MATH 392 Quiz 2B

Instructions: No calculators! Use your own scrap paper and write your answers in the space provided.

1. Let $\vec{r}(t) = \langle x(t), y(t), z(t) \rangle$, f(x, y, z) be a scalar function, and $P(x_1, y_1)$ and $Q(x_2, y_2)$ be points in \mathbb{R}^2 . Complete the following rules with vector functions:

(a)
$$\vec{r}'(t) = (x'(t), y'(t), 2'(t))$$

(c) Line segment
$$\overrightarrow{PQ} = (x_1 + (x_2 - x_1)t, y_1 + (y_2 - y_1)t)$$
 $(x_1 + (y_2 - y_1)t)$

2. (a) (2 points) Sketch the region bounded by $z = 8 - x^2 - y^2$ and $z = x^2 + y^2$.

(b) Parametrize the curve of intersection, $ec{r}_i(t)$, of the above two surfaces. Set up the limits so that the curve is traversed once.

$$\vec{r}_i(t) = \langle 2\cos t, 2\sin t, 4 \rangle$$

- 3. (a) Parametrize the line segment from (-1,1,2) to (2,2,-3): $\vec{r}_l(t) = \langle -1+3t, 1+t, 1-5t \rangle$, 04 $t \leq 1$
 - (b) What is the length of the above line? $L = \sqrt{35}$
- Find a unit vector that is orthogonal to both < -1,2,0 > and < 3,4,-2 >. $\vec{u} = \sqrt{\frac{2}{120}}, \sqrt{\frac{2}{120}}, \sqrt{\frac{2}{120}}$ 四〈谎,谎,谎,

Bonus:

- 1. Let $C = \vec{r}(t)$ and f be as in problem 1. Find formulas for:
 - The length of $\vec{r}(t)$ for $a \le t \le b$: $L = \int_{a}^{b} (x'(t))^{2} + (y'(t))^{2} + (z'(t))^{2} dt$ (i)

(ii)
$$\int_{C} f ds = \int_{a}^{b} f(x(t), y(t), z(t)) \cdot \sqrt{(x')^{2} + (y')^{2} + (z')^{2}} dt$$

2. Compute the length of $\vec{r}(t) = <\sqrt{7}, \sin^2 t, \cos^2 t > \text{ for } 0 \le t \le \frac{\pi}{4}$:

Integral Set-up: $\sqrt{7}$ Sin2t of