Department of Mathematics Spring 2018

Course Supervisor: Prof. Sergiy Merenkov, email: smerenkov@ccny.cuny.edu

Required Texts:

1) Essential Calculus (2nd edition) (Stewart) Thomson Brooks-Cole.

If you don't already have this text, go to cengagebrain.com, type in 978-1-133-11229-7.

You can choose any of the options. The hardcover book would not be a good choice.

2) Linear Algebra for Calculus (Heuvers et. al.), Brooks-Cole. This is used beginning the third month of

the semester. Do NOT purchase it yet. The math department is trying to arrange a bargain for you!

The syllabus leaves a total of 4 hours for exams and review.

Section and Topic	Hours
Part 1: Vector Calculus: 24 hours. (Stewart Essential Calculus)	24 hours
10.7,10.8 Parametrized curves; arc length. Omit curvature	1.5
13.1 Vector Fields	1
13.2 Line Integrals	2
13.3 Fundamental theorem for line integrals	2
13.4 Green's Theorem	3
13.5 Curl and Divergence	2
12.5-12.7 Triple integrals; cylindrical and spherical coordinates	2
13.6 Parametric Surfaces and their areas	2
13.7 Surface Integrals	2.5
13.8 Stokes' Theorem	3
13.9 Divergence Theorem	3
Part 2: Linear Algebra: 14 hours. (Heuvers' Linear Algebra for Calculus)	14 hours
1 Matrices and Matrix Algebra	1
2 Linear Systems, Elementary Row Operations	2
3 Varieties of Systems of Linear Equations	2.5
4 The Determinant of a Matrix	2
5 The Inverse of a Matrix	1.5
6 Orthogonal Matrices and Changes of Coordinates (6.1 & 6.2 only; optional)	1.5
7 The Eigenvalue Problem (7.1 & 7.2 only) (with applications to systems of ODE's in notes distributed by course supervisor)	3.5

COURSE LEARNING OUTCOMES

DEPARTMENT: Mathematics		
COURSE #: 39200	CATALOG DESCRIPTION	
COURSE TITLE: Linear Algebra and Vector Analysis for Engineers	Matrix theory, linear equations, Gauss elimination,	
CATEGORY: TERM OFFERED: Fall Spring	determinants, eigenvalues problems and first order systems of ordinary differential equations, vector field theory, theorems of Green, Stokes, and Gauss	
PRE-REQUISITES: Math 20300		
	Required Texts	of oreen, stokes, and oddss.
HOURS/CREDITS: 3 hrs./ week; 3 credits.	Essential Calculus (Stewart) ISBN 0495014427	
DATE EFFECTIVE: 828/12	Linear Algebra for Calculus ISBN 0534252486	
	Both published by Thomson Brooks-Cole	
COURSE LEARNING OUTCOMES	lattor(a) of the as	rrangending
Departmental Learning Outcome(s) (see list at bottom) in the column at right	<i>t.</i>	rresponding
After taking this course, the student should be able to:	-	Contributes to Departmental Learning Outcome(s):
1. solve linear systems and find matrix inverses, determinants, eigenvalues	s and	a, b
eigenvectors;		
2. relate characteristics of solutions of a linear system to determinant and rank of its		a, e2
associated matrices;		
3. use eigenvector methods to solve a system of first-order ordinary differe	ntial equations	a, b, c
4. construct precise descriptions of curves, surfaces, and solids using parametrizations or		a, b
equations/inequalities;		
5. compute work, flux, and mass integrals on curves, surfaces, and solids,	respectively;	a, b
6. find lengths, areas, and volumes of curves, surfaces, and solids, respectively;		a, b, c
7. choose co-ordinate systems (polar, spherical, cylindrical, rectangular) appropriate to a		a, b, c
given problem;		
8. state and apply the theorems of Green, Stokes, and Gauss;		a, b, e1, e2
9. find and use potential functions, when appropriate, to find work integrals	along curves;	a, b, c
and		
10. solve other problems appropriate for a course in linear algebra and vec	tor analysis;	a, b, c, e1, e2
COURSE ASSESSMENT TOOLS Please describe below all assessment tools that are used in the course. You may also indicate the percentage that each assessment contributes to t	the final grade.	
1. Final exam: 40%		
2. In-class exams, quizzes, homework, attendance: 60%		

DEPARTMENTAL LEARNING OUTCOMES (to be filled out by departmental mentor)

The mathematics department, in its varied courses, aims to teach students to

a. perform numeric and symbolic computationsb. construct and apply symbolic and graphical representations of functionsc. model real-life problems mathematicallyd. use technology appropriately to analyze mathematical problemse. state (e1) and apply (e2) mathematical definitions and theoremsf. prove fundamental theoremsg. construct and present (generally in writing, but, occasionally, orally) a rigorous mathematical argument.