MATH 392 QUIZ 1 - Version B Answers

- Write the general form for $\int \int \int f(x,y,z) dV$ in:
- (a) Cylindrical coordinates: $\iiint f(r\cos\theta, r\sin\theta, z)r \ dz \ dr \ d\theta$
- $\int \int \int f(\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi) \rho^2 \sin \phi \, d\rho \, d\phi \, d\theta$ (b) Spherical coordinates:
- State the formula for the following, defining what the symbols/variables mean:
- (a) a line (3 forms):

- formula 1: $\langle x, y, z \rangle = \langle x_0, y_0, z_0 \rangle + t \langle a, b, c \rangle$ formula 2: $x = x_0 + at, \ y = y_0 + bt, \ z = z_0 + ct$ formula 3: $\frac{x x_0}{a} = \frac{y = y_0}{b} = \frac{z z_0}{c}$
- (x_0, y_0, z_0) point on line, $\langle a, b, c \rangle$ direction vector of line Meanings:

(b) a plane: formula: $a(x-x_0) + b(y-y_0) + c(z-z_0) = 0$ Meanings: $(x_0, y_0, z_0) - point$ in plane, $(z_0, y_0, z_0) - point$ in plane, $(z_0, y_0, z_0) - point$ in plane

(c) the tangent plane to the surface F(x, y, z) = k at the point (a, b, c):

formula: $F_x(x-a) + F_y(y-b) + F_z(z-c) = 0$ Meanings: F_x, F_y, F_z — partial derivatives of F evaluated at (a, b, c)

- **3.** Compute:
- (a) $\langle -1, 2, 0 \rangle \times \langle 3, 4, -2 \rangle$ < -4, -2, -10 >
- (b) $\langle \pi, -3\cos t, 4t^2 \rangle \cdot \langle 2, e^t, 2t^{-2}\sin t^2 \rangle = \frac{2\pi 3e^t\cos t + 8\sin t^2}{2\pi 3e^t\cos t + 8\sin t^2}$
- 4. / 5. Set up and compute a triple integral to compute the volume of the region bounded by $z = \sqrt{x^2 + y^2}$ and z = 4 in the first octant. Include a sketch in your answer.

