Math 346 Quiz 3 February 22, 2018

Name:	A	NS	We	SAS	, >
i adilic.	/ 1			- •	

Instructions: No calculators! Answer all problems in the space provided! Do your rough work on scrap paper.

- 1. True or false: Suppose AB is defined. If A has a row of zeros, then AB has a row of zeros.
- 2. Justify your answer in problem 1. Suppose the ith row of AB will have the form $[0.b_1 \ 0.b_2 \ ... \ 0.bp] = [0 \ 0... \ 0.], assuming Anxm, Bmxp.

 Thus, the ith row of AB will also be all zeros. []$
- 3. Would your answer to problem 1 change if it were B that had the row of zeros? \checkmark
- 4. Let $A = [a_{ij}]_{n \times n}$. Define $tr(A) = a_{ij} + a_{22} + \cdots + a_{nn}$ OR $\sum_{i=1}^{n} a_{ii}$
- 5. (a) Given $A = \begin{bmatrix} a_{ij} \end{bmatrix}_{n \times n}$ and $B = \begin{bmatrix} b_{ij} \end{bmatrix}_{n \times n'}$ conjecture a formula for $tr(A + B) = \frac{tr(A) + tr(B)}{tr(A + B)} = \frac{tr(A) + tr(B)}{tr(A)} = \frac{tr(A) + tr(B)}{tr(A$
- - (b) Find the reduced row-echelon form of the augmented matrix:

(c) Write down the solution as a column vector: $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \underbrace{\begin{pmatrix} 1 \\ 2 \end{pmatrix}}_{z}$

Bonus:

- (a) Justify your answer to problem 3. $A = (34), B = (00) \Rightarrow AB = (44)$. So B has a row of zeros, but AB does not. (There are many such examples).
- (b) Recall: if $A = \begin{bmatrix} a_{ij} \end{bmatrix}_{n \times m}$, then $A^T = \begin{bmatrix} a_{ji} \end{bmatrix}_{m \times n}$. Suppose $B = \begin{bmatrix} b_{ij} \end{bmatrix}_{n \times m}$. Prove that $(A + B)^T = A^T + B^T$. Pf: $(A+B)^T = \begin{bmatrix} a_{ij} + b_{ij} \end{bmatrix}^T = \begin{bmatrix} a_{ji} + b_{ji} \end{bmatrix} = \begin{bmatrix} a_{ji} \end{bmatrix} + \begin{bmatrix} b_{ji} \end{bmatrix} = A^T + B^T$.