Math 346

Department of Mathematics Sample Final Exam Problems

1. Consider the following augmented matrix:

Which statements are true? (Mark all that apply)

- (a) The system is inconsistent
- (b) The system has infinitely many solutions
- (c) There are no free variables
- (d) The system has a unique solution.

2. Let A and B be $n \times n$ matrices such that AB = I, where I is the $n \times n$ identity matrix. Mark all statements that are necessarily correct:

- (a) BA = I
- (b) $BA^{-1} = I$
- (c) AB = BA
- (d) det(A) = det(B)

(e) There is a (column) vector $C = (c_1, \ldots, c_n)$ such that the system AX = C has infinitely many solutions.

3. Let

$$A = \begin{pmatrix} 1 & -2 & 1 \\ 1 & -1 & t \\ 2 & -2 & -2t+1 \end{pmatrix}.$$

plumn of A^{-1} is $\begin{pmatrix} a \\ b \\ c \end{pmatrix}$

Suppose the third column of A^{-1} is

Then a + 2b is equal to

(a) 2

(b) -2

(c) 1
(d) -1

4. Suppose a 2×2 matrix A has eigenvalues 3 and 5. What is the trace of the matrix $A^2 + 2A$?

- **(a)** 45
- **(b)** 63
- (c) 50
- (d) 320

5. Let W be the set of all vectors of the form

$$\left(\begin{array}{c} a-4b\\ 2\\ 6a+b\\ -a-b \end{array}\right).$$

Then (mark all that apply):

(a)
$$\begin{pmatrix} 1\\ 2\\ 6\\ -1 \end{pmatrix}$$
, $\begin{pmatrix} -4\\ 0\\ 1\\ -1 \end{pmatrix}$ is a basis of W .
(b) $\begin{pmatrix} 1\\ 0\\ 6\\ -1 \end{pmatrix}$, $\begin{pmatrix} -4\\ 2\\ 1\\ -1 \end{pmatrix}$ is a basis of W .

(c) W is not a vector space.

(d)
$$\begin{pmatrix} 1\\0\\6\\-1 \end{pmatrix}$$
, $\begin{pmatrix} -4\\0\\1\\-1 \end{pmatrix}$, $\begin{pmatrix} 0\\2\\0\\0 \end{pmatrix}$ is a basis of W .

6. Suppose B is a 2×2 matrix such that det(B) = -2. What is the determinant of the matrix $A = 3B^3(B^T)^2B^{-1}$?

- **(a)** -48
- **(b)** 144
- **(c)** 48
- (d) 120

7. Let A be a 3×3 matrix with determinant 10. We add to the third column of A the second column multiplied by 3, then multiply the first column by (-1), and then we switch the second and third rows. Denote the resulting matrix by B. What is the determinant of the matrix $2B^2(B^T)^{-1}$?

- (a) 36
- **(b)** -16
- (c) 80
- (d) 120
- (e) 150

8. The line which best fits the points (0, 1), (1,2), (-1,-1), and (2,0) is given by:

(a) $y = \frac{1}{10} + \frac{2}{5}x$ (b) $y = \frac{3}{10} + \frac{2}{5}x$ (c) $y = \frac{3}{10} + 5x$ (d) $y = \frac{1}{10} + 5x$ (e) $y = \frac{1}{10} - \frac{2}{5}x$.

9. Let $a = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$. The matrix *P* that projects every vector in \mathbb{R}^3 onto the orthogonal component of the line spanned by the vector *a* is:

(a)

P =	$\left(\right)$	$\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$	$\frac{1}{31}$ $\frac{31}{31}$ $\frac{31}{3}$ $\frac{1}{3}$	$\frac{1}{3}$ $\frac{3}{3}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$ \frac	$\Big)$

(b)

P =	(1	1	1	
P =		1	1	1	
	ĺ	1	1	1)

(c)

$$P = \begin{pmatrix} \frac{2}{3} & -\frac{1}{3} & -\frac{1}{3} \\ -\frac{1}{3} & \frac{2}{3} & -\frac{1}{3} \\ -\frac{1}{3} & -\frac{1}{3} & \frac{2}{3} \end{pmatrix}$$

(d)

$$P = \left(\begin{array}{rrr} 0 & 1 & 1\\ 1 & 0 & 1\\ 1 & 1 & 0 \end{array}\right)$$

(e) None of the above.

10. Find $y_1(t)$ and $y_2(t)$, where

$$\begin{cases} y_1'(t) &= y_1(t) - 2y_2(t) \\ y_2'(t) &= -2y_1(t) + y_2(t) \end{cases}$$

and $y_1(0) = 1$ and $y_2(0) = 3$. What is $y_1(1)$? (a) $\frac{3}{2}(e^{-1} - e^3)$, (b) $\frac{3}{2}(e^{-1} + e^3)$, (c) $\frac{1}{2}(e^{-1} - e^3)$, (d) $\frac{1}{2}(e^{-1} + e^3)$, (e) None of the above.

11. Let $T : \mathbb{R}^2 \to \mathbb{R}^3$ be the linear transformation given by $T(\mathbf{x}) = A\mathbf{x}$, where A is the matrix

$$A = \left(\begin{array}{rrr} 1 & 1\\ 2 & 1\\ -1 & -3 \end{array}\right).$$

Which of the following vectors are not in the range of T? (Mark all that apply.)

(a)
$$\begin{pmatrix} 2\\3\\-4 \end{pmatrix}$$
, (b) $\begin{pmatrix} 0\\1\\2 \end{pmatrix}$, (c) $\begin{pmatrix} -1\\0\\5 \end{pmatrix}$, (d) $\begin{pmatrix} -1\\1\\1 \end{pmatrix}$, (e) $\begin{pmatrix} -1\\4\\3 \end{pmatrix}$