MATH 392 Quiz 2A

February 6, 2018

Name: ANSWERS

Instructions: No calculators! Use your own scrap paper and write your answers in the space provided.

1. Let $\vec{r}(t) = \langle x(t), y(t) \rangle$, f(x,y) be a scalar function, and $P(x_1, y_1, z_1)$ and $Q(x_2, y_2, z_2)$ be points in \mathbb{R}^3 . Complete the following rules with vector functions:

(a) $\vec{r}'(t) = \langle x'(t), y'(t) \rangle$

(b) $\nabla f = \langle f_x, f_y \rangle$

(c) Line segment $\overrightarrow{PQ} = \langle x_1 + (x_2 - x_1)t, y_1 + (y_2 - y_1)t, z_1 + (z_2 - z_1)t \rangle$ (include limits)

2. (a) (2 points) Sketch the region bounded by $x^2 + y^2 + z^2 = 2$ and $z = \sqrt{x^2 + y^2}$.

(b) Parametrize the curve of intersection, $\vec{r}_i(t)$, of the above two surfaces. Set up the limits so that the curve is traversed once.

 $\vec{r}_i(t) = \langle \cos t, \sin t, 1 \rangle$

Limits: $\bigcirc \leq t \leq 2\pi$

3. (a) Parametrize the line segment from (1,-1,2) to (3,2,-1): $\vec{r}_l(t) = \frac{\langle 1+2t, -1+3t, 2-3t \rangle_0 \leq t \leq 1}{\langle 1+2t, -1+3t, 2-3t \rangle_0 \leq t \leq 1}$

(b) What is the length of the above line? $L = \sqrt{22}$

4. Find a unit vector that is orthogonal to both < 1,0,3 > and < 2,-1,7 >. $\vec{u} =$

Bonus:

1. Let $C = \vec{r}(t)$ and f be as in problem 1. Find formulas for:

(i) The length of $\vec{r}(t)$ for $a \le t \le b$: $L = \sqrt{(x'(t))^2 + (y'(t))^2}$

(ii)
$$\int_{C} f ds = \int_{a}^{b} f(x(t), y(t)) \cdot \sqrt{(x'(t))^{2} + (y'(t))^{2}} dt$$

2. Compute the length of $\vec{r}(t) = \cos^2 t$, $4, \sin^2 t > \text{for } 0 \le t \le \frac{\pi}{2}$:

Integral Set-up: 52 sinzt dt

, Answer: $\sqrt{2}$