mathematician in the world (despite the prestige of the Frenchman Henri Poincaré). Accordingly, for 

the 1900 International Congress of Mathematicians (compare 1936 in section III.A.7b(iii)), he was 

invited to deliver the keynote address. 

At the suggestion of Minkowski, he chose to speak about unsolved problems. He picked his famous 

twenty-three “Mathematical Problems,” not simply because they had stumped the math community, but 

because he judged that their solutions would engender new areas of mathematical research. 

You can imagine how advanced they were, but there are three on which our material has touched. 

First on Hilbert’s list was the continuum hypothesis, Cantor’s guess that there is no cardinal strictly 

between  0 and 2
0. (No set is simultaneously more numerous than the natural numbers and less 

numerous than the reals.) Second was the consistency of arithmetic. Recall that Cantor’s conception of 

set theory led to paradoxes. The second problem was the question of whether Peano’s axioms might also 

lead to contradiction. The eighth problem was the Riemann hypothesis (section IX.B.6). [Consult 

Wikipedia® for Hilbert’s list and more: ambiguity in some of the problems, inconclusiveness of some of 

the answers, and (just before the Summary) Hilbert’s wonderful remark about the Riemann.] 

Our interest is a list of postulates Hilbert assembled by 1899 for “incidence geometry,” an axiomati-

zation of Euclidean geometry. The list has about twenty axioms. (“About” because you can find listings 

with axioms combined, and others with single axioms split into multiple.) We will write them all, and 

draw inferences for many. For the others, we will only suggest what they imply. 

a) incidence in one plane 

A planar (incidence) geometry is an abstract structure, consisting of a set, together with a family of 

subsets of the set, satisfying three axioms.  

Axiom I. Given two distinct members of the set, exactly one subset in the family has them. 

Axiom II. Each subset in the family has at least two distinct members. 

Axiom III. No subset in the family has all the members of the set. 

We will immediately substitute the language of geometry for that of sets. The overlying set is the 

plane. Its members are points. The subsets in the family are lines. If a point is a member of a line, we 

say that the point is on the line, and the line crosses the point. 

We recast the axioms in geometric language. 

Axiom 1. Given two distinct points, there is one and only one line that crosses both. (Two distinct points 

determine a line.) 

Axiom 2. Every line crosses at least two distinct points.  

Axiom 3. No line crosses all the points. 

[Using “distinct” all the time gets old fast. Let us agree to use “two,” “three,” and onward to mean 

what they normally do, two or more unequal things. 

One of my students pointed out that these axioms are all universal statements. As such, they are 

vacuously true in the empty set. Geometry in vacuo is a boring pursuit. The easiest way to avoid it is to 

insist, at the beginning, that the family of lines be nonempty. There being at least one line, there must 

exist at least three points: two on the line and one off.] 

Our versions of Axioms I-III are deliberately opaque. One of Hilbert’s many contributions was to 

pin down the nature of mathematical abstraction. In an abstract geometry, a point is not an ink dot on a 

http://www.archive.org/stream/AHistoryOfMathematics/Boyer-AHistoryOfMathematics#page/n665/mode/2up
http://en.wikipedia.org/wiki/Hilbert%27s_problems
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paper or a very small sphere. A point is anything that belongs to a set equipped with what the axioms 

require. In a similar way, we said earlier that a group can be made up of numbers, permutations, 

transformations—the kind of objects is immaterial, as long as the ensemble (set, members, operation) 

conforms to the group axioms. By agreeing to accept the abstraction, we lose the “hidden assumptions” 

that are inseparable from our mental pictures of points, lines, and other geometric objects. For a particle 

of evidence, observe that the axioms do not mention the word “straight.” 

There are not too many theorems you can deduce from those three axioms, but we can begin to see 

that things that qualify as points and lines behave a little as we would like. 

Theorem 1. If two lines intersect, then they have exactly one point in common. 

We are more than happy to take advantage of the two meanings of “intersect”: the set theory sense of 

having a common point, and the geometric sense of crossing. 

Say different lines L and M have a common point P. Let Q be any other point of L. (Why must such 

a Q exist?) By Axiom 1, L is the only line crossing both P and Q. Since M crosses P and M  L, M 

cannot cross Q. Therefore no point other than P is on both lines. 

Theorem 2. If P and Q are two points and R is not on the line they determine, then the three points are 

noncollinear (no line crosses all three). 

Proof is Exercise 1. Henceforth, we write PQ for the line determined by unequal points P and Q. 

Theorem 3. In the plane, there must exist three noncollinear points and three nonconcurrent lines. 

The family of lines is required to be nonempty. Let L be some line. By Axiom 2, there must exist 

two points S and T on L. By Axiom 3, there is at least one point U off L. By Theorem 2, the points 

S, T, and U cannot be collinear. Those are three noncollinear points. 

The three lines ST, SU, and TU cannot be concurrent—cannot all have a point in common. They 

are three different lines; if two were the same, then S, T, and U would be collinear. By Theorem 1, 

we know S is the only point shared by ST and SU. It cannot be on TU, because then the three would 

be on that line. Hence no point is on all three lines; we have three nonconcurrent lines. 

All this talk about two points and three points sounds like a case of terribly blinkered vision. In fact, 

a planar geometry might have only three points. 

Example 1. Let  = {A, B, C} be the plane. To specify a geometry, you have to name the lines. 

Each line requires at least two points and cannot have all three, and each pair of points has to be on 

some line. Those conditions leave no choice: The subsets {A, B}, {A, C} 

and {B, C}have to be the lines. Check that this designation obeys the axioms. 

Separately, picture it. At right, the dots represent points and the blue ovals 

represent lines. Most important is the explicit understanding that only A, B, and 

C—not any other “points” in the ovals—are points. 

Example 2. Next let  = {D, E, F, G} and let the orange ovals at left specify the 

lines. Before you go to the next paragraph, decide why the picture does not 

specify a planar geometry. 

Now add, to the four lines shown, the two subsets {D, F} and {E, G}. Then check 

that the completed specification obeys the axioms. 

Example 3. No doubt you can see that making every pair of elements a line 

always yields a geometry. But there are alternatives. At right we have four points 

again, but just four lines (green ovals). Check that the setup satisfies the axioms. 
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Finally, let us see an example made up of algebraic elements, not geometric. You may, and doubtless 

should, visualize it in a familiar way. 

Example 4. Let the “points” in  be the ordered pairs (x, y) of real numbers with 

 x
2
 + y

2
  <  100. 

By a “line,” we mean those pairs in  that satisfy—the solution set in  of—some linear equation 

 ax + by  =  c,   a, b, and c fixed real numbers with a and b not both zero, 

that has some solutions in . (Geometrically, it is of course Klein’s model.) We need to check that 

the axioms hold. Moreover, we must do it algebraically, not in terms of the Cartesian picture. 

Axiom 1: Take distinct points in , like P = (1, 2) and Q = (5, 6). The equations 

 A1 + B2 – 1C = 0, 

 A5 + B6 – 1C = 0, 

in the variables A, B, C, constitute a homogeneous linear system with three unknowns and two 

independent equations. The system necessarily has a one-parameter solution. Here, the solution can 

be described by 

 B = t arbitrary,  A = -t (2 – 6)/(1– 5), C  =  A + 2B  =  -t (2 – 6)/(1– 5) + 2t 

(Exercise 4). [If the linear-systems language is foreign to you, just eliminate C from the original 

equations; then keep going under the assurance that this instance is typical.] Therefore P and Q are 

on at least one line, the solution set of the t = 1 equation 

 -1(2 – 6)/(1– 5) x + 1y  =  -1(2 – 6)/(1– 5) + 2(1). 

(If you have no reason to recognize that equation, rearrange it to the point-slope form 

 y – 2  =  (2 – 6)/(1– 5) [x – 1].) 

They are also on the t = 2 line given by 

 -2(2 – 6)/(1– 5) x + 2y  =  -2(2 – 6)/(1– 5) + 2(2), 

among others. But all those are the same line. Their equations are equivalent, except for the equation 

from t = 0, an equation that is not allowed. Therefore they all have the same solution set; they 

represent the one line that crosses P and Q. 

Axiom 2: Suppose (u, v) is one point on a line: (u, v) is one solution in  of ax + by = c. Put some 

number between u
2
 + v

2
 and 100, say 

 u
2
 + v

2
  <  99.99. 

Then 

 (U, V)  =  (u + 10
-4

b/[a
2
 + b

2
], v – 10

-4
a/[a

2
 + b

2
])  (Is that denominator legal?) 

is another solution (Verify!), and 

 U
 2

 + V
 2

  =  u
2
 + v

2
 + 

   [2u10
-4

b/[a
2
 + b

2
] + 10

-8
b

2
/ [a

2
 + b

2
] – 2v10

-4
a/[a

2
 + b

2
] + 10

-8
a

2
/ [a

2
 + b

2
]]. 

Because u and v are between -10 and 10, the [bracketed] quantity has absolute value no more than 

   [20(10
-4

) 1  + 10
-8 

(1) +  20 (10
-4

) 1  + 10
-8 

(1)] <  10
-2

. 

Hence U
 2

 + V
 2

 < 100. The equation has a second solution in , and the line has a second point. 

Axiom 3: If ax + by = c is the equation of a line, then it has a solution (r, s) with say 

 r
2
 + s

2
 < 99.99. 

If a  0, then  (r + 10
-4

a/[a
2
 + b

2
], s)  is still in  (as in the previous paragraph) and does not solve 

the equation. (Check!) The same is true for  (r, s + 10
-4

b/[a
2
 + b

2
])  if b  0. The equation’s solution 

set does not fill ; no line has all the points. 
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a: In Exercises 1-3, prove that in a planar incidence geometry: Exercises IX.D.4

1. If R is not on the line PQ, then no line crosses all three points. 

2. Given two lines, you can find a third line that intersects both. 

3. If A and B are unequal points and C is not on line AB, then A is not on line BC. 

4. Characterize the simultaneous real solutions of the system 
 A1 + B2 – 1C = 0, 

 A5 + B6 – 1C = 0. 

b) multiplanar incidence 

Axioms 1-3 specify how lines relate to points. There are five more incidence axioms, those that 

cover what Merzbach (page 558) calls “being on” and “being in.” Three of them rule how planes—we 

will end up with multiple planes—relate to points. Another covers how planes relate to lines, and the 

eighth covers how planes relate to planes. 

We move now to a(n incidence) geometry, a set equipped with two families of subsets. The 

members of the set are points. In one family, required to be nonempty, we have lines, which must obey 

Axioms 1-3. In the other family, we have planes. The package must satisfy Axioms 4-8. 

Axiom 4. Any three noncollinear points are on one and only one plane. (Three noncollinear points 

determine a plane.) 

Extending the geometric usage, we say a point belonging to a plane is on the plane, and the plane 

crosses the point. A line whose points are in a plane lies in the plane, and the plane contains the line. 

Just from Axioms 1-4, we can see that every point must be on at least two lines and one plane. 

Points must exist: Somewhere, there is a line L, required by Axiom 2 to cross points Q  R. 

Let P be any point. It could be that P is on L. Then Axiom 3 promises a point T off L, which means 

that PT  L is a second line crossing P. Further, one of Q or R is different from P, say P  Q. By 

Theorem 2, P, Q, and T are not collinear. By Axiom 4, some plane crosses all three. 

Alternatively, P may be off L. In that case, P, Q, and R are noncollinear (Theorem 2). Some plane 

has to cross them (Axiom 4), and PQ and PR have to be different lines crossing P (Reason?). 

Axiom 5. In every plane, there exist three noncollinear points. 

Axiom 6. If a plane crosses as many as two points on one line, then it contains the line. 

Theorem 4. Any of the following combinations determines a plane: 

a) a line and a point off the line; 

b) two intersecting lines; 

c) two parallel lines (lines lying in the same plane and not intersecting). 

a) Suppose P is off L. The latter must have unequal points Q and R. By Theorem 2, P, Q, and R are 

not collinear. By Axiom 4, some unique plane  crosses them. By Axiom 6, since  crosses Q 

and R from L,  must contain L. No other plane can cross P and contain L, because any such plane 

would cross P, Q, and R. Thus, one and only one plane crosses P and contains L. 

b) and c): Exercises 3 and 4. 

The situation is getting more familiar. Every line has to lie in some plane, and cannot be any whole 

plane. The second part is just Axiom 5. For the first part, let L be a line. Some point T has to be off L, 

and Theorem 4a says that some plane must cross T and contain L. The hierarchy is what we expect: 

Points must be on lines, which must lie in planes but not fill them. 
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Axiom 7. There exist four noncoplanar points (four points no single plane crosses). 

Even without our convention that “four” means “four distinct”, these four do have to be unequal. 

Call them A, B, C, D. If two were equal, say A = B, then A = B, C, and D would either be in one line, 

which would lie in some plane; or would be noncollinear, in which case Axiom 4 would put them on 

some plane. Moreover, by the same reasoning no three of them can be collinear. 

Theorem 5. There must exist at least four points, six lines, and four planes. (Exercise 5) 

The numbers in Theorem 5 are the biggest we can guarantee at this time. Picture a tetrahedron, and 

make a geometry with each vertex as a point, each pair of vertices (and not the connecting edge) as a 

line, and each threesome of vertices (and not their face) as a plane. Then Axioms 1-7 (and Axiom 8 

below) are satisfied, and the numbers in the theorem are exact. The same statement holds for the 

numbers in the next theorem, with the same example as evidence. 

Theorem 6. Every point is on at least three lines, and every line lies in at least two planes. 

Pick any point P. We use the points A, B, C, D named above. 

It could be that P is on the line AB. In that case, neither C nor D can be on the same line, because no 

three of A-D  are collinear. Hence PC is a second line through P. That line cannot cross D: If it did, 

then by Theorem 4b those lines, intersecting at P, would lie in a plane crossing A, B, C, D. That 

makes PD a third line crossing P. 

If instead P is off line AB, then PA and PB are unequal lines. (Why?) By Theorem 4b, some plane 

contains them. That plane cannot cross both C and D: If it did, then the five points would be 

coplanar. Whichever is off the plane determines a third line through P. 

The proof for the line is similar (Exercise 6). 

Axiom 8. If two planes have any point in common, then they have at least two points in common. 

Theorem 7. If two planes intersect, then their intersection is a line. 

There you see that sometimes the language of sets pays off. You also see how much incidence 

geometry, which we developed abstractly, without pictures, conforms to our mental picture of points, 

lines, and planes. For Theorem 7, for example, we often compare planes to the surfaces in a typical 

rectangular room. Such planes may fail to meet, like the floor and ceiling; but if they meet, then they 

meet along a the line, the way a wall and ceiling meet along the top of the wall. 

Suppose planes    have a point P in common. By Axiom 8, they must also cross Q  P. Each 

of  and  crosses two points of line PQ. By Axiom 6, each plane contains PQ. Consequently the 

intersection    contains PQ. 

[It is essential that you understand that the proof is not done. We now know that PQ is a subset of 

the intersection. We have to show that PQ is all of the intersection.] 

Suppose R is a point in   . Then R cannot be off PQ: If it were, then by Theorem 4a only a 

single plane could contain PQ and cross R; both  and  contain PQ and cross R. Hence R has to be 

on PQ. We have shown that PQ fills the entire intersection. 

b: In an incidence geometry, prove: Exercises IX.D.4

1. If a point is on a plane, then the plane contains a line that does not cross the point. 

2. In every plane, it is possible to find three nonconcurrent lines. 

3. Two intersecting lines determine a plane. 

4. If two lines lie in one plane and do not intersect, then that plane is the only one that 
contains both lines. 
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5. There must exist at least four points, six lines, and four planes. [See the information right 
above Theorem 5.] 

6. Any line lies on at least two planes. 

c) order 

The order axioms start to fill in lines and planes. An order geometry is an incidence geometry in 

which there is defined a ternary relation called betweenness. 

We have met binary relations. A binary relation in a set picks out ordered pairs of members. In the 

set of natural numbers, we defined the relation < of “being smaller than” (section IX.C.1c). That 

relation picks out the ordered pairs (3, 7) and (3, 5), because 

 3 < 7   and   3 < 5, 

but not (5, 3) nor (6, 6). In a similar way, a ternary relation in a geometry picks out ordered triples 

(P, Q, R) of points; for such triples, our betweenness relation says that Q is between P and R. 

The betweenness relation must satisfy four axioms. 

Axiom 9. It applies only for points in a line: If Q is between P and R, then P, Q, and R are collinear. 

We will need to say “A is between B and C” so frequently that we will abbreviate it by BAC. 

Axiom 10. It has left-right symmetry: If PQR, then also RQP.  

Axiom 11. It obeys the trichotomy (compare section IX.B.4a): If A, B, and C are points on one line, 

then exactly one of the following is true: ABC, or instead ACB, or instead BAC. 

Notice that A itself is never between A and B; that would violate the trichotomy. 

Axiom 12. If D and E are two points, then there must exist a point F between them. 

It is immediate from Axiom 12 that every line is an infinite set (Exercise 1). There are two other 

inferences that deal entirely with betweenness, but require later axioms to prove. We will write them in 

the next proposition because they are useful. We will prove part (a) later. Part (b) is hard to prove—

Hilbert thought it had to be an axiom (refer to Wikipedia®)—and we will not try. 

Proposition 1. a) If D and E are two points, then there exist points G and H such that GDE and DEH. 

b) Given four points on a line, it is possible to label them P, Q, R, and S so that they appear in that 

order, meaning PQR, PQS, PRS, and QRS. 

In Proposition 1, part (a) calls for points placed as shown at right. Relative to D 

and E, we will say that H is beyond E and G is beyond D. Part (b) does with 

betweenness something like what the generalized associative law does with 

operations. It says that any four points on a line have to be in some order. It can be extended to larger 

numbers of points; view Exercise 3. We will signify its four betweenness statements by writing PQRS. 

(i) separation on a line 

Take two points P and Q. The points between P and Q—which by Axiom 9 are on line PQ—together 

with P and Q, constitute a line segment. We will denote it by [PQ] (a nonstandard symbol mimicking 

closed interval notation). On the line PQ, we will say Q and the third point R are on the same side of P 

if [QR] does not cross P—in other words, if P is not between Q and R. By Axiom 11 

one of the three has to be between the other two; we see that Q and R are on the same 

side of P iff PRQ or PQR, as the figure suggests. [Having warned against the dangers of 

drawing inferences from pictures, I offer this advice for the rest of the chapter: Always draw a picture.] 
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http://en.wikipedia.org/wiki/Hilbert%27s_axioms
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Theorem 8. A point on a line separates the line into exactly two sides. In symbols: If A is on L, then the 

remaining points of L fill up two nonempty disjoint subsets L and R, such that any two points in L are on 

the same side of A, any two points from R are on the same side of A, and no point from L is on the same 

side as any point from R. 

