# SUPPLEMENTARY NOTES FOR MATH 212

Chapter and section numbers refer to both 14th and 15th edition of the textbook:

Thomas' Calculus: Early Transcendentals, Haas, Heil, and Weir (Pearson)

## Review of Chapter 5

From first semester calculus, students are expected to know three techniques (theorems) for evaluating integrals.

1 Linearity. Integration is linear, viz., for a constant c and continuous functions f(x) and g(x),

$$\int cf(x) dx = c \int f(x) dx$$
$$\int f(x) \pm g(x) dx = \int f(x) dx \pm \int g(x) dx$$

- **2 Substitution Theorem.** For continuous functions f(x), u(x) and g(x),  $\int f(u(x))u'(x) dx = \int f(u) du$ . The meaning of the right side of this equality is that if F is an antiderivative of f, then  $\int f(u) du = F(u(x))$ .
- 3 The Fundamental Theorem of Calculus. If f(x) is a differentiable function and a is a constant, then

$$\frac{d}{dx}\int_a^x f(t) dt = f(x)$$
 and  $\int_a^x \frac{df}{dt} dt = f(x) - f(a)$ .

(The Fundamental Theorem could be stated more generally, but this is sufficient to produce entries in a table of integrals in Section 8.1)

Example: Since  $\frac{d}{dx} \sin x = \cos x$ , we have  $\int \cos x \, dx = \sin x + C$ .

Example: Evaluate  $\int x(x^2-4)^9 dx$ .

Solution 1: We rewrite the integral in a form for which the substitution theorem applies, with  $f(x) = x^9$ , and  $u(x) = x^2 - 4$ .

$$\int x(x^2 - 4)^9 dx = \int \frac{1}{2} 2x(x^2 - 4)^9 dx = \frac{1}{2} \int 2x(x^2 - 4)^9 dx$$
$$= \frac{1}{2} \int u^9 du = \frac{1}{2} \frac{u^{10}}{10} = \frac{(x^2 - 4)^{10}}{20} + C$$

Solution 2 (which shows why the theorem is named the Substitution Theorem): The symbol  $\frac{df}{dx}$  means the derivative of f but we treat it as if it were a fraction.

$$\int x(x^{2} - 4)^{9} dx$$

$$= \int u^{9}(\frac{1}{2} du)$$

$$= \frac{1}{2} \frac{u^{10}}{10}$$

$$= \frac{(x^{2} - 4)^{10}}{20} + C$$

$$u = x^{2} - 4$$

$$\frac{du}{dx} = 2x$$

$$du = 2x dx$$

$$\frac{1}{2} du = x dx$$

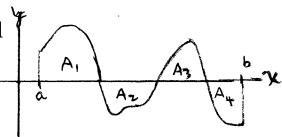
For a definite integral, one must distinguish between limits for x and limits for u. We illustrate with the function above integrated from 2 to 3. As x ranges from 2 to 3, u(x) ranges from u(2) = 0 to u(3) = 5, so

$$\int_{x=2}^{3} x(x^2 - 4)^9 dx = \int_{u=0}^{5} u^9 du = \frac{u^{10}}{20} \Big|_{0}^{5} = \frac{5^{10}}{20} \quad \text{or}$$

$$\int_{x=2}^{3} x(x^2 - 4)^9 dx = \frac{(x^2 - 4)^{10}}{20} \Big|_{2}^{3} = \frac{5^{10}}{20}.$$
but **NOT**  $\frac{u^{10}}{20} \Big|_{2}^{3} = \frac{3^{10} - 2^{10}}{20}.$ 

Some elementary facts about integration are listed below.

- 1. For constants a, b and c,  $\int_a^b c \, dx = c(b-a)$ .
- 2.  $\int_a^b f(x) dx$  is equal to the total area below the curve when it is above the x-axis minus the total area above the curve where it is



below the x-axis. For example, for the function whose graph is on the right, the value of the integral is  $A_1 + A_3 - (A_2 + A_4)$ .

