SAMPLE 212 FINAL EXAM

- 1. (a) Evaluate: $\int 5^x \tan(5^x) dx$
 - (b) Find $\frac{d}{dx} \left[\sqrt{\log_3 x} \right]$
- (c) Does the graph of $x + x^3 + y^2 + y^4 + z^4 + z^5 = 1$ have symmetry about

- (i) the x-axis? (ii) the xz-plane? (iii) the origin?
- (d) What is the value of $\int_{-\sqrt{\pi}}^{\sqrt{\pi}} \sin(x^3) dx$. Explain why.
- 2. (a) Let the function y(x) be the solution to the differential equation $y' = \frac{12x^3 + 12x^2}{y^2e^{y^3}}$ for which y(1) = 0. Find y(x) explicitly as a function of x.
 - (b) Find $\int 4x [\sec(x^2 + 2)] dx$.
- 3. (a) A package initially with a temperature of 150° F is placed in a room maintained at 70° F. Assume the temperature difference between package and the room t hours after the package was initially placed, $(\Delta T)(t) = T(t) 70$, where T(t) is the temperature of the package t hours after being placed in the room, satisfies an exponential decay law. The temperature of the package 2 hours after being placed in the room is 86° F.
 - (i) Find the function $(\Delta T)(t)$.
- (ii) Find the temperature, expressed as a rational number (i.e., a quotient of integers), of the package after 4 hours.
 - (iii) How long does it take for the package to reach 71°?
 - (b) Evaluate: $\int \sec(3x+4) dx$

- 4. (a) Evaluate: $\int_0^1 \arctan x \, dx$
 - (b) Evaluate: $\int_{1}^{2} \frac{x^{2}-2x-4}{x^{3}+2x} dx$
- 5. (a) Evaluate: $\int (\tan x + \sin^2 x \cos x) \sin 2x \, dx$ [Suggestion: Use the double angle formula for $\sin 2x$.]

and the second s

- (b) Evaluate: $\int \sqrt{1-4x^2} \, dx$
- 6. (a) Which of the following improper integrals is/are convergent? Show why.
 - (i) $\int_{0}^{1} \frac{\ln(x+2)}{x\sqrt{x}} dx$ (ii) $\int_{1}^{\infty} xe^{-2x} dx$ (iii) $\int_{1}^{\infty} \frac{x \arctan x}{\sqrt[3]{x^{7}+7}} dx$
 - (b,3) Find $\lim_{x\to\infty} e^{\frac{x+\ln x}{\sqrt{x^2+x+1}}}$.
- 7. State, for each series, whether it converges absolutely, converges conditionally or diverges. Name a test which supports each conclusion and show the work to apply the test.
 - (a) $\sum_{n=1}^{\infty} (-1)^n (1 + \frac{1}{n} + \frac{1}{n^2})^n$ (b) $\sum_{n=0}^{\infty} \frac{n^2 3^n \ln(n+2)}{2^{2n+2}}$
 - (c) $\sum_{n=0}^{\infty} \frac{(-1)^n (n^2+3)}{n^3+4}$

8. (a) Find the interval of convergence of the power series $\sum_{n=0}^{\infty} \frac{n(x+1)^n}{5^n \sqrt{n^2+4}}.$

Remember to check the endpoints if applicable.

- (b) Sketch the graph of the polar equation $r = 3 + 2\sin\theta$, and find the area which is both inside the graph and above the x-axis.
- 9. (a) Find the first four nonzero terms of the Maclaurin series (i.e., power series centered at 0) for the function $q(x) = e^{-x^2}$.
- (b) Find the sum of the first four terms of the Maclaurin series for the derivative of the function $f(x) = \sum_{n=0}^{\infty} \frac{x^n}{(n+1)^3}$.
- (c) Use the answer in part (b) to approximate $f'(-\frac{1}{2})$ with an error of less than .01.
- 10. (a) Graph $4x^2 + 36y^2 + 9z^2 + 16x 20 = 0$, and graph the trace of the answer to (a) in the xy-plane.
- (b) Sketch the portion of the graph of $y = 1 x^2$ which is in the first octant.