Assume A is on L. By Axiom 2, there is B  A on L. Let R consist of the points of L on the same 

side of A as B, plus B itself. Let L take up the points not on the same side of A as B. By the 

discussion above, R has the points between A and B (green in the figure at 

right), B, and the points beyond B (blue). That leaves L with the points beyond 

A (red). Those sets are nonempty by Proposition 1a, are disjoint by the trichotomy, and account for 

all the points of L other than A. 

If P  Q are in L, then they are also different from A and B. By Proposition 1b, those four points 

have to be in some order. We know PAB is part of the order, because P is beyond A. Neither PAQB 

nor PABQ is allowed, because Q is also beyond A. The four points must line up as either PQAB or 

QPAB. In either case, A is not between P and Q; P and Q are on the same side of A. 

Assume now S  T are in R. It might be that one of them is B, say S = B. Then by the definition 

of R, T is either between A and S = B or beyond S. Either way, SAT is prohibited by the trichotomy; 

S and T are on the same side of A. It might instead be that S and T are both different from B. Then 

A, B, S, T are four points. The first three are arranged ASB or ABS, by the composition of R. In 

neither of those can T precede A, for the same reason. Therefore the order is ATSB, ASTB, or 

ASBT. All of those have A outside of [ST]. Again S and T are on the same side of A. 

Finally, suppose U is in L and V is in R. We know UAB. One possibility is V = B, so that UAV. The 

others are AVB and ABV, which force UAVB or UABV. In both of those, U and V are on what we 

may now call opposite sides of A. 

c(i): In an order geometry, prove: Exercises IX.D.4

1. Every line—indeed, every line segment—crosses an infinity of points. 

2. The intersection of two segments is empty, or has a single point, or is a segment. 

3. Any five points on one line have to be in some order. (Clearly the argument suggests the 
induction proof for six or more points.)  

(ii) separation in a plane 

Now we add an axiom and show that a line will separate a plane. 

Let A, B, and C be noncollinear. They determine a plane . (Reason?) The three segments [AB], 

[AC], [BC] are subsets of . (Why?) Their union is a triangle, of which the segments are the sides and 

the points are the vertices. 

Axiom 13. (Pasch’s Axiom) If a line in the plane of a triangle crosses one side but not the vertices, then 

it must cross just one of the other sides. In symbols: Assume L lies in the plane of noncollinear points A, 

B, and C, and does not cross any of them; if L intersects [AC], then it must intersect 

[AB] or [BC], and not both. 

In the corresponding picture, L enters the triangle by crossing a point between A 

and C. The axiom says that it must exit by crossing a point on precisely one of the 

other sides of the triangle (and necessarily not at B). 

[Moritz Pasch (1843-1930) was a pioneer in axiomatization in general, and especially of geometry. 

Axiom 13 postulates one of those hidden assumptions we have decried. Pasch insisted that you have to 
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draw conclusions—for example, in Axioms 11 and 13—entirely from axioms (and consequent 

theorems), and not from consideration of physical situations as in the last figure. (Consider that in the 

spherical Riemannian geometry, section IX.D.1b(ii), trichotomy fails: Each of three points on a line is 

between the other two.) In this insistence, he was forerunner to Peano (see “formal system” in section 

IX.C.1b) as well as Hilbert. Consult O'Connor and Robertson at St Andrews.] 

Take now a line lying in a plane. Points A  B in the plane but off the line are on the 

same side of the line if [AB] does not intersect the line. In the figure at right, P is off 

line L. Choose a point R on the line. By Axiom 12, there must exist Q between P and R. 

From PQR, we deduce that R is not on [PQ]. No other point of L can be on [PQ], because 

R is the only point of L on line PQ. Therefore P and Q are on the same side of L. By 

Proposition 1a, there exists S beyond R on PQ. Since [PS] crosses R, P and S are not on 

the same side of L. Those two sides are all there is. 

Theorem 9. A line lying in a plane separates the plane into exactly two sides. In symbols: If L lies in , 

then the rest of the points of  break into nonempty disjoint subsets S and T with points of S on the same 

side of L, points of T on the same side of L, and no point from S on the same side of L as any point in T. 

Let L lie in . There has to be a point P off the line in . Let S comprise the points in  on the same 

side of L as P, T the points not on the same side. We saw above that S and T are nonempty, and by 

definition they are disjoint and take in all the points off L. 

Suppose A and B are two points in S. First, it could be that one of them is P, say A = P. In that case, 

[AB] = [PB] cannot cross L, because B is on the same side as P. Then A and B are on the same side. 

Second, it could be that A, B, and P are unequal collinear points. In that 

case, by trichotomy one of them is between the other two. If it is PAB 

(near left in the figure), then [AB] is a subset of [PB] (Exercise 1a). 

Since the latter has no points of L, [AB] has none; A and B are on the 

same side. It goes similarly with PBA. If instead it is APB (center), then 

 [AB] = [AP] union [PB]   (Exercise 1b). 

Neither of the latter two intersects L. That means [AB] does not intersect L, and A and B are on the 

same side of the line. Third, it could be A, B, and P are not collinear (right). Line L does not cross 

any of them, and intersects neither segment [AP] nor [BP]. By (the contrapositive of) Pasch’s axiom, 

it cannot intersect [AB]. Therefore A and B are on the same side of L. 

Look next at two points D and E in T. They are certainly unequal to P. First, it could be that D, E, 

and P are collinear (left half in the figure at right). Their order cannot be DPE. If 

that were true, then L would intersect line DE at one point between D and P and at 

a second point between E and P. We must have PED or PDE. We treat either the 

same way; work with PED. There must be a point Q on L with PQE. The only 

place to fit Q into PED—as Proposition 1b requires—while maintaining PQE is 

PQED. With that order, [ED] has no point of L, because ED and L share only Q. That tells us E and 

D are on the same side. Second, it might be that P, D, and E are noncollinear. In that case, PDE is a 

triangle. The line L does not cross P, D, or E, and intersects sides [PE] and [PD]. By the “not both” 

provision in Axiom 13, L does not cross [DE]. Therefore D and E are on the same side of the line. 

That leaves the case of A in S and D in T for Exercise 2. 

It is worthwhile to see by example that Pasch’s axiom is independent of the previous ones and 

essential for Theorem 9. We will use a modification of three-dimensional Cartesian space. 
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Example 5. Look at the set S of nonzero ordered triples (r, s, t)  (0, 0, 0) of rational numbers. 

Define a plane as the solution set in S of a linear equation 

 ax + by + cz  =  d,   a, b, c, and d rational, with a, b, c not all zero. 

You can check that the process of solving two such equations simultaneously yields one of three 

results: The equations may be equivalent, representing the same plane; they may be inconsistent, so 

that their planes do not intersect; or they may have an infinity of simultaneous solutions, given by 

one parameter. In the last case, if one solution is (u, v, w), then all the solutions are given by 

 x = u + At,  y = v + Bt,  z = w + Ct,  t arbitrary rational, 

in which A, B, and C are three rationals not all zero. Define a line as the set of nonzero triples given 

by such a form. We can then verify that Axioms 1-8 hold. 

On the line given by that form, we say of three nonzero points that 

 (u + At, v + Bt,  w + Ct)  is between  (u + Ar, v + Br, w + Cr)  and  (u + As, v + Bs, w + Cs) 

if either r < t < s or s < t < r. From that definition, we can check that Axioms 9-12 are satisfied. It is 

also easy to check that Proposition 1 holds. What fails is Pasch’s axiom. 

In the xy-plane, given by 

 0x + 0y + 1z  =  0, 

look at the points P(-1, -1, 0), R(1, 1, 0), Q(3, -1, 0). In that plane, PQ is 

given by y = -1. (Officially it is 

 x = -1 + 1t, y = -1 + 0t, z = 0 + 0t; 

let us agree, in the figure and what follows, to suppress the z-coordinate.) PR is given by y = x, QR 

by y = -x + 2. The (red) line with y = -x intersects [PQ] at (1, -1) (red dot). But it intersects neither 

[PR] nor [QR]. The system 

 y = -x  and  y = -x + 2 

has no simultaneous solution, and the only simultaneous solution to 

 y = -x  and  y = x 

is not a member of S. That violates Axiom 13. 

As a result, PR does not separate the plane. It is clear that S(-1, 1) and T(-2, 0) 

are on the same side of PR. So are U(1, -1) and V(0, -2). Surprisingly, S and U 

are on the same side of PR; we just noted that line SU does not intersect line 

PR. So we have T on the same side as S, S on the same side as U, and U on the 

same side as V. But T and V are on opposite sides: TV is given by y = -x – 2, 

and therefore segment [TV] intersects PR at P. 

If you allow (0, 0, 0)—if you take all the triples in Q
3
 instead of just those in S—then the geometry 

will satisfy Pasch’s axiom, even though any line will still have a hole at every real triple with an 

irrational coordinate. In that case, the simultaneous solutions of the equations of our lines, being rational 

triples, will always be points in the geometry. 

(iii) rays and angles 

Take point O on some line. We define a ray or half-line as the set consisting of O and the points of 

the line on one side of O. If A is on that side, we use [OA to denote the ray. Notice that if B is another 

point on the ray, as in the figure below right, then [OA = [OB. 
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Now assume C is not on line OA. The union of the two sets [OA and 

[OC is an angle. We denote the angle by AOC, and call the rays sides 

of the angle, O the vertex of the angle. By the definition, 

 AOC  =  COA. 

Also, if D  O is on [OC, then 

 AOC  =  AOD  =  BOC  =  BOD.  (They are all the same set.) 

Keep in mind that AOC has the points on the black half-lines, not those in the gray area. 

The gray area has a special name. We have excluded “straight angles”; we required O, A, and C to 

be noncollinear. Then OA and OC are unequal intersecting lines. By Theorem 4b, a unique plane 

contains both lines, and therefore contains the angle. In that plane, all the points of [OA save O are on 

the same side of line OC: No point of OC can be on segment [AB], because only O is on lines OC and 

AB. Similarly, all the points of [OC except O are on the same side of line OA. We define the interior 

of AOC as the set of points E in the plane that are between some points B  O on [OA and D  O 

on [OC. The interior is not empty, since it has all the points between A and C. If E is in the interior, 

then E is on A and B’s side of OC in the plane, and on C and D’s side of OA. The converse is also true, 

but it is one of those things we need later axioms to prove. The converse is that if P is simultaneously on 

A’s side of OC and on C’s side of OA, then there are B and D on the respective rays with BPD. One 

thing we can prove now touches on the very first “unstated assumption” we met (section III.A.5b). 

Theorem 10. Suppose E is in the interior of AOC. If segment [PQ] crosses the angle—P  O is on 

[OA and Q  O is on [OC—then ray [OE has to intersect [PQ]. 

By definition, E is between B on [OA and D on [OC. If [BD] = [PQ], 

then E is on [PQ]. If B = P and D  Q, then B, D, and Q are 

noncollinear, because B is not on line OC. Line OE crosses none of 

those points, because it shares only O with lines OA and OC. We know 

it intersects side [BD] of triangle BDQ at E. By Pasch’s axiom, OE has 

to intersect side [BQ] = [PQ]. The intersection, necessarily in the interior of AOC, must be on ray 

[OE. Finally, if B  P and D  Q, then the same argument shows that OE has to intersect side [BQ] 

of triangle BDQ, wherefore it has to meet the remaining side [PQ] of triangle BQP. 

c(iii): In an order geometry, prove: Exercises IX.D.4

1. a) If PAB, then any point between A and B is between P and B. 
b) If APB, then [AB] is the union of the subsets [AP] and [PB]. 

2. The rest of Theorem 9: If A is on the same side of L as P and D is not, then A is not on the 

same side of L as D. 

3. Assuming that the interior of AOC is the intersection, in the plane of the angle, of A’s side 
of line OC and C’s side of OA: 
a) The interior is convex: If E and F are in the interior, then [EF] is contained in the interior. 
b) The exterior (the set of points in the plane not on the angle or in the interior) is arc-
connected: If G and H are in the exterior, then there is a broken line from G to H 
(specifically, a union of segments [GP], [PQ], [QH]) that is contained in the exterior. 
c) If E is in the interior and G in the exterior, then any broken line (any union of a finite 
number of segments) from E to G must intersect the angle. 
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d) congruence 

You can see that the proofs are becoming increasingly elaborate. That is always the difficulty in 

trying to give a complete axiomatic foundation to a deductive system as multifaceted as geometry. To 

avoid the complication, we will give some statements only partial arguments. Below we list the 

remaining axioms and sample some especially familiar statements that follow from them. 

The last related group of axioms concerns congruence. To turn an order geometry into a congruence 

geometry, we require that there exist two binary relations. One relates line segments, the other relates 

angles. Both are called congruence and use the symbol . They must separately obey four axioms, and a 

fifth axiom connects them. [Recall (section IX.A.2c(ii)) how in a field, the only axiom that connects 

addition and multiplication is the distributive law.] 

Axiom 14. Each congruence is an equivalence relation  (refer to Exercise VIII.C.2a:3). In symbols: 

 [AB]  [AB] for every segment; 

 if [AB]  [CD], then [CD]  [AB]; 

 if [AB]  [CD] and [CD]  [EF], then [AB]  [EF]; 

and similarly for congruence of angles.  

(i) segments 

Axiom 15. Given A  B and some line crossing point C, there exist on that line a unique D on one side 

of C, and a unique E on the opposite side, such that 

 [CD]    [AB]    [CE]. 

That is a familiar idea. It demands that you can reproduce a “length”—we will call it “lay off a 

segment”—along any line, in either direction from any of its points. 

Example 6. Return to the set Q
3
 of ordered triples of rational numbers, including (0, 0, 0). Use the 

plane, line, and betweenness definitions given in Example 5. We noted there that the order geometry 

so established satisfies Axioms 1-13. In it, we could define congruence of segments by reference to 

the distance formula. That is, if A = (a1, a2, a3), B = (b1, b2, b3), and so on, we define 

 [AB]    [CD]       to mean 

       (a1 – b1)
2
 + (a2 – b2)

2
 + (a3 – b3)

2
  =  (c1 – d1)

2
 + (c2 – d2)

2
 + (c3 – d3)

2
. 

That definition clearly satisfies Axiom 14. 

It fails Axiom 15. Put A at (1, 1, 1) and B at (2, 2, 2). You cannot lay off [AB] anywhere along 

the x-axis. The axis is given by 

 x = 0 + 1t, y = 0 + 0t, z = 0 + 0t,  t rational. 

There are no rational t and s for which 

 (1t – 1s)
2
 + (0t – 0s)

2
 + (0t – 0s)

2
  =  (2 – 1)

2
 + (2 – 1)

2
 + (2 – 1)

2
. 

Axiom 16. Given A, B, and C in that order on a line, and D, E, and F in that order on a (not necessarily 

different) line, if 

 [AB]    [DE]   and [BC]    [EF],  then  [AC]  [DF]. 

Clearly the axiom is the “equals added to equals …” statement. Where such additivity prevails, 

subtractivity [not really a mathematical word] also holds. To prove that: 

First we prove that “the whole cannot equal a part.” Assume ABC. Then [AB] cannot be congruent 

to [AC]. That congruence would violate the uniqueness part of Axiom 15; you would have unequal 

points B and C on the same side of A reproducing [AB]. See also Exercise 1. 
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Now assume ABC and DEF, and suppose (illustrated at right) 

 [AC]  [DF] and [AB]  [DE]. 

Lay off [BC] from E toward F, ending at C*. We have ABC, DEC*, and 

 [AB]  [DE] and [BC]  [EC*]. 

By additivity, 

 [DF]    [AC]    [DC*]. In view of the previous paragraph, C* cannot be 

left of F (meaning EC*F) nor right of F (EFC*). Only C* = F is possible, and we conclude 

 [BC]    [EC*]  =  [EF]. 

We can now define relative size of segments. Given segments [AB] and [PQ], lay off a copy of [AB] 

from P toward Q, ending at B*. There are three places B* could be: between P and Q, at Q, or past Q. 

If B* = Q, then the segments [PB*] and [PQ] are one, and 

 [AB]    [PB*]  =  [PQ]. 

If PB*Q (figure below right), then we say [AB] is shorter than [PQ]; if PQB*, then [AB] is longer 

than [PQ]. Notice that exactly one of those is true. 

Moreover, [AB] is shorter than [PQ] iff [PQ] is longer than [AB]. In the figure, 

[AB] is congruent to [PB*] within [PQ]. First, [PQ] cannot be congruent 

to [AB], because then we would have the whole  [PQ] congruent to the 

part [PB*]. Second, [PQ] cannot be shorter than [AB]. In that case, there would 

be Q* between A and B with [AQ*]  [PQ]. We could then add a copy of [Q*B] 

from Q rightward to S (off to the right of the figure). By additivity, we would have 

 [PS]    [AB]    [PB*]. 

That would be a whole congruent to a part. We conclude [PQ] is longer than [AB]. 

The converse is symmetric to our statement. 

(ii) angles and triangles 

Axiom 17. Given noncollinear points A, O, C, as well as P  Q in some 

(maybe the same) plane , there exist in  precisely two rays [PR and [PS, 

one toward each side in  of line PQ, such that 

 QPR    AOC    QPS. 

Again in words: You can make a copy of any given angle to lie in any 

specified plane and to either side of a ray that is to be one side of the copy. 

Now we connect the two types of congruence. 

Axiom 18. Given two (possibly equal) triangles, in which two sides and the included angle (where the 

sides meet) of one are congruent to two corresponding sides and the included angle of the other, the 

remaining sides must be congruent, and the remaining pairs of corresponding angles must be congruent. 

This is, of course, the SAS principle. In symbols, it assumes that ABC and DEF are triangles with 

 [AB]  [DE],  BAC  EDF,  and [AC]  [DF]. 

Given that, it requires that the remaining congruences, 

 [BC]  [EF],  ABC  DEF, and ACB  DFE, 

follow. When all those congruences hold, we say the two triangles are congruent. 

We claimed long ago (section III.A.1) that SSS was the more fundamental principle about equal size 

and shape. Clearly, though, we need something to connect segment and angle congruence; SSS would 

not do that. Let us see some interesting consequences of SAS; SSS is among them. 
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Theorem 11. a) The base angles in an isosceles triangle are congruent (Exercise 2). 

b) (ASA) If two angles and the included side of one triangle are congruent to corresponding angles and 

the included side of another, then the triangles are congruent. 

b) Assume that in triangles ABC and DEF, we know 

 CAB  FDE,  [AB]  [DE],  and ABC  DEF. 