3. For  $a \le b$  and  $\int_a^b f(x) dx = F(x)|_a^b$ ,  $\int_b^a f(x) dx = -\int_a^b f(x) dx = F(x)|_b^a$ .

Example: Instead of  $\int \sin x \, dx = -\cos x |_a^b = -\cos b - (-\cos a) = \cos a - \cos b$  one can write  $\int \sin x \, dx = -\cos x |_a^b = \cos x |_b^a = \cos a - \cos b.$ 

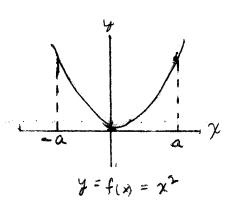
**4.** A function f is called even if f(-x) = f(x) for all x in it's domain;  $f(x) = x^2$  is even. A function is even if and only if it has symmetry about the y-axis.

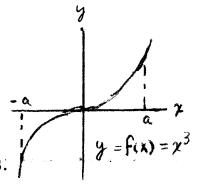
If f is even,  $\int_{-a}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx.$ 

A function f is called odd if f(-x) = -f(x) for all x in it's domain;  $f(x) = x^3$  is odd. A function is odd if and only if it has symmetry about the origin.

If 
$$f$$
 is odd,  $\int_{-a}^{a} f(x) dx = 0$ .

A product of two even or two odd functions is even; a product of an even and an odd function is odd. A polynomial is even (odd) if and only if only even (odd) power terms have nonzero coefficients.





5.  $\int_a^b \sin(cx) dx = 0$  and  $\int_a^b \cos(cx) dx = 0$  if the length b-a of the interval of integration is an integral multiple of  $2\pi/c$ . We explain why. First, the period  $\sin(cx)$  and  $\cos(cx)$  is found by setting  $cx = 2\pi$ , so the period is  $2\pi/c$ . Now we illustrate with an example.

Example: Show  $\int_{\pi/8}^{17\pi/8} \sin 2x \, dx = 0$  by looking at the graph. The period of  $\sin 2x$  is  $2\pi/2 = \pi$ . By looking at the graph, we see we could move the portion of the graph from

 $2\pi$  to  $17\pi/8$  back to the origin to obain two loops of the graph above the x-axis and two loops below the x-axis, and this cut and paste from the end to the beginning works because the entire graph is a whole number (namely 2) periods of the curve.

# Section 7.1

For integration (and differentiation) of exponential and logarithmic functions, the following change of base formulas can be useful:

$$\log_b c = rac{\log_a c}{\log_a b}$$
  $b^c = a^{c \log_a b}$ 

Use of the special case a = e occurs frequently:

$$\log_b c = \frac{\ln c}{\ln b}$$
  $b^{\mathbf{c}} = e^{\mathbf{c} \ln b}$ 

#### Section 7.2

### **Exponential Growth and Decay**

Quantities y whose size can be described by the equation  $y(t) = Ae^{kt}$ , where A and k are constants are said grow (if k > 0) or decay (if k < 0) exponentially. Letting t = 0 in this equation shows y(0) = A. Often  $y_0$  is used to denote y(0).

Using the change of base formula  $e^{kt} = b^{kt \log_b e}$ , we see that the equation above can be described using any base. Frequently, using base e is convenient, but there are times when another base is convenient.

For two values,  $t_1$  and  $t_2$ , of t, if we know the values  $y_i = y(t_i)$ , and we let  $\Delta t = t_2 - t_1$ , then

$$\frac{y_2}{y_1} = \frac{y_0 e^{kt_2}}{y_0 e^{kt_1}} = e^{k\Delta t}$$

$$\ln\left(\frac{y_2}{y_1}\right) = k\Delta t$$

$$k = \frac{1}{\Delta t} \ln\left(\frac{y_2}{y_1}\right)$$

$$y(t) = y_0 e^{\left[\frac{1}{\Delta t} \ln(y_1/y_2)\right]t} = y_0 \left(e^{\ln(y_2/y_1)}\right)^{t/\Delta t}$$

$$y(t) = y_0 \left(\frac{y_2}{y_1}\right)^{t/\Delta t}$$

and this form of expression of y(t) is also sometimes convenient.

Example: Suppose a group of rabbits initially has 60 rabbits and the number of rabbits in the group doubles every 8 days.