Lay off [DE] from A toward B, reaching P. Point P cannot land before B or beyond B; if it did, we 

would have the whole congruent to a part. Thus, P coincides with B. At A, 

draw a ray (red at right) that duplicates EDF toward the C side of the 

plane. That ray coincides with [AC; otherwise it and [AC would give two 

duplicates of EDF, violating the uniqueness part of Axiom 17. Take Q 

along the ray to make [AQ]  [DF]. From 

 [AQ]    [DF]    [AC], 

we conclude Q = C. Triangles QAP and FDE satisfy SAS by design. But triangle QAP is triangle 

CAB. We have shown that triangles CAB and FDE are congruent. 

From ASA, we immediately get the converse of the base-angles theorem (Exercise 3). 

Theorem 12. Congruent angles have congruent supplements. 

Given congruent angles (solid black in the figure) with vertices at 

O and Q, start with A on one of their rays. Lay off [OA] along the 

other three rays, to make 

 [OA]    [OB]    [QP]    [QR]. 

By SAS, triangles AOB and PQR are congruent. Therefore 

 OBA    QRP and [AB]    [PR]. 

Now pick C beyond O along OB, and S beyond Q along QR, such that [OC]  [QS]. By additivity, 

[BC]  [RS]. By SAS, triangle ABC is congruent to triangle PRS. Therefore 

 ACB    PSR and [AC]    [PS]. 

That means triangles ACO and PSQ satisfy SAS. Hence AOC and PQS, supplements to the 

original congruent angles AOB and PQR respectively, are congruent. 

From congruent supplements, it is immediate that vertical angles are congruent (Exercise 4). We can 

also prove that an angle might be congruent to its supplement. In that case, we call it a right angle. 

Take any angle AOB. There is a unique ray (dotted in each third of the figure 

at right), on the side of line AO opposite B, to make an angle congruent 

to AOB. Put C on that ray to make [OC]  [OB]. Because B and C are on 

opposite sides of AO, the segment [BC] must intersect AO at a point D. 

If D is on A’s side of O along OA (top third), then triangles ODB and ODC are 

congruent by SAS, and ODB and ODC are congruent supplements. If 

instead D = O (middle third), then B, O, and C are on the same line, and AOB 

and AOC are supplements as well as congruent. The remaining possibility 

puts D beyond O. In that case (all red in the lowest third) DOB and DOC 

must be congruent, because they are supplements to the original congruent pair. 

Therefore triangles DOB and DOC are congruent, and ODB and ODC are 

congruent supplements. 

That argument shows that right angles exist. Are they all the same size? 

Theorem 13. Any two right angles are congruent. 
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Suppose ABC and DEF are right angles. In the figure (which does not show the 

latter), put P on CB beyond B to make [BP]  [BC]. From ray [BP toward the side 

of the plane opposite A, draw the ray [BQ (red) that makes PBQ  DEF. Last, 

draw the extension (green) of AB beyond B. 

Angle PBQ is by design congruent to DEF, which by definition is congruent to 

its supplement, which by congruent supplements is congruent to CBQ. (That 

shows that a copy of a right angle is a right angle. Do the related Exercise 5.) Hence 

triangles PBQ and CBQ satisfy SAS. That implies BCQ  BPQ. 

Line AB enters triangle CPQ and misses P and C. It must therefore intersect one of the other two 

sides: Either it crosses Q, or else it falls under Pasch’s axiom. The intersection has to be on the Q 

side. Say it is at point R on [QC]. (Similar reasoning applies if R is on [PQ].) Angles CBR and 

PBR are right angles (Exercise 6). Therefore triangles CBR and PBR fit SAS. We now have 

 BPR    BCR  =  BCQ    BPQ. 

The ray [PQ must coincide with [PR, and so it intersects CQ = CR at Q = R. That means PBQ is 

vertical to ABC, whence 

 ABC    PBQ    DEF. 

Theorem 14. Assume rays [OC and  [QS are interior to angles AOB and PQR 

(as in the figure at right). Assume further that 

 AOC    PQS and COB    SQR. 

Then AOB    PQR. 

Clearly the theorem states the additivity of angles. As usual, additivity implies 

subtractivity. (How would you state the latter?)  

To start the proof, put P* along [OA (figure below right) so that 

 [OP*]  [QP]. 

Then choose R* (along the red ray) so that 

 P*OR*    PQR and [OR*]    [QR]. 

With those matches, triangles P*OR* and PQR are congruent. Therefore 

 OP*R*    QPR and [P*R*]    [PR]. 

The ray [QS has to intersect [PR] (Reason?) at a point T (previous figure). Pick T* 

along P*R* such that [P*T*] (green at right) is congruent to [PT]. Then triangles 

OP*T* and QPT satisfy SAS. Hence 

 P*OT*    PQT. 

By hypothesis, PQT = PQS is congruent to AOC. That means P*OT* and AOC both 

duplicate PQT. It must be that ray  [OT* coincides with  [OC. 

Examine next triangles OT*R* and QTR. By the congruence of the big triangles, we have 

 OR*T*    QRT. 

By subtraction, we have 

 [T*R*]    [TR]. 

By congruent supplements, we have 

  OT*R*    QTR. 

The triangles are congruent by ASA. Hence 

 T*OR*    TQR. 
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By hypothesis, the last is congruent to COB = T*OB. Having now 

 T*OR*    T*OB, 

we conclude that  [OR* coincides with  [OB. Additivity follows: 

 AOB  =  P*OR*    PQR. 

Observe that our definition of angle did not allow what we may not yet call “straight angles.” The 

statement of Theorem 14 and the argument above depend on the overlying angles’ having an interior. 

However, check (Exercise 9) that if B is beyond O on line AO and 

 AOC    PQS and COB    SQR, 

then R has to be beyond Q on PQ. That means we keep additivity if we extend the definition and the 

congruence: If AOB, we say AOB (which as a set is simply AB) is a straight angle; and a straight 

angle is congruent to other straight angles and only to those. (Take additivity further in Exercise 10.) 

As before, additivity allows us [you] to define relative sizes of angles (part of Exercise 12). 

Theorem 15. (SSS) If the sides of one triangle are congruent to corresponding sides of a second, then 

the triangles are congruent. 

Suppose triangles ABC and PQR have SSS. Clearly, we need only match one angle in ABC to a 

corresponding one in PQR. 

Toward the side of line AB opposite C, pick R* so that 

 BAR*    QPR and [AR*]    [PR]. 

Triangles BAR* and QPR are congruent by SAS. Therefore BAR* and BAC 

have SSS. 

Because C and R* are on opposite sides of AB, [CR*] has to intersect AB at 

a point D. We deal with the case ADB; you get the cases (Exercise 11) 

where either D is one of A and B, or instead D is beyond one of A and B. 

With D between A and B, triangles ACR* and BCR* are isosceles. By base angles, 

 ACR*    AR*C and R*CB    CR*B. 

By additivity, 

 ACB    AR*B. 

Since the last is congruent to PRQ, we have the angle match we need. 

d: In a congruence geometry, prove: Exercises IX.D.4

1. If unequal points B and D are between A and C, then [BD] cannot be congruent to [AC]. 

2. In an isosceles triangle, the base angles are congruent. (It is up to you to define isosceles 
triangle and base angles.) 

3. If two angles in a triangle are congruent, then their opposing sides are congruent. 

4. Vertical angles are congruent. (Define vertical angles.) 

5. At a given point on a line lying in some plane, there exists a unique perpendicular. (You 
need to define perpendicular.) 

6. If two lines intersect to form a right angle, then all four angles at the intersection (excluding 
the straight angles) are right angles. 

7. Assuming the base of an isosceles triangle has a midpoint, the median to it must be 
perpendicular to the base. (You need midpoint and median.) 

8. If two lines in a plane are cut by a transversal so as to form congruent a/i angles, then the 
lines must be parallel. (Define transversal and a/i angles.)  
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9. If AOB, and C off line AB satisfies 

 AOC  PQS and COB  SQR, 

then PQR is also a straight angle. 

10. Additivity still works when the angles to be added sum to more than a straight angle. 
(Define “sum to more ….”) 

11. In the last figure, triangles ABC and ABR* (having SSS) are congruent if: 
a) The crossing D is at B; or instead, 
b) It is beyond B.  

12. In a triangle, the shorter side is opposite the smaller angle. (Define smaller angle.) 

e) Euclidean space 

Of the remaining three axioms, two are more analytical than geometric. They say that lines are put 

together like the number line. Remarkably, they do so without any mention of numbers. They are part of 

what makes it possible to introduce numbers, in particular to define “distance.” 

Axiom 19. Given two points on a line and some line segment, it must be possible to lay off the segment 

multiple times along the line, starting at one of the points, so as to get beyond the other. In symbols: 

Let A  B and C  D; there must exist points A = A0, A1, …, An , in that order toward B’s side of A 

along line AB, such that 

 [A0A1]    [A1A2]   …   [An – 1An ]    [CD] 

and An is beyond B. 

 The axiom says that all the points of a line are within reach. That is, enough steps of the size of 

[CD], no matter how small [CD] is, will get you from any starting A past any B on the given line. 

Evidently it is the axiom of Archimedes. Notice that it establishes the existence of points beyond B; it 

verifies Proposition 1a. 

Axiom 20. Every line must be complete. That is, it is impossible to add a point to a line and then extend 

to the enlarged line the incidence, order, and congruence relations from the original line. 

We have met “extend” before. In section IX.B.4c(i), we said that Brahmagupta’s zero and signed 

numbers enlarge the set of natural numbers to the set of integers. The operations of integer addition and 

integer multiplication, on the enlarged set, extend the natural-number operations. That is, if m and n are 

natural, then the results m + n and mn under the integer operations are the same as they were under the 

original natural operations. Axiom 20 says you cannot enlarge a line and make definitions of 

membership, betweenness, and congruence on the enlarged line that extend the original ones. 

[More recently, above Theorem 15 , we enlarged the definition of angle by defining straight angles, 

and we extended the definition of congruence to those. That example is weaker than Brahmagupta’s, in 

that there is no congruence between the new, straight angles and the original angles.] 

Axiom 20 is invariably called the “completeness axiom.”  It is a kind of continuum property. We 

could choose to replace it, as well as Axiom 19, with a single axiom having a continuum form. Look at 

Dedekind’s theorem, section IX.B.4c(ii). We could write Dedekind’s Axiom as: 

Axiom 18.5. Suppose any line L is partitioned into nonempty disjoint sets L and R, such that no point of 

L is between two points of R, and vice-versa. Then L must cross a point C (that we will choose to call 

the “cut point”) with the property that L is one side of C on L (plus maybe C), and R is the other side of 

C (plus C iff L does not have it). 
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To show that completeness follows, assume Axiom 20 is false: It is possible to add a new point Z 

and extend L’s relations. In the enlarged line L* = L  {Z}, take any A  Z. Since the order laws 

still hold, we can find point B beyond Z. Let L consist of the points of L* on A’s side of Z, R the 

points on B’s side. Notice that L and R are subsets of L; neither has Z. By Theorem 8, they are 

nonempty and disjoint, cover all of L, and have no point of one between two points of the other. 

They satisfy Dedekind’s hypotheses. But there is no cut point. 

That is, there is no cut point in L. (Check that Z is the cut point in L*.) Points on L are in either L 

or R. If C is in L, then there must be P and Q in L* with PCZ and CQZ. Those points are different 

from Z; they come from L. That disqualifies C: A cut point cannot have members of L on both sides 

of it. The same argument applies for D in R. We have shown Axiom 18.5 is false. By contraposition, 

Dedekind implies completeness. 

More familiarly, we can also establish a kind of least-upper-bound property.  Suppose A is a point 

on line L, and let S be a subset of L. We say P  A is a bound for S on the A-side if no point of S is on 

A’s side of P on L. 

Theorem 16. Assume A is on L and the nonempty set S (red in the figure at right) 

has a bound P on the A-side. Then there exists an extreme bound, a bound Q on 

the A-side such that every point between Q and A (green) is also a bound and no 

point beyond Q is a bound. 

Partition L into two subsets, R holding the bounds on the A-side plus A and 

the points beyond A, L holding the rest. Clearly R is not empty. Neither is L. 

If B is in S, then the line must have point a point C beyond B (figure at right); 

C, being left (on P’s side) of A and not a bound, is in L. Dedekind’s axiom guarantees a cut point Q. 

The cut point cannot be right of P. If it were, then P from R and C from L would be on the same side 

of Q; that is not allowed for a cut point. Accordingly, A is an element of R right of Q. All the 

conclusions follow. First, all the points of L right of Q have to be in R. That means all the points 

between Q and A are bounds on the A-side. Second, Q is a bound. If T is right of Q, then any U 

between Q and T is a bound, so T cannot belong to S. Third, all the points left of Q have to be in L, 

which means they cannot be bounds. 

We used the LUB property to prove the axiom of Archimedes in section IX.B.4b(ii). We can do the 

same here (Exercise 1). For a more elementary result, we can show that any segment can be subdivided 

into any natural number of equally long parts (Exercise 2). 

We can now start talking about lengths and distances. Fix some segment [AB] as the unit of 

measure. We can make natural lengths by reproducing it. We can make rational lengths by subdividing 

natural lengths. Where there are rational lengths and Dedekind cuts, there are real-numbers lengths. 

Finally, we can add signed lengths by measuring to opposite sides along lines. 

The axioms are supposed to axiomatize Euclidean geometry. Because Klein’s model, Example 4 in 

section IX.D.4a, satisfies our Axioms 1-20 but is not Euclidean, we have no choice but to add the 

parallel postulate. Our last axiom, therefore, is the postulate, in Playfair’s form.  

Axiom 21. Let point P be off line L. In the plane they determine [in accordance with Theorem 4a], there 

must exist exactly one line crossing P and not intersecting (therefore parallel to) L.  

Notice that the axiom is entirely about incidence. We could have put it back at (a). It is customary to 

put it late in the list, maybe to avoid disqualifying Klein too early. 
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e Exercises IX.D.4

1. Assuming Theorem 16, prove Axiom 19. 

2. Assuming Theorem 16, prove that a segment can be divided into n congruent pieces. (Hint: 
Set n = 3, define what it means for P to be left of 1/3 of the way from A to B, then proceed.) 

3. Assuming Exercise 2, show that any angle has a bisector. 

4. Prove our “parallel postulate”: If two lines are parallel, then any transversal forms congruent 
a/i angles (defined as part of Exercise IX.D.4d:8).  
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 Epilogue Chapter X.
The book ended one page ago. You might wonder why a 2015 history would stop at roughly 1910. 

The reason is that twentieth-century discoveries in (what became of) geometry and algebra are advanced 

way beyond a treatment that dreams of staying elementary. You could say the same for number theory, 

but we will get to an application of it whose importance and elementariness demand a look. 

Other than that, we want to take a last look at deductive systems, then see some victories, some 

defeats, and implications for the future.  

 Deductive Systems Section X.A.

1. Aristotle and Euclid 

The idea of devising a set of axioms from which all knowledge in some area of study follows 

undoubtedly predates Aristotle (384-322 BCE), who preceded Euclid (dates—even birthplace—

unknown, but he was already a famous adult when the first Ptolemy brought him to Alexandria, 323 or 

later). We have said that Euclid’s system became the model for deductive reasoning, never mind our 

objections that some inferences hang on assumptions not laid out explicitly. Before him, though, 

Aristotle worked to define deductive reasoning. 

At the top of an edifice of thought—he had first to write about words and their meanings, then 

phrases, sentences and their meanings—Aristotle exhibited a set of rules of inference. Those are 

declarations that certain sequences of sentences are (logically) valid arguments. That is, such syllogisms 

yield true conclusions (literally, their last sentences) in every instance where their premises (the other 

sentences) are true, irrespective of what facts (or nonsense) the sentences cover. 

The name disjunctive syllogism applies to the form 

 p or q  (Meaning: Sentence p is true, or sentence q is true, or both are true.) 

 not p  (Sentence p is false.) 

 Therefore q (It follows that sentence q is true.) 

We have made that kind of inference, as early as when we discussed Egyptian unit fractions (section 

II.A.2). There, we reasoned: 

 The biggest-fit method goes on forever, or it terminates. 

 The method cannot go on forever (within Exercise II.A.4:6). 

 Therefore it terminates. 

That termination can happen only when the original fraction has been broken into unit fractions. 

Our most productive syllogism has been universal instantiation: 

 Every (member of some set) is {possessed of some property}. 

 Whatever is (a member of the set). 

 Therefore whatever is {possessed of the property}. 

[In books, the universal (no pun) example of this syllogism is 

 Every man is mortal. 

 Socrates is a man. 

 Therefore Socrates is mortal.] 

We have reasoned that way, tacitly, time after time. The reason is that almost all our theorems are 

universal statements. Think of the uncounted times we said triangles were congruent by SAS. 

[Fifteen; I counted.] Our statement of the SAS axiom had “if-then” form: “Given …, the remaining 

… must be congruent.”). However, the axiom is the universal statement 

 Every (pair of triangles satisfying SAS) is {a congruent pair}. 
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If we establish that 

 Triangles ABC and PQR satisfy SAS, 

then, Aristotle tells us, it logically follows that 

 {triangles ABC and PQR form a congruent pair}. 

The syllogisms in Aristotle’s collection are almost all so elementary as to make you wonder why 

they need stating. Aristotle’s work did for them what Pasch’s axiom does: It made inference patterns 

explicitly axiomatic, patterns we would otherwise have to claim to be “self-evident.” 

2. Added Systems 

Newton’s laws constitute a set of axioms to make mechanics a deductive system. So do Maxwell’s 

equations for electricity and magnetism. We know now that Newton’s mechanics—the laws plus the 

resulting equations—makes incorrect predictions at molecular scale and in accelerating systems. That 

merely restricts the domain in which it is useful, not its validity. In the other sciences, Dmitri 

Mendeleev’s assumptions and conclusions about the elements (read about the periodic table) make up a 

wildly successful axiomatic system. 

Within mathematics, we saw the nineteenth century’s explosion in deductive systems. The works of 

Bolzano and Cauchy began the axiomatization of analysis. Group theory, flowing from the axioms of 

Galois, is now just one deductive system within abstract algebra. Riemann’s work on surfaces, and 

Klein’s elaboration of it in terms of groups. underlie one deductive system within topology. 

The most elementary of the systems is Peano’s arithmetic. Consequently we will focus our attention 

there. (Incidence geometry is elementary also, but it needs twenty axioms, as against Peano’s five.) 

3. The Limits of Deduction 

The ideal system would flow from a set of axioms that is minimal (you cannot spare any of them; 

they are independent), allows us to deduce all facts in its area (it is complete), and never leads to 

contradictions (it is consistent). Our next topic is the stunning discovery that no deductive system 

worthy of the name can be both complete and consistent: If it is consistent, then there are truths in it that 

you cannot reach by deduction. 

a) formal systems 

In section IX.C.1b, in the context of defining addition, we alluded briefly to Peano’s attempt to 

develop arithmetic as a formal system. Building a formal system is remarkably hard. You have to define 

a vocabulary, specifying which symbols or sequences of symbols can represent objects. Thus, you might 

allow “1” and “F(1)”, and exclude “)F1=$”. You need to define predicates, things you can say about 

the named objects. For example, “is not equal to 1” is something you could allow to be said of F(1). You 

must specify which sequences of symbols constitute sentences, so that say 

 “Every element has a follower.” 

is allowed (is well-formed) and 

 “+1 Every exceeds =” 

is excluded. Finally, you have to define what it means for one sentence to follow from others; in other 

words, you must establish rules of inference. 

You do not have to adopt Aristotle’s set of rules. (Historically, that set was viewed as the complete, 

authoritative description of deduction, as Euclid’s geometry was held to model the universe.) You could 

decline to include universal instantiation (hereafter “UI”). That would eliminate our way of particu-

larizing general statements; it would weaken, but not invalidate, your system. You could add rules, like 

reasoning from the converse. Thus, from the combination 

http://www.rsc.org/education/teachers/resources/periodictable/pre16/develop/mendeleev.htm
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 “If a quadrilateral has four congruent sides, then it has perpendicular diagonals.” 

 “Quadrilateral ABCD has perpendicular diagonals.” 

you would conclude 

 “Quadrilateral ABCD has four congruent sides.” 

The disadvantage there is that you would deduce contradictions, because the conclusion might be false. 

(Build an example of a quadrilateral with perpendicular diagonals but not congruent sides. Could the 

sides have four different lengths?) 

b) Gödel’s coding 

[For a mathematically precise, yet readable, 118-page presentation of the following, read Ernest 

Nagel and James R. Newman’s Gödel’s Proof. It is now available, like Boyer, at archive.org.] 

In 1931, the Czech-born mathematician Kurt Friedrich Gödel (1906-1974) published a method for 

completely representing a formal system with numbers. [There is no sound in English to match “ö”. 

About the best we can do is GUH-del.] He worked entirely with symbols, but for simplicity we will 

allow ourselves to use words and to modify his numbering scheme. 

Start with any way to number letters and symbols. For example, under the ASCII standard, all the 

symbols on an ordinary keyboard are numbered 32-126. (Earlier numbers are reserved for “control 

characters,” mostly instructions to a printing device. Thus, “Form Feed”, meaning go to the next sheet of 

paper, is numbered 12. Notice that, for example, “” is not on the ASCII list; for any such absent 

symbol, we substitute words.) Take a prime bigger than all the character numbers. Even “extended 

ASCII” stops at 255, so the prime 257 will serve. Starting there, list the primes: 

 #1. 257  #2. 263  #3. 269  #4. 271  …. 

We use them to represent elements of the formal system. 

Look at the word “Every”. Its letters are ASCII-numbered 69, 118, 101, 114, 121. We may represent 

it, in isolation, by the natural number 

 I  =  257
69 

263
118 

269
101 

271
114 

277
121

. 

This number cannot be misinterpreted as another word’s number, because prime-power factorization 

is unique if the primes are in increasing order.  Therefore we can recover the word from I. 

With such coding, we can turn statements about words into statements about numbers. For example, 

the statement that “Every” is a five-letter word allowed to begin a sentence (owing to the upper-case 

first letter) turns into 

 I is divisible by five primes, the smallest of them raised to a power from 65 to 90, 

  and the others raised to powers from 97 to 122. 

By extension, the same coding, and the same observations, apply to sentences. Thus, 

 Every element has a follower 

[Starting here, we dispense with the quotation marks and the ending period.] reads in ASCII as 

 69-118-101-114-121-32-101-108-101-109-101-110-116-32-104-97-115-32- 

  97-32-102-111-108-108-111-119-101-114. 

Those 32’s represent the spaces, which indicate that the sequence is a sentence and not some long 

word. We can use the first twenty-eight primes to represent the sentence by 

 J  =  257
69 

263
118 

… 409
119 

419
101 

421
114

. 

Then the statement that the sentence is a universal (starts with “Every”) becomes simply 

 J is divisible by I. 

https://archive.org/stream/gdelsproof00nage#page/n5/mode/2up
http://ascii.cl/
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We extend the coding further to sequences of sentences. View the sequence 

 Every element has a follower 

 1 is an element 

We first note that in any sequence, the sentences are separated by an invisible CarriageReturn, 

ASCII number 13. Therefore we represent the sequence by 

 K  =  J  431
13 

433
49 

439
32 

443
105 

449
115 

457
32 

461
97 

463
110 

467
32 
 

  479
101 

487
108 

491
101 

499
109 

503
101 

509
110 

521
116

. 

The statement that K represents a two-sentence sequence turns into the number statement 

 K has exactly one prime raised to power 13, and the prime-power products 

  on either side of the one prime are in the set of sentence numbers. 

Finally, we can turn the rules of inference into statements about numbers. 

We agree that 

 Every element has a follower 

 1 is an element 

 1 has a follower 

is a valid inference under the UI rule. Within the sequence, its three sentences have codes 

 J, M  =  433
49 

439
32 

… 521
116

, N  =  541
49 

… 631
114

  (figure out the rest of N). 

Hence the sequence has code 

 J  431
13 
 M  523

13 
 N. 

Turn the inference rule into a function  FolByUI. Then the number statement 

 N  =  FolByUI (J, M) 

codes the inference statement that sentence N follows by UI from J and M. 

c) the significance of the coding 

We see that Gödel’s coding enables us to turn statements about a formal system (metastatements) 

into statements about number relations. If the system is rich enough to encompass arithmetic—for 

example, if its set of axioms includes the Peano axioms—then those number-relation statements can be 

rendered as statements within the system. 

With that in mind, define proof as a sequence of sentences in which each one is an axiom in the 

system, or else follows from one or more preceding sentences by some rule of inference. We can check 

any sentence’s number to verify that either it conforms to the description of some axiom’s number or it 

is the value of some inference-function applied to previous sentence numbers. Therefore we can use 

numbers to state that a given sequence “proves” its last sentence. Thus, if 

 J  431
13 
 M  523

13 
 N 

belongs to the set of proof numbers, then the sequence it codes proves that 1 has a follower. 

(Contrast that with our notion of proof. For the base-angles theorem, we said that if AC and BC are 

congruent sides, then triangles ACB and BCA are congruent by SAS, making the base angles congruent. 

Under the definition here, we would have to write out the relevant preceding axioms—SAS was the 

eighteenth axiom—plus all the theorems that went into making definitions and establishing relations, 

plus every rule of inference applied along the way. A formal system is a laborious undertaking.) 

If the formal system encompasses arithmetic, then we can make that “sequence … proves …” 

statement within the system. Accordingly, the system has statements that say, in effect, 

 Statement number N has (is the last sentence of) a proof. 

It also has the denials of such statements, 

 Statement number n does not have (is never the last sentence in) a proof. 
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Gödel established that in any such system, there is one of that last type that makes its statement about its 

own number. In simpler words, this Gödel statement says of itself that it cannot be proved. 

There is no contradiction there, unlike with a statement that says of itself that it is false. The 

predicate “is provable” is amenable to numbering; it is equivalent to “appears at the end of a proof”. By 

contrast, “is false” cannot be expressed with numbers. 

Now consider that the Gödel statement is either true or false. You cannot prove it is true, because if 

you did then you would have a proof of it, making the statement false and the system inconsistent. You 

cannot prove it is false, because if you did then you would falsify that the statement cannot be proved, it 

would be provable, and again the system would be inconsistent. Therefore if the system is consistent, 

then you cannot prove the statement true and cannot prove it false; the statement is undecidable. It is a 

statement whose truth or falsehood cannot be established by deduction. In any worthwhile system, there 

will be truths that we cannot obtain by deductive reasoning. 

 Twentieth Century Developments Section X.B.

1. Solutions 

a) Hilbert’s second problem 

The result that a consistent system cannot be complete is usually called Gödel’s first incompleteness 

theorem. There is a related second theorem. Gödel’s 1931 paper also showed that you cannot prove 

within a system that the system is consistent, unless of course the system is inconsistent. 

[Remember the logical peculiarity that you can prove anything from inconsistent premises.] 

Recall the “Gödel statement” (GS) that says of itself that it is not provable. If it is false, then the 

system is inconsistent. By contraposition (one of Aristotle’s rules of inference), if the system is 

consistent, then the GS is not provable. Gödel showed that you can write the proof of the first 

theorem—proof that the GS exists—within the system. If you could also write within the system a 

proof that the system is consistent, then you would have proved within the system that the GS is 

unprovable. But there is no proof that the GS is unprovable. 

In fewer words, you cannot prove that arithmetic is a consistent deductive system within arithmetic 

itself. In that limited sense, the second theorem settled Hilbert’s second problem (section IX.D.4). 

b) Hilbert’s first problem 

Gödel emigrated to the United States in 1940 and spent the remainder of his life at the Institute for 

Advanced Study. He continued his work in mathematical logic, and inspired others along the way. 

In that same year, he proved a remarkable statement about the continuum hypothesis: You cannot 

prove that it is false. That is, suppose you add it to the set theory of Zermelo and Fraenkel (section 

IX.C.2, later extended with the Axiom of Choice, at which we barely hinted in IX.C.2b(ii)). Then you 

cannot arrive at a contradiction, unless the set theory was already inconsistent without the hypothesis. 

(Remember Klein’s “relative consistency” between Euclidean and non-Euclidean geometry, from 

section IX.D.1c(iii).) 

In 1963, the American Paul Cohen (1934-2007) proved that you cannot prove the continuum 

hypothesis is true. Thus, if you add the denial of the hypothesis to the axioms of set theory, the resulting 

system is consistent, unless set theory had a contradiction in the first place. (For his work in mathemati-

cal logic, Cohen received a 1966 Fields medal, together with Gödel’s admiration; see St Andrews.) 

http://www-history.mcs.st-andrews.ac.uk/Biographies/Cohen.html
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c) joint efforts 

Over the twentieth century, the process of discovery by individual researchers morphed into 

collaboration. With the evolution—by now, revolution—in transportation and communication, joint 

work on a worldwide basis is common. 

(i) Fermat’s last theorem 

An example is the hunt that eventually chased down Fermat’s conjecture. In section VIII.C.1d, we 

mentioned the work of Sophie Germain (French) around 1819. We could have added the indispensable 

work of Ernst Kummer (German; see St Andrews) in the 1840’s. The last half of the twentieth century 

made the effort truly international: There was the breakthrough of Yutaka Taniyama (Japanese) and 

others around 1955; the connections Gerhard Frey (German) and Kenneth Ribet (US; both at 

Wikipedia®) made to the last theorem; and finally Andrew Wiles (English) and the solution in and past 

1995. 

That hunt inspired much mathematical activity, both back in Kummer’s algebraic number theory and 

in the study of “elliptic curves” that Taniyama connected to “modular forms.” In view of such spun-off 

research, it seems odd that Hilbert did not consider the Last Theorem worthy to include in his list of 

important problems. 

(ii) classification of finite simple groups 

A less-known example is the characterization of simple groups, the ones that are building blocks for 

all groups. 

[As we did before, we use “group” to mean finite group. Likewise, we don’t do trivial: “Subgroup” 

means nontrivial subgroup. Skip this part if you are not familiar with the long section IX.A.2b.] 

With one type of exception, every group has subgroups. The exceptions are the groups of prime 

order (number of elements; see Exercise IX.A.2a(iii):4). Any subgroup H partitions its group G into 

cosets. If H is normal, then there is a natural way to operate on the cosets, forming them into a “quotient 

group.” If normal subgroup H is maximal—you cannot find a normal subgroup strictly between H 

and G—then you cannot find any normal subgroup in the quotient group; the quotient group is simple. 

There is a rough analogy with prime factorization. Finding a maximal normal subgroup of a group is 

like finding a maximal factor of a natural number. The last “maximal” does not mean “biggest.” A 

factor n of number N is maximal if you cannot squeeze another factor (strictly) between n and N. 

Thus, 28 is not the biggest factor of 140, but it is maximal. No number between 28 and 140 is both a 

multiple of 28 and a factor of 140. (Check the multiples of 28.)  

The only way n can be a maximal factor of N is if N/n is prime. (Argue why.) Analogously, H is a 

maximal normal subgroup of G iff the quotient group (appropriately denoted by G/H) is simple. 

While H and G/H do not characterize G, they are smaller groups that give information about G. 

If you write a chain of maximal normal subgroups to produce a composition series 

 G, H1,  H2,  …, Hk, {I }, 

you are building something like a maximal-factor ladder, 

 140, 28, 4, 2, 1, 

which produces the prime factorization 

 (140/28)(28/4)(4/2)(2/1)  =  5 (7) 2 (2). 

This quotient-group idea says that any group is built up through a kind of multiplication of factors 

that cannot themselves be factored. Accordingly, a characterization of all possible simple groups would 

help explain the structure of all groups. 

http://www-history.mcs.st-and.ac.uk/Biographies/Kummer.html
http://en.wikipedia.org/wiki/Gerhard_Frey
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That characterization took slightly more than the twentieth century. In a prize-winning article for the 

Bulletin of the American Mathematical Society, Ronald Solomon gives a brilliant account of the search, 

from the 1892 suggestion by Ludwig Otto Hölder (much better known in analysis), through the 

premature victory celebration of around 1980, to the near-completion status in 2001. (The final 

announcement of completion came in 2004.) The article has 36 pages of text, followed by more than 130 

references. It estimates that the entire proof covers some 15,000 pages. One highlight—a watershed, 

really—of the research is the 1963 theorem of Walter Feit and John Thompson that nonabelian simple 

groups have to be of even order. (Feit, born in Austria, went to the University of Chicago and worked at 

Yale. Thompson, born in Kansas, went to Yale and worked at Chicago. Almost forty years apart, he 

received both a Fields Medal and an Abel Prize.) The actual statement of the theorem is this: 

 All finite groups of odd order are solvable. 

The proof  of that eight-word statement (projecteuclid.org) occupies more than 250 pages, an entire 

volume of the prestigious Pacific Journal of Mathematics. 

2. Surviving Puzzles 

Hilbert’s “wonderful remark” (section IX.D.4) was that if he returned in a thousand years, he would 

first ask whether the Riemann hypothesis had been solved. He judged its difficulty well; it remains 

unbroken. See Wolfram about the international work on it. 

The hypothesis is at advanced level on the border between analysis and number theory. There are 

remarkably elementary unsolved puzzles in number theory. Recall Fermat’s primes of the form 2
2

n

 + 1 

(section VII.A.4f(iii)) and Euclid’s primes 2
n
 – 1 (n prime, from perfect numbers, section III.B.4d). We 

still do not know how to characterize them, or even whether there are infinitely many of either kind. The 

same goes for twin primes. Those are consecutive odd numbers that are prime, like 17 and 19, or 41 

and 43. (How many triplets, three consecutive odd numbers that are prime, are there?) 

The most elementary of them all is the Goldbach conjecture. Christian Goldbach (1690-1764) 

wrote in 1742 to his friend Euler after noticing a pattern. Given a reasonable even number, Goldbach 

could always find two primes adding up to it. Thus, 

 50 = 3 + 47 

is easy. More interesting is 

 98 = 3 + 95,  with 95 divisible by 5; 

  = 5 + 93,  by 3; 

  = 7 + 91,  by 7; 

  = 11 + 87, by 3; 

  = 13 + 85, by 5; 

  = 17 + 81, by 3; 

  = 19 + 79, both prime. 

Goldbach wondered whether every even number is such a sum. The truth is still unknown. See work on 

it at Wolfram. 

3. The Unexpected Application 

The accelerating advances in communications, from wireless telephones to the partly-wired internet, 

have put a premium on secure signals. The signals are [relatively] easy to intercept. Their senders want 

them to be incomprehensible to all but the intended recipients. The most popular cipher (method for 

encrypting messages) is based on [relatively] elementary number theory. 

http://www.ams.org/journals/bull/2001-38-03/S0273-0979-01-00909-0/S0273-0979-01-00909-0.pdf
http://www-history.mcs.st-andrews.ac.uk/Biographies/Holder.html
http://projecteuclid.org/euclid.pjm/1103053943
http://mathworld.wolfram.com/RiemannHypothesis.html
http://mathworld.wolfram.com/GoldbachConjecture.html
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a) ciphers 

The most elementary ciphers simply substitute for each letter (of the appropriate alphabet) a different 

letter or symbol. The easiest such ciphers merely shift the alphabet. If you assign 

 A  C, B  D, …, X  Z, Y  A, Z  B, 

then 

 Every element has a follower 

becomes 

 Gxgta gngogpv jcu c hqnnqygt. 

If that seems lame, you can make the encryption harder to solve. First, make all the letters uppercase 

and lose the spaces. The message 

 GXGTAGNGOGPVJCUCHQNNQYGT 

has fewer hints about the structure of the sentence. (If you do that, you have to avoid writing 

 SPEAKINAUDIBLETONES 

or else count on the recipient to know whether there should be a space after “IN”.) Second, use a permu-

tation of the alphabet, not a simple shift. Either of those has the disadvantage that every occurrence of a 

given letter is represented by the same letter or symbol. (The encryption yields to “frequency analysis.”) 

Third and more effective, you can make a reasonably secure cipher by using one shift to encrypt the first 

letter, a second shift for the second letter, and so on. The shifts could be decided by a sequence of letters 

in something commonly available [like the first seventeen lines of Guzman’s section X.B.3a] or—even 

better—by a random sequence of integers from 1 to 26 that you and your recipient both possess. 

Clearly the last paragraph describes embellishments, improvements to security. At bottom, any 

cipher is a transformation F with two properties: It turns MESSAGES into 

 NONSENSE = F(MESSAGES); 

and it is invertible. You can supply both F and F
-1

 to your recipients, but just one will do. Knowing 

either of them allows anyone with enough cleverness, knowledge, or tools to deduce the other. For that 

reason, you want to keep F and F
-1

 out of the hands of the enemy. 

b)  the RSA algorithm 

Internet signals, just as those carried by radio waves, are accessible to anybody with the proper 

receiver. To enable us to blow money from the comfort of home, those signals need protection; they 

have to be encrypted. Given the huge number of potential customers, public-key systems are desirable. 

Those are encryption transformations that can be exposed to everybody, because the problem of finding 

their inverses—never impossible—is intractable. 

The best known public-key system uses an algorithm developed at MIT in 1977 by Ron Rivest, Adi 

Shamir, and Leonard Adleman. It takes advantage of properties of Euler’s totient function . 

All the following facts are from section VIII.C.1d. 

By definition, (m) is the number of naturals below m that are relatively prime to m. The function is 

multiplicative: 

 If m and n are relatively prime, then (mn) = (m)(n). 

If p is prime, then all of 1, 2, …, p – 1 are relatively prime to p. Therefore (p) = p – 1. If p and q are 

unequal primes, then 

 (pq)  =  (p)(q)  =  (p – 1)(q – 1). 

Finally, by Euler’s generalization of Fermat’s Little Theorem, if k is relatively prime to m, then 

 k
(m)

    1 mod m. 



 Chapter X. Epilogue 
Section X.B. Twentieth Century Developments  3. The Unexpected Application 

364 

(i) the elements 

For illustration, let us stick to the uppercase letters A-Z. In 

 EVERYELEMENTHASAFOLLOWER 

the ASCII numbers are 

 69, 86, 69, 82, 89, 69, …. 

We will encrypt that sequence by “triples,” three digits at a time. Such grouping, 

 698, 669, 828, 969, …, 

at least avoids representing every “E” by the same 69. If needed, we would append 0 or 00 to the end. 

Start with two primes having more digits than the triples, say p = 1123 and q = 4567. Choose next a 

number K smaller than p and q and relatively prime to 

 L = (pq) = 1122(4566) = 5 123 052. 

A good choice is K = 13. (Is there a quick way to check that 13 is relatively prime to L?)  That K is the 

encryption key. We announce it to the world, together with pq. We evaluate the inverse of K modulo L. 

(Why must that inverse exist?) That inverse is the decryption key; we guard it zealously.  

[I didn’t pick 13 at random. I chose it because it divides L + 1: 

 13  394 081 = 5 123 053 = L +1 

       1 mod L. 

That congruence says that 

 K
-1

  =  394 081 mod L. 

Finding a divisor for L + 1 is straightforward. You can simply divide it by 2, 3, …, p – 1. I suspect a 

spreadsheet will do those 1121 divisions in less than 

 10  1121 microseconds    1/90 sec. 

This computer-time issue will become important in a while.] 

A divisor of L + 1 is unnecessary. It is easy to program the Euclidean algorithm into a spreadsheet to 

check that a candidate is relatively prime to L. Then it is (less) easy to unwind the algorithm to write 

the GCD as an integer combination.  For K =13, just two rows are needed: 

   . 

For a less trivial chosen number, it is just a matter of filling down. Thus, K1 = 175 produces 

   . 

Accordingly, K1
-1

  =  351 295 modulo L. 

(ii) encryption and decryption 

Encryption and decryption both work modulo pq. 

To encrypt the sequence of triples, the guy writing to us raises each to the power K. He will send 

 698
13

, 669
13

, 828
13

, 969
13

, …. 

He does not compute any of those directly. 

Our correspondent wants those modulo pq. To do the (absolutely) necessary operations, he 

remembers Egyptian multiplication (section II.A.2). 

5123052 = 394080 * 13 + 12

13 = 1 * 12 + 1

1 = 1 * 13 + -1 * 12

1 = -1 * 5123052 + 394081 * 13

5123052 = 29274 * 175 + 102

175 = 1 * 102 + 73

102 = 1 * 73 + 29

73 = 2 * 29 + 15

29 = 1 * 15 + 14

15 = 1 * 14 + 1

1 = 1 * 15 + -1 * 14

1 = -1 * 29 + 2 * 15

1 = 2 * 73 + -5 * 29

1 = -5 * 102 + 7 * 73

1 = 7 * 175 + -12 * 102

1 = -12 * 5123052 + 351295 * 175
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In the table at right, the third column lists, modulo pq, the 

powers 

 698
1
,   698

2
  =  (698

1
)
2
,   698

4
  =  (698

2
)
2
,   …. 

Notice that each entry after the first requires one squaring and 

one integer division (to get the remainder mod pq). Each entry 

is 698 to the power in the second column. The first column 

(bottom to top) converts 13 to binary: 

 13  =  1101binary  =  8 + 4 + 1. 

The fourth column accumulates a running product of those powers of 698 for which there is a 1 in 

the first column. Thus, 

 698
13

 =   698
1 

698
4 
698

8   
=   698      4 475 395      1 011 027    =   3 350 132 mod pq. 

Similarly, this second table gives 

 669
13

   =   4 899 653. 

Our writer sends the sequence 

 3 350 132, 4 899 653, …. 

To decrypt the message, we raise each of those numbers to the 

power K
-1

. 

For such a big power, we have to turn the table on its side and 

miniaturize it. Take a look (magnify as necessary): 

From the top row, we have 

 K
-1

   =   394 081   =   262 144 + 131 072 + 512 + 256 + 64 + 32 + 1. 

At the bottom right, we see the result 

 (3 350 132)
1 + 32 + 64+ 256 + 512 + 131 072 + 262 144

      698  mod pq. 

We recover the original triples. 

To see why the decryption works, consider that our friend transformed each n by raising it to the 

power K, then we raised n
K
 to the power M = K

-1
, both modulo L. The relation 

 KM  1    mod L 

means that 

 KM = jL + 1 = j (pq) + 1 for some j. 

By Euler’s generalization, 

 (n
K 

)
M

 = (n
(pq)

)
 j 

n
1
  (1)

 j 
n mod pq. 

Raising to the K
-1

 undoes the encryption. 

(iii) the barrier 

The basis for the public-key use of the RSA algorithm is that multiplication is easy and its inverse, 

factoring, is hard. 

Encryption uses K and pq, both of which we reveal to everybody. Decryption requires (pq). We 

know that number, and we easily find K
-1

. The rest of the world has to figure out 

 (pq) = (p – 1)(q – 1) 

from pq. The world needs to factor pq. 

binary power power of running

13 of 2 698 product

1 1 698 698

0 2 487204 698

1 4 4475395 422441

1 8 1011027 3350132

binary power power of running

13 of 2 669 product

1 1 669 669

0 2 447561 669

1 4 2740225 2249988

1 8 2343496 4899653

binary 394081 1 0 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0 1 1

power of 2 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144

power of 3350132 3350132 1496153 4017513 1212378 4274212 5054484 705474 538036 1209033 2936456 1102571 2459552 5001276 4603478 597074 3703307 3637645 1641565 2810487

running product 3350132 3350132 3350132 3350132 3350132 3959022 2956353 2956353 1030188 1043475 1043475 1043475 1043475 1043475 1043475 1043475 1043475 4346749 698
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To see how you get (n) from the factorization of n, work with 

 (144)  =  (2
4
 3

2
)  =  (2

4
) (3

2
). 

Of the 2
4
 naturals from 1 to 2

4
, 2

3
 are multiples of 2. The remaining 

 2
4
 – 2

3
  =  2

3
 (2 – 1) 

naturals are not divisible by 2, are therefore relatively prime to 2. Hence 

 (2
4
)  =  2

3 
(2 – 1). 

Similarly, of the integers from 1 to 3
2
, 3

1
 are multiples of 3. It follows that 

 (3
2
)  =  3

1 
(3 – 1). 

Always, if the prime-power factorization of n is P
a
Q

b
R

c
…, then (as Euler knew) 

 (n)  =  P
a – 1

 (P – 1) Q
b – 1

 (Q – 1) R
c – 1

 (R – 1) …. 

To contrast multiplication and factoring, time yourself on this problem: 

 Find the product of the two primes 4567 and 6781. 

You may use paper, a calculator, or a computer. [If you can do it in your head, go for it.] Then time 

yourself on this one: 

 Find the (two primes) whose product is 39 180 329. 

Imagine trying to factor that product with a spreadsheet in our “straightforward” (or is it brute 

force?) way—that is, dividing by 2, 3, …. Undoubtedly, a spreadsheet that allows 10000 rows would do 

the (39 180 329)  6000 (potentially) needed divisions in less than ten times that many microseconds, 

roughly 0.06 sec. It would take seconds—the seconds you would spend to set up the calculations—to 

break our code if we based the encryption and decryption on that product. 

Now imagine if we used the product of two primes of four hundred digits each. Even if you upgrade 

your spreadsheet to one that can do each division in 10
-15

 sec, it would labor for something like 

 10
400

  10
-15

 sec    3.2  10
377

 years 

to do the full set of divisions. (The universe is believed to be about 15  10
9
 years old.) 

You can do better than divide by all the integers. You could choose to divide just by some primes. 

Recall the job of factoring 39 180 329, knowing that it has four-digit prime factors. Below 1000,  

there are (prime-number theorem) about 

 (1000)    1000/loge 1000    145 

primes. (The actual number is 168.) Below 10000, there are about 

 (10000)    10000/loge 10000    1086, 

around 7.5 times as many. That means there are about 6.5  145    940 four-digit primes (actual 

count: 1061). Assuming your computer can tell primes, you can reduce the 6000 divisions to about 

one-sixth that many. 

Counting similarly at the 400-digit level, we find 

 (10
400

)    10
400

/loge 10
400 

   = 10
400

/(400 loge 10)
 
    1.1  10

397
, 

 (10
399

)    10
399

/(399 loge 10)
 
    1.1  10

396
. 

Those imply that there are around 9.9  10
396

 primes of four hundred digits. (That means we have 

plenty to choose from in making our key.) You, trying to break the code, can cut your computer time 

to just 2  10
364

 times the age of the universe. 
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These are fanciful numbers. [I have seen estimates that 800-digit products can resist current (2015) 

factoring techniques for billions of years.] The crucial thing is that the RSA algorithm is a coding 

method with this property: Its encryption keys may be freely disseminated, without fear of interception, 

because the time needed to deduce from them the decryption keys would render encrypted information 

ludicrously obsolete. 

4. Computers 

Having let the genie out of the bottle, we will not elaborate on all the changes in everyday life that 

advances in computers and sensors have wrought. We will merely cast brief glances in two directions. 

One is the origin and nature of modern computers. The other is a specifically mathematical question 

they were employed to answer. 

Devices to speed calculation are millennia old. Devices that calculate values, then implement 

decisions based on those values, go back less than two centuries. Read about the “engines” of Charles 

Babbage (Wikipedia®), which did arithmetic on numbers and followed instructions corresponding to the 

results. That is basically how the devices we now call “computers” work. 

[“Computer” used to refer to a human tasked with making calculations. Businesses and governments 

employed many such computers. Read at Smithsonian Magazine about the computers—all of them 

women—hired to process photographic data at Harvard Observatory, and how they ended up creating 

the system of star classification astronomers still use today.] 

a) the nature of computing 

The theoretical work behind modern computers originated with Alan Turing (English, 1913-1954; 

back to Wikipedia®. Turing is justly famous for a practical application of his ideas: breaking the 

German naval code in the opening phases of World War II. [Why was the naval code so important to 

Britain?]) His early work, in the 1930’s, is grounded in the work of Gödel. Turing’s 1937 paper On 

Computable Numbers … expanded on Gödel’s discoveries about algorithmic processes. 

Turing gave the fundamental mathematical description of computing. He conceived the imaginary 

device now called a Turing machine. It is equipped with an infinite tape or ribbon, marked off into 

boxes. At appropriate instructions, the machine can wind the tape to a specified box, then based on what 

it finds there, move to another (or the same) box and change or keep what it finds at the latter. [If you’re 

wondering about the infinity of boxes, versus say “4GB of RAM,” just think of an actual computer that 

allows as much additional RAM—plus instructions for its use—as the job at hand calls for.] 

b) computable jobs 

To illustrate how a Turing machine would do a task, look at addition of two natural numbers in 

binary notation. (Babbage’s engines used decimal representation. The reason for binary representation is 

entirely practical. It is easier to distinguish between two possible states of a component—a switch that is 

ON or OFF, a magnetization that is NORTH or SOUTH, a charge that is POS or NEG—than to 

discriminate among ten possible states.)  Consider this “program”: 

  

http://en.wikipedia.org/wiki/Charles_Babbage
http://www.smithsonianmag.com/history/the-women-who-mapped-the-universe-and-still-couldnt-get-any-respect-9287444/?no-ist
http://en.wikipedia.org/wiki/Alan_Turing
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Accept the two numbers and write them in boxes marked TERM1 and TERM2 

Set PLACE = 1 [Our machine has internal instructions to read numbers from right to left.]  

Set CARRY = 0 and SUM = (empty) 

Look at the digits of TERM1 and TERM2 at binary place number PLACE 

If they are both 0, replace what is now at SUM by the juxtaposition 0(SUM) and 

 CARRY by the juxtaposition 0(CARRY) 

 [Our machine’s internal instructions direct it to do the second clause if the “If” part is true, 

 to abandon this line and proceed to the next one if the “If” part is false.] 

If they are both 1, replace SUM by 0(SUM) and CARRY by 1(CARRY) 

If they are one 0 and one 1, replace SUM by 1(SUM) and CARRY by 0(CARRY) 

If one is missing and the other is there, replace SUM by (other)(SUM) and CARRY by 0(CARRY) 

If both digits are missing and CARRY  0, replace TERM1 by SUM, 

 replace TERM2 by CARRY, and resume operating at the second line 

 [“CARRY  0” means that the numerical value of CARRY is positive.] 

If both digits are missing and CARRY = 0, report the numerical value of SUM and stop operating 

 [When the machine stops processing, it tells us so; let’s say it turns off the “Processing” light.]  

Replace PLACE by the sum 1 + PLACE, and resume operating at the fourth line 

Turn yourself into a machine and carry out those instructions on TERM1 = 12 = 1100binary and 

TERM2 = 5 = 101binary. The algorithm ends with the report that 12 + 5 = 010001binary, an exact 

calculation in no more than fifteen minutes. (Why is it certain that the algorithm will end?) 

[You should need about 18 written lines, doing three evaluations per line, to carry out the 12 + 5 

addition. Imagine that a real computer would actually have to read 1000 instructions to do each of the 

needed steps. For example, the input (“Accept”) of the original numbers could have all those “reads” 

hidden. Then the computer would be carrying out something like 54,000 instructions. If it can execute 

one instruction in 10
-9

 sec, then it would do the addition in a more reasonable 54 microseconds.] 

More important than arithmetic is something Gödel knew, namely that what can execute algorithms 

can verify proofs in a formal system. Recall the definition of “proof” (section X.A.3c) as a sequence of 

sentences, each sentence an axiom or a consequence of earlier sentences under the rules of inference. A 

machine can run an appropriate algorithm to calculate a specified coding’s Gödel number for any 

sentence sequence. It can check that the sentence numbers meet the rules for numbers of legal (“well-

formed”) sentences. It can check whether each sentence number is either an axiom number or the value 

of one of the inference-making functions applied to earlier sentence numbers. By such an algorithmic 

process, the machine can determine whether the sequence is a proof. 

You might wonder if the machine could be asked to concoct proofs. Turing and others did much 

work on that question later. All we can give here is the usual view that producing proofs requires 

ingenuity, which by definition is not specifiable by algorithm. 

c) the limits of computing 

Turing’s idea was that his machine can carry out any task describable by an algorithm (hereafter 

“program”). We naturally ask what jobs are out of reach of programs, and therefore beyond computers. 

One such job is identifying the members of a set of natural numbers. 

(Notice the similarity between “jobs … out of reach of programs” and “truths … we cannot obtain 

by [deduction].” The connection to Gödel is clear.) 
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(i) computable sets 

View the program below. 

Accept the (natural) number and write it at the box labeled NUMBER 

If NUMBER = 5, respond “Yes” and stop processing 

If NUMBER < 5, respond “No” and stop processing 

If NUMBER > 5, replace NUMBER by the difference NUMBER – 5 and resume processing 

 at the second line 

Implement the program starting with say 18, then with 25. See if you agree that the program will 

characterize the set of multiples of 5. It will eventually say “Yes” if you feed it a multiple of 5, and will 

eventually say “No” if you feed it a non-multiple. We call a set that some program can characterize 

computable (or recursive). We see that the multiples of 5 constitute a computable set. Our earlier 

remarks about proof verification show that the proof numbers in a formal system do likewise. 

(ii) the other sets 

Intuitively, it might appear that every set is computable. As we always observe, it would be 

ridiculous to give a name to a property if all candidates possessed it. We exhibit an uncomputable set. 

In preparation, look at a more general property. Imagine replacing, in our 5-multiple program, the 

blue line with the line 

 If NUMBER < 5, resume processing at the second line. 

The program now identifies the multiples of 5. That is, if you feed it a multiple of 5, then it eventually 

answers “Yes”. If you feed it a non-multiple, then it sits silent forever. Alternating between the blue and 

red lines, it never even turns off the light. A set that some program can identify (hereafter “enumerate”) 

this way is recursively enumerable (hereafter enumerable, which is not as ugly as semicomputable.) 

The 5-multiple example indicates that if a set is computable, then both it and its complement are 

enumerable. We saw that given the 5-multiple program, modifying the blue line leaves a program that 

enumerates the multiples of 5. If instead we make the red line  

 If NUMBER = 5, replace NUMBER by the sum NUMBER + 5 

and change the blue response to “Yes”, then we produce a program that enumerates non-multiples and 

says nothing about multiples. 

The converse is also true: If a set and its complement are enumerable, then the set is computable. 

Suppose set S and complement S* are both enumerable. That means some program P enumerates S and 

some program Q enumerates S*. Write a program R that instructs as follows. [Forget now about 

imitating programming languages. Henceforth we write informal instruction sets that the guy in the box 

can understand. (One of Turing’s interesting questions was whether it is possible to tell whether the box 

is full of electronics or is hiding a human.)] 

Execute the first line of program P, then the first line of program Q. If any line says “… do line 

number n”, make line n the next line to be done in that program, but don’t perform line n imme-

diately. If it says “… stop processing”, abandon that program but continue the other one. 

Execute the next line (if any) of program P, likewise Q. 

Keep going until one of the programs directs the response “Yes”. 

At that point, iff the responder was P, respond “Yes”. If the responder was Q, respond “No”. 

Whatever number you feed R, either it belongs to S and P eventually speaks up, at which time R 

responds “Yes”; or it belongs to S* and Q eventually speaks, at which time R responds “No”; and not 

both. Thus, R characterizes S, and S is computable. 
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To find an uncomputable set, we now need an enumerable set whose complement is not. Start by 

numbering the programs. 

Let us agree that a “program” can be any finite string of symbols, say from numbers 13 and 32-126 

on the ASCII chart. Those include Space to separate words, CarriageReturn to separate lines, and 

Period for decimal points. Agree further that if the computer is unable to continue—say it reaches 

either the end of the program, or a decision you did not tell it how to handle, or a line it cannot 

understand, or an order to respond “Yes”—then it stops the processing and says so. (It turns off the 

“Processing” light.) Thus, we allow the three one-line programs 

 Space,  $,  and  Stop processing. 

Those never produce a response, and therefore enumerate the empty set. The three-line program 

 Accept the NUMBER 

 Respond “Yes” 

 Name the fifty US states 

enumerates the full set of naturals; but if you reverse the order of the lines, the computer 

immediately reaches an incomprehensible line, turns off the light, and does nothing else. 

We have 96 symbols. Renumber them 0 through 95. Then the finite string—the program—

 (symbol number m1)(symbol number m2)…(symbol number mn) 

corresponds to a numeral 

 (number m1)(number m2)…(number mn) 

in base 96. That gives us a numbering of the programs. 

For each natural n, let Pn denote program number n in the list and Sn the set that Pn enumerates. We 

recognize that P1 never triggers a response, so that S1 = empty set, and 1 is not in set S1. Let 

 Accept the NUMBER 

 Respond “Yes” 

be program Pk. (Observe that Pk has 32 characters, including the CarriageReturn at the end of each 

line. That means k exceeds 96 + 96
2
 +… + 96

31
.) Then Sk = N, wherefore k is in Sk. In other words, some 

naturals belong to the set they number, some do not. Let S be the set of those that belong: Thus, 

 S = {n: n  Sn}. 

That set is enumerable and not computable. 

To enumerate S, run this program: 

Accept a list of symbols to be stored at SYMBOL0 through SYMBOL95 

Accept a natural NUMBER m and represent it in base 96 

Decode the base-96 numeral into the corresponding sequence of symbols 

Read the sequence as a program and execute it, using m as the (first) input number if the 

 program asks for one. 

Feed the computer the list of symbols and a number m. The machine will write out Pm and execute it. 

If m  S, then by definition m  Sm. The machine, running Pm, will eventually say “Yes” and stop. If 

instead m  S, meaning m  Sm, then Pm will never direct the machine to say “Yes.” The program 

enumerates S, and S is enumerable. 

http://ascii.cl/
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To show that S is not computable, it remains to show that S* is not enumerable. Imagine that S* 

were enumerable. Then some program PK would enumerate it. What would happen if you ran PK and 

input K? You would find 

 K  S*  iff PK responds “Yes” 

   iff K  SK 

   iff K  S. 

That contradiction means no PK enumerates S*; S* is not enumerable. Not every set is computable. 

The influence of Cantor’s diagonal argument is unmistakable. It was also there in the incompleteness 

theorem: Gödel adapted it to show that among the sentences 

 (Statement number n never appears at the end of a proof), 

there is one that refers to its own number n. 

d) proof by computer 

We have said that computers can check the validity of proofs in formal systems, and we suggested 

that they cannot engage in deductive thinking. In 1976 came an announcement of computers’ taking a 

proof-making role in establishing a mathematical result, the four-color theorem. 

(i) the problem 

The picture at right is based on a 

map by the Cartographic Research Lab 

at University of Alabama. In that 

corner of the US, look at six regions: 

Florida, and the unshaded parts of 

Georgia , Alabama, Mississippi, 

Louisiana, and Texas. The map shows 

them in five different colors. There is a 

theorem (Wikipedia®) that five colors 

will always suffice to paint a map so 

that adjacent regions are colored 

differently, no matter how weirdly 

shaped the regions are (provided each 

region is contiguous. Those states are 

actually noncontiguous. The map ignores offshore islands.) In fact, though, those six regions need only 

three colors. If you make Mississippi and Texas the same orange as Georgia, and Louisiana the same 

blue as Alabama, then you still have different colors for regions that share a border. 

[“Adjacent” and “share a border” refer to regions whose boundaries have in 

common a curve of positive length. From the same map, the picture at left shows the 

place—the “Four Corners”—where Utah, Colorado, New Mexico, and Arizona 

adjoin. Utah shares a length of border with Colorado and a length with Arizona, but 

only that lone point with New Mexico. The four states are painted in four colors, but 

you could distinguish them with two. However Oklahoma (blue on and beyond the 

right edge) borders both Colorado and New Mexico; it needs to be a third color.] 

On the other hand, return to the southeast corner. Alabama, Georgia, Florida, and the water (Atlantic 

Ocean on the right and Gulf of Mexico at bottom  as one) all share a border with each of the other three. 

Accordingly, with those four regions you need four colors to distinguish regions that share a border. 

http://alabamamaps.ua.edu/contemporarymaps/usa/basemaps/usa.jpg
http://en.wikipedia.org/wiki/Five_color_theorem
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In 1852, Francis Guthrie (botanist and later math professor; see St Andrews) informed the famous 

mathematician Augustus DeMorgan about a pattern. Working on a map of the English counties, Guthrie 

noted that four colors were enough to color any arrangement of regions he could invent. He wondered 

whether four colors were always enough. Within twenty years, lacking proof or disproof, the math world 

elevated Guthrie’s question to the four-color conjecture: For any planar map of contiguous 

subdivisions, four colors suffice to paint it so that any regions that share a border are rendered in 

different colors. 

(ii) the approach 

Some Eulerian thinking turned the question into one about graphs. You can encapsulate the border 

relations via a graph with one vertex for each region and one edge connecting any pair of vertices that 

represent adjacent regions. Then the conjecture becomes the question whether it is possible to paint the 

vertices so that no two sharing an edge have the same color. 

Over the course of a century, some simplifications were achieved. By 1976, Kenneth Appel and 

Wolfgang Haken had turned the question into a sort of infinite descent. They found that any graph not 

colorable by four colors had to contain at least one “configuration” from a specific set of almost 2000. 

(Think of four regions each bordering the other three, like Alabama-Georgia-Florida-sea, as a configu-

ration, even though it is not among the 2000.) They later reduced the number to a mere almost 1500. 

They suspected these configurations made an uncolorable graph reducible to another uncolorable graph 

with fewer vertices. From that it would follow that if an uncolorable graph existed, then you could find 

an infinite sequence of smaller others. That would be impossible. The contradiction would show that no 

uncolorable map exists. All that was needed was to check that each of the 1500 configurations does 

imply reducibility. 

The checking is algorithmic. Appel and Haken devised programs to do it. More than a thousand 

computer hours later, they announced their proof of the four-color theorem. 

A big controversy arose about the claim. With traditional mathematical proof—even with such a 

phenomenally long project as the classification of simple groups (section X.B.1c(ii))—verification is a 

matter of checking for validity of inference. Such checking found reparable holes in the classification 

(1980) and in Andrew Wiles’s original argument for Fermat (1995), and irreparable holes in an earlier 

argument for the four-color theorem (see Percy Heawood in the St Andrews article). For the Appel-

Haken proof, verification involved checking for validity of programming. We saw that the European 

Space Agency had to incinerate a rocket (section III.B.1b) owing to an undetected programming error. 

NASA had a similar oversight (cnn.com). Even outfits with better-paid programmers, like Microsoft and 

Google, must issue the occasional corrective update. [One of my favorite principles is stated about 

programming, but applies to many endeavors. It is sometimes called “Murphy’s Recursive Law”: 

Debugging a program always takes twice as long as you expect, even after you apply this principle. 

There are two sources you can read regarding the impossibility of error-free complex algorithms. In 

fiction, there is the mathematician Ian Malcolm in Michael Crichton’s (book, not movie) Jurassic Park. 

In reality, there is Douglas Hofstadter’s titanic masterpiece Gödel, Escher, Bach (yes, that Gödel) and 

the “epiphenomena” that complexity writes into your programs without your knowledge or consent.] 

(iii) computerized ingenuity 

By now, considerable simplification of the checking algorithms has created confidence that the 

computer processing really did the checking it was intended to do. But there are programs called 

“theorem-proving software.” It is natural to wonder, as “artificial intelligence” advances, to what extent 

the capacity to innovate in a deductive system can be built into computers. 

http://www-history.mcs.st-and.ac.uk/HistTopics/The_four_colour_theorem.html
http://www-history.mcs.st-and.ac.uk/HistTopics/The_four_colour_theorem.html
http://www.cnn.com/TECH/space/9909/30/mars.metric/
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In the end, we should come back to Turing. He addressed the difference between human and 

machine processing in functional terms. In the Turing test (turing.org), you [a human, I presume] get to 

converse for a half hour with two agents, a human and a computer, both invisible to you. If at that point 

you cannot tell which is which, then you must accept that the computer was thinking. [The funny thing is 

that computers can sometimes tell which is which. Visit captcha.net. A captcha allows its home 

computer to do the conversing and decide whether it is talking to a human or to another machine. 

The Turing test has acquired the name “imitation game,” now a movie title. For some reason, the 

movie industry seems to have decided that people will pay to watch troubled mathematicians. 

Discounting the fictional one in Good Will Hunting, we have John Nash in A Beautiful Mind, Stephen 

Hawking (his physics is just a side effect) in The Theory of Everything, and Turing in The Imitation 

Game. They should consider Ramanujan’s story.] 

 

http://www.turing.org.uk/scrapbook/test.html
http://www.captcha.net/
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Book List 

The text has multiple references to seven books. 

 

Boyer. Carl B. Boyer, A History of Mathematics, Wiley, New York, 1968. 

This is a classic history, whose depth and breadth of coverage are far beyond what we could hope to do 

here. It is now out of print, and we are fortunate to have it available online at archive.org.  

  

Ferris. Timothy Ferris, Coming of Age in the Milky Way, William Morrow, New York, 1988. 

Prof. Ferris sets himself the mission to explain how we arrived at our current understanding of space (the 

size of the universe), time (age of the universe), and creation (origin of the universe). He accomplishes 

his mission with a style that will captivate and enlighten anyone interested in the history of science. 

 

al-Khalili. Jim al-Khalili, The House of Wisdom: How Arabic Science Saved Ancient Knowledge and 

Gave Us the Renaissance, The Penguin Press, New York, 2011. 

Our ignorance of the achievements of Arabic scientists is scandalous. This terrific book succeeds in 

bringing them to our Eurocentric attention. 

  

Kline. Morris Kline, Mathematical Thought from Ancient to Modern Times, Oxford University Press, 

New York, 1972. 

This is a comprehensive and mathematically advanced history. It covers ideas in mathematics from the 

Babylonians through roughly where our text ends. Our references are to an online PDF version. The 

printed book weighed in at more than 1200 pages, nowadays broken into three volumes. 

 

Mario Livio, The Equation That Couldn’t Be Solved: How Mathematical Genius Discovered the 

Language of Symmetry, Simon and Schuster, New York, 2005. 

The focus of this book is the work that settled the question of a quintic formula. It therefore has much 

about Abel and Galois. However, to get to them, it covers the development of algebra. That includes 

al-Khwarizmi, Leonardo, and the brouhahas over the solution of the cubic equation. 

 

Merzbach. Uta C. Merzbach and Carl B. Boyer, A History of Mathematics, Third Edition, Wiley, 

Hoboken NJ, 2011. 

Dr. Merzbach wrote two revised editions of Prof. Boyer’s A History …, one in 1989-91 and a more 

extensive one in 2011. This later revision improves the organization. For example, the chapters on 

Greece have a clearer flow, separate chapters are given to India and China (for which proper names are 

transliterated in modern style), and there is extended coverage of twentieth-century developments. Both 

revisions pose a difficulty as textbooks. They appear to be intended for a general readership, and 

therefore lack the exercises of the original Boyer. 

 

Struik. Dirk J. Struik, A Concise History of Mathematics, Dover, New York, 1967. 

It has less than 200 pages and is correspondingly dense. It demands a pretty advanced mathematical 

level. However, it offers outstanding insights, especially on the history of analysis. 

http://www.archive.org/stream/AHistoryOfMathematics/Boyer-AHistoryOfMathematics#page/n0/mode/2up
https://ia601301.us.archive.org/18/items/MathematicalThoughtFromAncientToModernTimes/Mathematical_Thought_from_Ancient_to_Modern_Times.pdf
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There are also three online resources to which the text makes multiple references. 

 

St Andrews. Scotland’s University of St Andrews [that’s how they spell it] has an extensive collection 

of articles with both biographies of mathematicians and information about their work. 

 

Wikipedia®. [The name is trademarked.] The articles at “The Free Encyclopedia” form a remarkable 

collection of information about mathematicians, mathematical exposition of their work, hyperlinked 

connections to related workers and work, and references. 

 

Wolfram. Mathworld.wolfram.com has pithy (and dense) articles on a world of mathematical topics and 

at many levels. See their list of topics. 

 

Finally, there is a list of books I recommended here and there. I especially favor the following five. 

 

John and Mary Gribbin, Annus Mirabilis: 1905, Albert Einstein, and the Theory of Relativity,  

Chamberlain Bros, New York, 2005. 

It gives history and description for Einstein’s epochal discoveries of that year. 

 

Robert Kanigel, The Man Who Knew Infinity: A Life of the Genius Ramanujan, Washington Square 

Press, New York, 1991. 

Ramanujan’s story is endlessly fascinating because the most complicated numerical relations, especially 

ones involving infinite series, seemed to spring full-blown into his mind. This biography captures why 

his (ultimately tragic) story is so interesting. 

 

Kenneth A. Ross, Elementary Analysis: The Theory of Calculus, Springer, New York, 1980. 

This is a great introduction to what we described as axiomatized calculus. 

 

Dava Sobel, Longitude: The True Story of a Lone Genius Who Solved the Greatest Scientific Problem of 

His Time, Walker and Company, New York, 1995. 

It is a terrific account of how the problem of determining longitude at sea came down to the design of 

timekeepers. 

 

Garry Wills, Lincoln at Gettysburg: The Words That Remade America, Simon and Schuster, New York, 

2006. 

You can call Wills a philosopher on the American political system. This book is a perceptive, and 

eloquent, look at the eloquence of Lincoln and Lincoln’s interpretation of the nation’s founding 

document. 

  

http://mathworld.wolfram.com/topics/
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Index 

Abel, Niels Henrik, 244 

Abel Prize, 245, 362 

Abel-Ruffini theorem, 261 

acceleration 

constant (Galileo, falling objects), 135 

constant (Oresme), 104 

in circular motion (Huygens), 172, 180, 334 

addition 

early humans, 2 

from Peano’s axioms, 308 

of signed numbers, 84 

aggregates 

decimal, in China, 88 

decimal, in Egypt, 6 

early humans, 1 

fives (Mayan), 93 

in Mesopotamia (Babylonian), 10 

Alexander the Great, 23, 80 

Alexandria, 23, 76 

and Baghdad, 94 

algebra 

abstract and Galois, 252 

Babylonian, 10 

Bombelli, 116 

Cardano, 108 

Chinese, 88 

Egyptian, 6 

evolution under Viète, 120 

Fundamental Theorem, 230 

Greek, 65 

Indian, 85 

introduction by al-Khwarizmi, 96 

via geometry, 11, 148 

algebraic numbers, 269, 320 

algorithm, 54 

Euclidean algorithm, 60 

square-root algorithm, 10, 81 

al-Khwarizmi, Muhammad, 95, 120, 139, 240 

al-Jebr, Indian numeration, 96, 100 

Almagest, 73, 94 

al-Tusi, Nasr al-Din 

circle within a circle, 129 

parallel postulate, 188 

Anaxagoras, 17 

Anderson, Richard, 82 

angles 

alternate, alt. interior, a/i, 49, 188, 325, 352, 

355 

in incidence geometry, 347 

Angle-Sum Theorem, 50 

Apollonius, 38 

conic sections, 38, 45 

coordinate geometry, 44 

epicycle model, 73, 130 

locus of Apollonius, 42, 146 

tangents to conics, 141, 149 

arc length 
cycloid, 169 

differential and integration, 168 

Archimedes, 24 

and Eudoxus, 19, 58 

Archimedes’s principle, 25 

axiom of Archimedes, 58, 288, 353 

Measurement of the Circle, 29 

Quadrature of the Parabola, 25 

The Method, 26, 139, 140 

volume of cone and sphere, 34, 139 

area 

of ellipse, 132 

surface area of cone and sphere, 35, 37 

under cycloid, 141 

under parabola, 28 

under power graph, 140, 151, 161 

Aristarchus, 67, 129 

precession of the equinoxes, 72 

sizes and distances in solar system, 67 

translation to Arabic, 94 

arithmetic 

algorithms, 81 

Fundamental Theorem, 52 

of negative numbers (Brahmagupta), 83 

thinking in early humans, civilizations, 1, 4 

arithmetic mean, 32 

axioms 

evolution over nineteenth century, 314 

in Euclid, 23 
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of fields, 265 

of groups, 252 

of incidence geometry, 338 

of natural numbers, 306 

Babylonians, 8, 71 

Baghdad, 94 

and Córdoba, 100 

The House of Wisdom, 94 

Barrow, Isaac, 161 

Fundamental Theorem of Calculus, 162 

tangent to graph, 161 

Berkeley, (Bishop) George, 199 

Bernoulli, Daniel, 193 

hydrodynamics, 193, 196 

string equation, 193, 199, 273 

Bernoulli, Jacques, 191 

calculus, maxima and minima, 191 

independent trials, 206 

infinite series, 200, 272, 282 

Bernoulli, Jean, 192 

brachystochrone problem, 192 

calculus of variations, L’Hôpital’s Rule, 192 

geodesics, 195 

betweenness 

defining order in incidence geometry, 343 

not defined in Euclid, 24 

binomial distribution, 206 

approximation by normal, 217 

binomial theorem 

binomial (or combinatorial) coefficients, 128, 

160, 206 

in China, 88 

Bolyai, János, 324, 326, 330, 335 

Bolzano, Bernard, 286 

arithmetization of the reals, 298 

Bolzano's axiom, 286 

Bolzano-Weierstrass theorem, 295 

uniform continuity, 294, 304 

Bombelli, Rafael, 116 

Algebra and solution of cubics, 118 

arithmetic of complex numbers, 117, 234 

evolution of algebra, 120, 125 

Borel, Émile, 304, 306 

Brahmagupta, 80 

algebra, 85 

negative numbers, 83, 100, 353 

calculus 

axiomatization, 272 

Fundamental Theorem (Leibniz), 164 

Fundamental Theorem (Newton), 175 

in Archimedes, 32 

in Fermat, 150, 151 

calculus of variations 
Euler, 196, 201 

Jean Bernoulli, 192 

Lagrange, 200 

Weierstrass, 293 

calendar, 7 

Egyptian, Jewish, 7 

intercalation in Rome, Lilio, 76, 78 

Julius and Augustus, 76, 78 

Lilio and the Gregorian, 78 

Muslim, 76 

Cantor, Georg, 314 

Cantor's diagonal argument, 321 

continuum hypothesis, 323, 338, 360 

set theory, 314 

Cardano, Geronimo, 108 

Ars Magna, 108 

Cardano’s substitution, 110, 113, 125, 236 

quadratic with non-real roots, 116 

Cauchy, Augustin-Louis, 245 

Cauchy’s criterion, 279, 282 

infinite series, 282 

limits, continuity, derivatives, 278 

permutations, 245 

Cavalieri, Buonaventura, 139 

area under power graph, 140, 172 

Cavalieri's principle, 35, 140 

Chinese Remainder Theorem, 90, 227 

chord 
half-chord, 80 

of angle, 46, 68 

of parabola, 25 

circumcircle, 16, 337 

Claudius Ptolemy, 46 

Almagest and astronomy, 72, 73, 100 

Geography and Columbus, 74 

optics, 98 

Columbus, Christopher, 74 

commensurable numbers, 63 

common divisor, greatest common divisor, 59 
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Common Era, 75, 78 

completing the square, 97, 241 

complex numbers 
applications, 120 

conjugates, real and imaginary parts, 117 

origins, 117, 120 

polar form, powers, and roots, 233 

rectangular form, 232 

components of velocity, 33, 136, 140, 170, 180 

computers and computability, 367 

proof by computer, 371 

computing and computability 

computable (recursive) sets, 369 

congruence 

in incidence geometry, 348 

of integers, 224 

SSS principle, 13, 349 

conic sections, 38 

and solution of cubic equations, 97, 148 

constructible numbers, 264 

constructions, 17 

and solution of equations, 101 

of square root, 101 

the three ancient, 17, 265 

constructive proof, 64 

continuous function 

Cauchy definition, 280 

uniform continuity, 294, 304 

Weierstrass definition, 294 

coordinate geometry 

distance and midpoint formulas, 146 

power graphs, 150 

rotation of axes, 148 

use by Apollonius, 44 

Copernicus, 97, 129 

circle within a circle, 129 

Of the Revolutions ..., 129, 137 

solar system model, 130 

trigonometry, 106 

cubic formula, 111 

curvature, 174 

cycloid 
arc length of (Huygens), 171 

definition and Torricelli’s squaring, 141 

d’Alembert, Jean, 199 

Fundamental Theorem of Algebra, 234 

objections to infinitesimals, 199 

Darboux,  Jean-Gaston, 306 

de Moivre, Abraham 

approximation to binomial coefficients, 218 

de Moivre's theorem, 197 

Dedekind, Richard, 289 

axioms of arithmetic, 306 

Dedekind cuts in incidence geometry, 353 

infinite sets, 316 

deductive system, 23, 240, 356 

formal system, 308, 357, 368 

degree 

first use as measure, 71 

of polynomial, 230 

del Ferro, Scipione and solution of cubic, 108 

denseness of rationals, 59, 289 

derivatives 

in Leibniz, as function, 163 

Lagrange, second and beyond, 201 

maxima and minima, 151, 165 

sine and cosine, 172, 175 

Descartes, René, 144 

coordinates, Descartes’s rule, 144 

differential calculus 
Euler, 196 

Leibniz, 163 

Newton, 182 

differential equations 

Newton’s law of cooling, 183 

of motion under gravity, 182 

Diophantus, 65 

Diophantine equations, 65, 85, 90, 156 

translation to Arabic, 94 

directrix, 41, 43 

Dirichlet, Peter, 279 

convergence of Fourier series, 276 

discontinuous function, 279 

uniform continuity, 304 

discriminant of quadratic or cubic, 113 

division 

by zero, 85 

divisibility, divisor, factor, 52 

early humans, 2 

division algorithm 
for integers, 53 

for polynomials, 231 
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in periodic behavior, 228 

dodecagon, 21, 29 

doubling a cube, 17, 265, 270 

Douglas, Jesse, 41, 244 

eccentricity, 41, 43, 44, 132 

Einstein, Albert, 333 

special, general theories of relativity, 333, 

334 

thought experiments, 135, 334 

element of a cone, 36, 39 

Elements, The. See Euclid 

ellipse, 38 

area given by Kepler, 132 

distance characterization, 39 

eccentricity, major and minor axes, vertices, 

40, 41 

origin of the name, 45 

equations 

cubic, 108, 118, 125, 236 

equivalent equations, 66, 113 

quadratic, 96, 236 

quartic (Ferrari), 120 

quintic (Galois), 263 

quintic (Lagrange, Ruffini, Abel), 243, 244 

root relations and symmetry (Viète), 121, 123 

solution by trigonometry, 125, 127 

equivalent 

axioms and statements, 50, 312 

equations, 66, 113 

Eratosthenes, 70, 95 

sieve of, size of Earth, 70 

Euclid 

“Euclid's postulate”, 48 

codification of geometry, 23, 195 

Elements, The, 23, 52, 59, 94, 100 

Euclidean algorithm, 60, 63, 364 

hidden assumptions in, 24, 52, 277, 309, 335 

number theory, 59 

perfect numbers, infinity of primes, 63, 64 

translation to Arabic, 94 

Eudoxus, 19, 34, 73, 195 

definition of ratio, 57, 292 

exhaustion, method of, 19, 20, 26 

Euler, Leonhard, 194 

calculus of variations, minimal surfaces, 196, 

201 

infinite series, 197, 272 

number theory, Fermat's theorems, 219, 363 

the bridges of Königsberg, 194 

existence theorems, 64 

expected value, 212 

exponential distribution, 209 

exponential function, 167, 178 

extreme-value theorem, 295 

factor theorem, 231, 235 

factorials, 178 

Fermat, Pierre (de), 145 

coordinate geometry, locus-equation 

correspondence, 146, 147 

Fermat’s last theorem, 156, 221, 361 

Fermat’s little theorem, 154, 219, 227, 258 

Fermat’s primes, 156, 206, 220, 229 

Fermat's principle (light), 331 

maxima and minima, 165 

sum of squares, 155, 220 

tangent and area for power graph, 150, 151 

Ferrari, Lodovico, 120 

Fibonacci, Leonardo, 100 

algebra, Liber Abaci, 100 

Fibonacci numbers, 101 

Fibonacci's cubic, 101, 144, 271 

fields 

definition, 265 

ordered fields, 284 

Fields Medal, 41, 245, 362 

figurate numbers, 14 

focus 
focal radius, 39 

of conic, 39, 43 

four-color theorem, 371 

Fourier, Joseph, 273 

Fourier series, 275, 314 

Fourier transform, 277 

fractions, 59 

decimal fractions, 81, 88, 94 

early humans, 3 

unit fractions (Egyptian), 6 

frustum, 36 

function 

Dirichlet's definition, 280 

function notation, 89, 145, 246, 308 

one-to-one, onto, 315 
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permutation, 245 

Fundamental Theorem 
of Algebra, 230 

of Arithmetic, 52 

of Calculus, 164, 175, 187 

Galileo, 134 

components of velocity, 33, 136 

falling objects, 135, 144 

solar system, 136 

Galois, Évariste, 252 

Galois theory and the ancient problems, 264 

groups, 252, 357 

Gauss, Carl Friedrich, 205, 331 

congruences in number theory, 224 

Fundamental Theorem of Algebra, 234 

normal approximation to binomial, 206 

general linear equation 

as Diophantine equation, 66 

Fermat and coordinate geometry, 147 

geodesics 
Euler, 195 

Lambert, 190 

of light in relativity, 334 

Riemann, 327 

geometric distribution, 208, 213 

geometric mean, 31 

geometry 

Chinese, 86 

early humans, early civilizations, 1, 4, 8 

Egyptian, 5 

farmers, 3 

Greek beginnings, 13 

incidence geometry, 338 

Indian, 80 

non-Euclidean, 324 

via algebra, 146, 264 

Germain, Marie-Sophie (Fermat’s last theorem), 

223, 361 

Gödel, Kurt F., 358, 367 

continuum hypothesis, 360 

undecidable statements, 360 

Goldbach, Christian (conjecture), 362 

golden mean, ratio, section, 15 

great circles, 190, 327 

Greek (vs Oriental) tradition, 24, 58 

groups 

classification of simple groups, 361 

definition, 252 

normal subgroups and composition series, 

260, 261 

of permutations, 259 

subgroups, 256 

symmetry groups, 254 

half-chord 

in ibn Sahl’s refraction, 98 

introduction, 80 

Halley, Edmond, 186 

Newton’s Principia, 186 

proper motion of stars, 187 

the Comet, 92, 187 

harmonic mean, 31 

Heine, Heinrich Eduard, 304, 314 

Heron’s formula, 80 

Herschel, William, 186, 239 

Hertz, Heinrich (radio waves), 331 

hexagon, 20 

inhexagon and circumhexagon, 29 

Hilbert, David, 338, 360 

incidence geometry, 338 

on Cantor, 321 

on Weierstrass, 293 

Hipparchus, 71, 73 

degree measure, 71 

precession of the equinoxes, 71 

trigonometry, 46 

Hippocrates, 18 

corresponding parts of circles, 20 

quadrature of the lune, 18 

Horner, William, 89 

House of Wisdom, The, 94 

Huygens, Christiaan, 168 

acceleration in circular motion, 172, 334 

arc length, 168, 192 

tautochrone problem, 192 

wave theory of light, 168, 185, 333 

hyperbola, 38 

characterizations, 43, 147 

origin of the name, 45 

ibn al-Haytham, al-Hassan 

optics, 98, 331 

parallel postulate, 95, 188 

ibn Sahl, al-Ala’ and refraction, 98 
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imaginary or purely imaginary number, 118 

Index of Forbidden Books, 137 

induction (mathematical) 

complete, 312 

defined by Pascal, 159 

in axioms of natural numbers, 308 

infinite descent 

Fermat, 157 

in axioms of natural numbers, 312 

infinitesimals 

arc length, 168 

d’Alembert and Berkeley’s objections, 199 

in area, 37, 139, 141, 151, 161, 163 

in tangents, 150, 161 

in the calculus, 272 

Kepler’s ellipse, 139 

infinity 

d'Alembert, 200 

in Wallis, 161, 281 

of prime numbers, 63 

inscribed triangle 
in cycloid, 141 

in parabola, 25 

integer combination, 54 

GCD, Euclidean algorithm, 59, 364 

integral calculus 

antiderivatives, 166, 275 

Archimedes, 36 

Euler, 196 

origin of name, 163, 191 

Riemann definition of integral, 303 

intermediate-value theorem, 287 

interpolation, 90 

inverses 
in groups, 253 

in modular arithmetic, 226, 364 

of permutations, 246 

Jesus, 77, 92 

Jordan of Nemore, 103, 104 

Kepler, Johannes, 131 

ellipses, 132 

laws of planetary motion, 42, 132, 181 

Khayyam, Omar 

on roots of cubics, 97, 101 

parallel postulate, 95, 188 

Klein, Felix, 327 

hyperbolic geometry, 328, 340, 354 

relative consistency of geometries, 330, 360 

Kronecker, Leopold, 292, 315 

Lagrange, Joseph-Louis, 200, 205 

calculus of variations, 200 

Lagrange's theorem (groups), 257 

quintic formula, 240 

remainder in Taylor series, 203 

sum of squares, 220 

Lambert, Johann, 190 

quadrilateral and parallel postulate, 190, 324 

latitude and longitude 

in Mercator's work, 107 

Ptolemy's, 74 

least upper bound property, 288, 354 

Lebesgue, Henri Léon (integrals), 306 

Legendre, Adrien Marie 

on Ruffini and Abel, 244 

prime number theorem, 229 

Leibniz, Gottfried, 163, 191 

Fundamental Theorem of Calculus, 164 

Leonardo. See Fibonacci, Leonardo 

Library at Alexandria, 23, 70, 95 

Lilio, Luigi (calendar), 78 

limits 

Cauchy’s definition, 278 

d'Alembert and Newton, 199 

Lagrange's rejection, 204 

Weierstrass’s definition, 293 

lines 

equidistance property, 51, 189, 190 

line segment, 343 

lines and planes in incidence geometry, 338 

parallel lines, 50, 324, 325, 354 

paths of least distance. See geodesics 

Little Dennis and AD, BC year numbers, 77, 83 

Lobachevsky, Nikolai, 324 

locus, 39 

of Apollonius, 42, 146 

logarithms 

as area, function, graph, 152, 153, 167, 198 

logistics, 4 

lune, 18 

magic square, 89 

maxima and minima 

extreme-value theorem (Weierstrass), 295 
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via slope of tangent, derivative, 151, 165, 191 

Maxwell, James Clerk, 206, 330 

Maxwell's equations, 331, 333 

Maya, 93 

measure, common measure, 63 

Mercator, 107 

Mesopotamia, 8, 80 

Minkowski, Herman, geometry of relativity, 334 

Moon 

“Luna”, eclipses, size and distance, 66, 67, 68 

Newton's analysis of its fall, 181 

moon as time span, 2, 68, 182 

multiplication 

decimal algorithm for, 81 

dyadic (Egypt), 6 

multiple, least common multiple, 52, 61 

of signed numbers, 84 

multiplicity of root, 114 

Museum, the, 23, 94 

natural numbers 

axioms, definition of operations, 306, 308 

infinite descent, 157, 312 

order, 310 

negative numbers. See Brahmagupta 

Newton, Isaac, 175 

… Principia Mathematica, 186 

binomial series, 176 

Fundamental Theorem of Calculus, 175 

gravitation, 182 

laws of motion, 179, 333 

light (particle theory, color), 185, 333 

Newton’s law of cooling, 183, 274 

non-Euclidean geometry, 324, 326, 328, 334 

normal distribution, 210 

approx. to binomial, standard normal, 217 

number line, 56, 288, 353 

number theory, 52 

Chinese, 90 

Euclid, 59 

Euler, 219 

Fermat, 154 

Gauss, 223 

Indian, 86 

Pythagoreans, 52 

numeration 

"Arabic" numbers, 96 

ciphered positional decimal (Indian), 81 

decimal, 6, 10, 88, 94, 100 

sexagesimal (Babylonian), 9, 71, 81 

order 
in field, 284 

in modular arithmetic, 228 

in natural numbers, 310 

specified by betweenness, 343 

Oresme, Nicole, 103 

fractional powers, infinite series, 103 

motion, 104, 136, 144, 171 

Oriental (vs Greek) tradition, 24, 58, 80 

parabola, 32, 38 

characterizations, 43, 147 

origin of the name, 45 

paradox 
in limits, continuity, and series, 272, 278 

Russell paradox, 314 

Zeno’s paradoxes, 27 

Zeno's paradoxes, 21, 57, 63, 199 

parallel postulate, 50, 69 

Arabic geometers, 95, 188 

Euclid's version, 48 

Lambert, 190 

Playfair’s postulate, 191, 354 

Proclus, 51, 65 

Saccheri, 188 

parameters vs variables, 121 

parity, 9, 61, 155 

of permutation, 249 

partial derivatives, 193 

partial differential equations, PDE's, 193 

Daniel Bernoulli, 193 

Euler, 196 

Fourier (heat conduction), 274 

Pascal, Blaise, 158 

fluid pressure, mathematical induction, 159 

Pascal's triangle in China, probability, 88, 

158, 206 

Pasch, Moritz, 344, 357 

Peano, Giuseppe, 306, 345, 357 

axioms of natural numbers, 306 

formal system, 308, 357 

perfect number, 64 

permutations 

Cauchy and multiplication, 245, 246 
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Lagrange, 241 

odd and even, 249 

powers and order, 246 

perspective, 106 

pi 

Archimedes's estimates, 31 

as ratio, 20 

Euler, 198 

pigeonhole principle, 156, 318 

Pirate Problem, 36 

place-value system, 9 

Chinese, 88 

decimal (Indian), 81 

sexagesimal (Babylonian), 10 

vigesimal (Mayan), 93 

planets, 66 

Aristarchus through Ptolemy, 67 

Copernicus’s system, 130 

Galileo's observations, 136 

Kepler's laws, 132 

Newton and Kepler’s laws, 181 

Playfair, John (postulate), 191, 354 

polynomials 

complete complex factorization, 234 

division algorithm, remainder theorem, factor 

theorem, 231, 269, 270 

factorization of real polynomials, 237 

irreducible, 238, 271 

minimal polynomial of algebraic number, 270 

non-real solutions of real polynomials, 235 

postulates. See axioms 

prime numbers, 52 

infinity of primes, 63 

prime factorization and uniqueness, 52, 56 

prime order, 258, 266 

prime-number theorem, 229, 302 

prime-power factorization, 56, 61, 358 

twin primes conjecture, 362 

probability, 206 

normal approximation to binomial, 217 

probability density function, 208 

Proclus, 51, 65 

Ptolemies, the 

last Greek ruler of Egypt, 77 

Ptolemy (the first), 23 

Ptolemy, Claudius. See Claudius Ptolemy 

Pythagoras and Pythagoreans, 13, 52, 56 

Pythagorean theorem, 5, 8 

in non-Euclidean geometry, 330 

proofs, 14, 87 

Pythagorean triples, 8, 65, 156 

primitive triples, 8, 62 

Qin Jiushao, 90 

quadratic formula, 97, 236 

quintic formula, 243 

Galois, 263 

Ruffini and Abel, 244 

quotient in division algorithm, 53, 231 

Ramanujan, Srinivasa, 86, 222, 373 

random variables 
continuous, 208 

discrete, 207 

ratio (Eudoxus’s definition), 58 

rational and irrational numbers, 57, 292 

rational roots theorem, 270 

real numbers 

as ordered field, 284 

Dedekind's construction, 290 

least upper bound property, 288 

Weierstrass and Bolzano, 298 

Weierstrass's construction, 300 

rectification. See arc length 

recursion, 101, 157, 308 

refraction, 98, 185 

and reflection (Fermat's principle), 332 

Huygens, 168 

Regiomontanus, 106 

relatively prime integers, 59, 364 

pairwise relatively prime, 62, 90 

remainder 
division algorithm, 53, 231 

in Taylor series (Lagrange), 203 

remainder theorem, 231, 269 

Rheticus, 129 

Rhind Papyrus, 6 

Riemann, Bernhard, 295, 301, 314, 326 

definition of integral, 302, 303 

elliptic geometry, 326 

Riemann hypothesis, 302, 338, 362 

RMS (root-mean-square) average, 214 

Roberval, Gilles Personne (de) 

arc length of cycloid, 169 
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tangent to cycloid, 143 

RSA algorithm (public key cipher), 363 

Ruffini, Paolo 

Abel-Ruffini theorem, 261 

quintic formula, 244 

Saccheri, Girolamo, 188, 327 

quadrilateral and the parallel postulate, 188, 

324, 325 

segment. See also lines 

of circle, 18 

of parabola, 25 

semiperimeter, 22, 47, 80 

series 

alternating, 283 

binomial (Newton), 176 

convergence (Cauchy and Weierstrass), 282, 

298 

Euler, 197, 272 

Fourier, 314 

harmonic (Oresme and Jac. Bernoulli), 103, 

272 

Lagrange, 201 

sine and cosine, 179, 197 

Taylor series, 201, 275, 314 

sets 

cardinality, equivalent sets, 315 

countable, uncountable, 319, 321 

number of elements, 317 

Simpson’s rule, 28 

slant height, 36 

spiral, 37 

of Archimedes, 33 

square-root algorithm 
algebraic (Babylonian), 10, 47 

applied to series, 176 

decimal (Indian), 81 

squaring the circle, 17, 265, 269 

standard deviation, 213 

Stirling, James (approx. to factorials), 218 

string equation, 193, 273 

summation of parts, 34 

surveying, 3, 5, 80, 138 

Syene, 70 

symmetry, 1 

of relations among roots of polynomials, 123 

symmetric group, 254 

symmetric relation, 224, 343, 348 

tangent 

and reflection properties of conics, 141 

to circle or sphere from common point, 39 

to cycloid, 143 

to hyperbola, 149 

to parabola, 25, 140, 149 

to power graph, 150, 161 

to spiral of Archimedes, 33 

Tartaglia, 108 

Thales, 13 

Torricelli, Evangelista, 140 

air pressure, 140, 159 

squaring the cycloid, 141 

tangents to conics, 140 

Torricelli's trumpet, 153 

trajectory of falling object 

Galileo, 136 

Newton, 184 

transcendental numbers, 269 

translations 

Arabic to Latin, 100 

Greek to Arabic, 94 

transversal, 48, 352 

trigonometry, 106 

Arabic studies, 95 

double-angle and sum formulas, 47, 125 

for calculation (Viète), 127 

Greek, 46 

half-angle formula, 46 

Indian origin, 80 

multi-angle formulas, 125, 197 

solving equations (Viète), 125 

trigonometric functions, 153, 195 

trisecting an angle, 17, 33, 265, 271 

Turing, Alan 

nature of computing, 367 

Turing test (imitation game), 373 

Tycho (Brahe), 131, 136, 187 

uniform distribution, 209 

Viète, François, 121, 235 

multi-angle formulas, 127, 197 

parameters vs variables, 121 

root relationships and symmetry, 121, 123, 

240 

solution via trigonometry, 125 
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volume 

enclosed by cone, 34 

enclosed by sphere, 35, 139 

Wallis, John, 159, 161, 281 

area under power graph, 159 

infinitesimals, 161, 171, 208 

Weierstrass, Karl, 293 

Bolzano-Weierstrass theorem, 295 

construction of the reals, 298 

extreme-value theorem, 295 

limits and continuity, 293 

well-ordering principle, 53, 58, 270, 312 

Wiles, Andrew, 223, 361 

Yang Hui, 88 

year (time span), 11 

AD, BC year numbers, 77 

estimate of length, 71 

sidereal, tropical, 72, 79 

Zeno. See paradox 

Zhu Shijie, 89, 148 
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Appendix 1: Using Chords to Measure the Circle 

In Section III.A.6b(iii), we pursued Archimedes’s idea to turn the geometric 

question of approximating  into a problem of calculation. We worked there with 

areas of polygons, in terms of our trigonometric functions. We noted that 

Archimedes had done neither: He worked with perimeters, in terms of his chord-

based trigonometry. We did switch to perimeters in Exercise III.A.6b:5, but still 

employed modern trigonometry. Here we follow a path closer to what would have 

been his way. 

Chord Formulas 

The picture at right is from Section III.A.8a (page 43). It 

shows central angle AOB of measure  in a unit circle, the 

angle’s chord AB, its bisector OD meeting AB at C, and the 

chord AD of /2. From the figure, we related the two chords 

by [our “half-chord formula”] 

 chord(/2)  =  (2 – [4 – chord
2
()]). 

Check that the argument used the Pythagorean Theorem, not 

our ratio-based trigonometry. Also, unwind that equation to 

get the form 

 chord()  =  chord(/2) [4 – chord
2
(/2)]. 

[Feel free to do the inversion and simplification.] 

A Tangent 

Modify the previous figure to produce the one at right. 

We have added the tangent (dotted) at D, intersecting the 

line of OA at E and the line of OB at F. From similar 

triangles (Why are ED and AC parallel?), we have 

 ED/1 = AC/OC 

   = AC/ [1 – AC
2
]. 

Accordingly, 

 EF  =  2 ED  (Why is D the midpoint of EF?) 

    =  2 AC/ [1 – AC
2
] 

        =  chord() / [1 – chord
2
()/4] . 

  

 

A 

B 

O 

1 

 
C 

D 

 

A 

B 

O 
1  

C 
D 

E 

F 

1 



 Appendices 

387 

Perimeters of Polygons 

Now imagine that AB is one side of an inscribed regular n-gon, so that EF is a 

side of the corresponding circumscribed n-gon. The respective perimeters are 

 pn  = n AB  =  n chord(),  Pn  =  n EF  =  n chord()/[1 – chord
2
()/4]. 

[Here pn and Pn are for the n-gon what P12i  and P12c  represented for the dodecagon, 

the case n = 12, in the text.] Clearly the perimeters for the two 2n-gons are 

 p2n  = 2n chord(/2),   P2n  =  2n chord(/2)/[1 – chord
2
(/2)/4]. 

From the first two perimeter formulas, 

 1/pn + 1/Pn =   
1+√1−chord2()/4

𝑛 chord()
 

    = 
2+√4−chord2()

2𝑛 chord()
. 

Substituting from the half-chord formula and its unwound form, we have 

 1/pn + 1/Pn = 
2+[2−chord2(/2)]

2𝑛 chord(/2)√4−chord2(/2)
 

    = 
√4−chord2(/2)

2𝑛 chord(/2)
 

    = 2/P2n .     [Check the last two.] 

That says 

 1/P2n  =  1/2 (1/pn + 1/Pn ). 

The perimeter of the circumscribed 2n-gon is the harmonic mean of the perimeters 

of the two n-gons. 

In turn, 

 pn P2n  = n chord() 2n chord(/2)/[1 – chord
2
(/2)/4] 

    = n chord(/2)[4 – chord
2
(/2)]  

2𝑛 chord(/2)

√1−chord2(/2)/4
 

    = 4n
2
 chord

2
(/2) 

    = (p2n)
2
. 

The perimeter of the inscribed 2n-gon is the geometric mean of the perimeters of 

the inscribed n-gon and the circumscribed 2n-gon. 

There you have the basis for Archimedes’s recursion, on his terms. 
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Appendix 2: From Kepler to Newton 

This is a calculus-based explanation of how Kepler’s laws of planetary motion 

led to Newton’s discovery of gravitation. 

Preliminaries 

We need material from polar coordinates and vector calculus. 

In the figure at right, we are in the coordinate 

plane. Write p for the vector from the origin to the 

point P with rectangular coordinates (x, y). Polar 

coordinates give a magnitude-direction description, 

magnitude = distance from the origin = r, direction = 

azimuth =  radians counterclockwise around from 

the positive x-axis. For description in terms of components, we have 

 p =  x, y 

  =  r cos , r sin  

  =  r cos , sin . 

We will write u for the unit vector cos , sin . (Why is it a unit vector?) 

We intend p to indicate the position of a moving object. Along the object’s path 

(red curve at right), consider the infinitesimal move 

from P to Q, coordinates 

 rectangular (x + dx, y + dy), 

 polar  (r + dr,  + d). 

The position vector sweeps out the area shaded blue. 

That area is always approximated by the area of a 

sector, having central angle d, of the origin-centered 

circle of radius r, namely 

 dA = 1/2 r
2 
d. 

[You can see that the estimate misses by the area of the “triangle” upper right of 

the circle’s arc (dotted curve), an area given by some fraction of 

 (length of arc) dr = (r d) dr. 

In the spirit of Barrow, we ignore that product of infinitesimals.] 

Finally, in polar coordinates the unified characterization of the conic sections in 

terms of eccentricity leads to a single form for the equations of all four sections. 

Assume that our section has one focus (or if it is a circle, the center) at the origin, 

the point nearest the origin (necessarily a vertex if the section is not a circle) 

at (r0, 0) on the positive x-axis, and eccentricity . Then the section is given by the 

 

P(x,y) 

r 

O 

p 

 

 

P r+dr 

O 
p 

Q(x+dx,y+dy) 

d 
r 
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polar equation 

 r  =  r0 (1 + )/(1 +  cos ). 

Velocity and Acceleration 

Now we look at position of the object as the function of time 

 p(t) = r(t) u(t). 

The velocity is 

 v(t)  :=  dp/dt  =  dr/dt u + r du/dt. 

[That is worth a remark: For any product of variables involving vectors, we can 

find derivatives by the product rule. The rule applies to a scalar multiple f(t)g(t), a 

dot product f(t)g(t), or a cross-product f(t)g(t).] We do the derivative of a vector 

componentwise: 

 du/dt  =  d/dt cos , d/dt sin  

       =  -sin  d/dt, cos  d/dt  

       =  d/dt -sin , cos . 

The vector 

 n := -sin , cos  

is also a unit vector. [Check for yourself that it is the perpendicular (“normal”) to u 

that points, from P, in the direction of increasing  (counterclockwise).] We may 

therefore write  

 v  =  dr/dt u + r d/dt n. 

[Check that result against what you would get by writing 

 dp/dt  =  dx/dt, dy/dt  =  d/dt r cos , d/dt r sin  

and doing those derivatives by the familiar product rule for scalar variables. Also, 

interpret it: The velocity has a (scalar) radial component (in the u-direction) that is 

simply the (signed) speed of travel away from the origin; and a tangential 

component in the perpendicular direction that would be the linear speed of an 

object traveling a circle of (fixed) radius r with angular speed d/dt.] 

The acceleration is then 

 a :=  dv/dt 

   =  d
2
r/dt

2
 u + dr/dt du/dt + dr/dt d/dt n + r d

2
/dt

2
 n + r d/dt dn/dt. 

Check that 

 dn/dt  =  d/dt -cos , -sin   =  -d/dt u. 

That puts us at 

 a =  ( d
2
r/dt

2
 – r [d/dt]

2 
)u + ( 2 dr/dt d/dt + r d

2
/dt

2 
)n. 
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[Here interpretation is less suggestive, but we may still look at the elements. 

The d
2
r/dt

2
 part is unsurprising, rate of change of speed in the radial direction. The 

next part becomes familiar upon rewriting: Observe that 

 r [d/dt]
2 
 =  [r d/dt]

2 
/r 

    =  [linear speed]
2
/distance 

is Huygens’s acceleration for fixed speed around a fixed circle; and it is necessarily 

directed radially inward, because -r[d/dt]
2
 has to be negative. (We don’t do r  0.) 

The tangential component has a significance, too; we will see it below.] 

Kepler’s Second Law 

Now make our particle one of the planets, orbiting the Sun, which is stationary 

at the origin. As the planet moves, its location vector sweeps out area dA in 

infinitesimal time dt. The rate of sweep is 

 dA/dt = 1/2 r
2
 d/dt. 

Kepler’s Second Law says that this rate is constant. Hence its derivative is zero: 

 0  =  d
2
A/dt

2
  =  r dr/dt d/dt + 1/2 r

2
 d

2
/dt

2 
. 

Since 

 a =  ( d
2
r/dt

2
 – r [d/dt]

2 
) u + ( 2 dr/dt d/dt + r d

2
/dt

2 
) n 

  =  ( d
2
r/dt

2
 – r [d/dt]

2 
) u + 2/r (d

2
A/dt

2 
) n, 

we now have 

 a =  ( d
2
r/dt

2
 – r [d/dt]

2 
) u. 

Under this Law, the acceleration of the planets is radial (along the line to the Sun). 

[Note that 

 1/2 r
2
 d/dt  =  1/2 r  rd/dt 

        =  1/2 distance (speed perpendicular to distance). 

Except for missing mass, that is half the magnitude of angular momentum. 

Kepler’s Second Law is equivalent to conservation of angular momentum.] 

Kepler’s First Law 

The First Law says that our planet moves along an ellipse with the Sun at one 

focus, our origin. Put the planet’s perihelion (point closest to Sun) at (r0, 0). From 

 r  =  r0 (1 + )/(1 +  cos ), 

we have 

 dr/dt  =  r0 (1 + ) (-1)(1 +  cos )
-2

 (- sin  d/dt) 

       =  r
2
/(r0 [1 + ])  sin  d/dt. 
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We know from the Second Law that  r
2
d/dt  is constant. Call the planet’s 

perihelion speed v0. At that vertex, the (tangent to the) ellipse is perpendicular to 

the x-axis. Therefore the angular speed at that place is 

 (d/dt)0 = v0/r0. 

We conclude that the constant value of  r
2 
d/dt  is 

 r
2 
d/dt  =  r0

2
 v0/r0  =  r0 v0. 

[It had not come up before, but we might as well make it explicit that we expect 

our planet to conform to our usual picture and orbit counterclockwise. Having 

 d/dt  =  2/r
2
 dA/dt 

start, and therefore stay, positive means that also dA/dt > 0; it would be ugly to 

have area sucked up instead of swept out. Accordingly, the initial v0 is directed 

upward.] Substitute into dr/dt  to find 

 dr/dt  =   sin /(r0 [1 + ]) r0 v0 

       =  v0  sin /(1 + ). 

From there, 

 d
2
r/dt

2
 = v0/(1 + )  cos   d/dt 

   = v0/(1 + ) [r0 (1 + )/r – 1] r0 v0/r
2
 

   = v0
2 
r0

2 
/r

3
 – v0

2 
r0 /[ (1 + )r

2 
]. 

Our last expression for acceleration becomes 

 a = ( v0
2 
r0

2 
/r

3
 – v0

2 
r0 /[(1 + )r

2 
] – r [

 
r0v0 /r

2 
]

2 ) u 

  = - v0
2 
r0 /(1 + ) 1/r

2 
u. 

The acceleration is inward and proportional to inverse-square distance. 

Kepler’s Third Law 

The acceleration’s constant of proportionality v0
2 
r0 /(1 + ) has the odd feature 

that it is independent of which planet we are following, but seemingly dependent 

on the initial circumstances and the planet’s orbital eccentricity. We will see that it 

is the same for all planets (as indeed for anything in captive orbit around the Sun.) 

Kepler’s Third Law says that the square of the orbital period is as the cube of 

the ellipse’s semimajor axis. In symbols, there is a solar-system constant K such 

that our planet—any planet—has period T related to its orbit’s semimajor axis a by 

 T
 2
 = K

 
a

3
. 

At the same time, the Fundamental Theorem of Calculus says that the area A of the 

ellipse is 

 A =  ∫ 𝑑𝐴/𝑑𝑡 𝑑𝑡
𝑇

0
 

  =  ∫ 1/2 𝑟0𝑣0 𝑑𝑡
𝑇

0
 =  1/2 r0 v0 T. 
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That means 

 4A
2
/(r0

2
 v0

2 
) =  T

2
  =  K a

3
. 

Recall the geometry of the ellipse. The area is 

 A =  ab, 

where b is the semiminor axis. The axes a and b, the focal distance c, and the 

eccentricity  (figure at right below) are related by 

 a
2
  =  b

2
 + c

2
,  c = a. 

Put those together to write 

 A
2
 =  

2 
a

2
 (a

2
 – c

2
) 

  =  
2 
a

2
 (a

2
 – 

2
a

2
) 

  =  
2 
a

4
 (1 – 

2
). 

The equation for T
2
 then yields 

 4
2 
a

4
 (1 – 

2
)/(r0

2
 v0

2
)  =  K a

3
. 

Factor and rearrange to rewrite it as 

 4
2
/K a(1 – )  =  r0

2
 v0

2
/(1 + ). 

Our planet’s ellipse has the Sun at one 

focus and perihelion r0 away at the nearer 

major vertex. Accordingly, 

 a  =  c + r0  =  a + r0,  and 

 a(1 – )  =  r0. 

Our previous equation becomes 

 4
2
/K r0  =  r0

2
 v0

2
/(1 + ). 

By Kepler’s laws and Newton’s calculus, all the planets—the six planets they 

could see—are subject to accelerations given by the unique multiple 

 v0
2
 r0/(1 + )  =  4

2
/K 

of inverse-square distance. 

Incorporating Newton’s Laws 

Now we add in Newton’s laws of motion. 

The First Law requires that there be a force pulling the planets toward the Sun. 

By the Second Law, the magnitude F of the force is proportional to the mass m of 

the planet: 

 F  =  m (magnitude of a)  =  m 4
2
/K 1/r

2
. 

The Third Law says that the planet exerts a like pull on the Sun. It implies that the 

force is proportional to the mass M of the Sun as well: 

 F  =  G Mm/r
2
, 

in which 

 G := 4
2
/KM 

 

a 

b 

c 
Sun 

a 

r0 
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is a constant associated with the Sun. Thus did Newton characterize the 

gravitational force binding the planets to the Sun. 

It was later, presumably after concluding that a single force acted on both 

apples near the surface of Earth and on the natural satellite a quarter-million miles 

away, that Newton extrapolated to a universal law of gravitation: Between any two 

bodies, there exists an attractive force given by a universal-constant multiple of the 

product of their masses and the squared reciprocal of their separation. 

An Exercise 

We have written the equivalent of 

 K = 4
2
/MG. 

Verify that. 

You can look up 

 M = 1.989  10
30

 kg and G = 6.674  10
-11

 m
3
/kg-sec

2
. 

You need not look up K, because we live on a planet that has 

 T = one year  and a  =  (perihelion + aphelion)/2  =  1.496  10
6
 km. 

Reconcile the units, then check the equality. 

 