- (a) Find a formula for the approximate number, N(t), of rabbits after t days.
  - (b) Find the approximate number of rabbits after 44 days.
- (c) Find the number (the answer is an integer) of rabbits after 48 days.

Solution: (a)  $y_0 = 60, y_8 = 2(60), so$ 

$$y(t) = y_0 \left(\frac{y_8}{y_0}\right)^{t/8} = (60)2^{t/8}.$$

(b) 
$$y(44) = (60)2^{44/8} = (60)2^{5+1/2} = (60)(32)\sqrt{2}$$
  
=  $1920\sqrt{2} \approx 2715$ .

(c) 
$$y(48) = (60)2^6 = (60)(64) = 3840$$
.

Note: Applying the change of base formula in (a) we get  $y(t) = 60e^{[(\ln 2)/8]t}$ , and in part (c), we would get  $y(48) = 60e^{6\ln 2}$ , which does simplify to (60)(64), but perhaps this is less obvious.

Example 3 from section 7.2 in text: A yeast culture originally has 29 g., and 30 minutes later has 37 g. How long does it take to double.

Solution:  $y(t) = 29 \left(\frac{37}{29}\right)^{t/30}$ . Let  $t_2$  be the time to double from 29 g to 58 g:

$$y(t_2) = 29 \left(\frac{37}{29}\right)^{t_2/30} = 58$$

$$\left(\frac{37}{29}\right)^{t_2/30} = 2$$

$$(t_2/30) \ln\left(\frac{37}{29}\right) = \ln 2$$

$$t = \frac{30 \ln 2}{\ln(37/29)}.$$

Example: All temperatures are in degrees Fahrenheit. An object is submerged in a liquid maintained at 60°. One hour after being submerged the temperature of the object is 180°, and after three hours, the temperature is 90°. Let T(t) be the temperature of the object at time t hours, and let  $(\Delta T)(t) = T(t) - 60$  be the difference between the temperature of the object and the temperature of the liquid. Assume that  $(\Delta T)(t)$  satisfies an exponential decay law.

- (a) Find find the function T(t).
- (b) Find, to the nearest half degree without using a calculator or other electronic device, the temperature of the object 6 hours after being submerged.
- (c) Find an exact expression for the time t at which the temperature of the object is  $61^{\circ}$ .

Solution: In tabular form the information given is

$$egin{array}{cccc} t & T(t) & (\Delta T)(t) \\ 0 & ? & & & & & & \\ 1 & 180 & 120 & & & & \\ 3 & 90 & 30 & & & & & \end{array}$$

So

(a) 
$$(\Delta T)(t) = (\Delta T)_0 \left(\frac{30}{120}\right)^{t/(3-1)}$$
  
 $= (\Delta T)_0 \left(\frac{1}{4}\right)^{t/(3-1)} = (\Delta T)_0 \left(\frac{1}{2}\right)^t$ .  
 $30 = (\Delta T)(1) = (\Delta T)_0 \left(\frac{1}{2}\right)^1$ .  
 $(\Delta T)_0 = 60$   
 $T(t) = 60 + (\Delta T)(t) = 60 + 60 \left(\frac{1}{2}\right)^t$   
(b)  $T(6) = 60 + 60 \left(\frac{1}{2}\right)^6 = 60 + \frac{60}{64} = 60 + \frac{15}{16} \approx 61$ .  
(c)  $61 = T(t) = 60 + (60) \left(\frac{1}{2}\right)^t$   
 $1 = 60 \left(\frac{1}{2}\right)^t$   
 $\left(\frac{1}{2}\right)^t = \frac{1}{60}$   
 $t = \frac{\ln \frac{1}{60}}{\ln \frac{1}{2}} = \frac{\ln 60}{\ln 2}$ .  $(\approx 5.9 \text{ hours})$ 

#### Section 8.8

#### Rate of Growth of Functions

The material presented here is similar to that in Section 7.4. It is useful when applying the Limit Comparison for improper integrals, and a discrete analogue of this material will be essential for much of what is done in Chapter 10 on Infinite Series.

By the phrase "f = o(g) at a" we mean  $\lim_{x\to a} \frac{f(x)}{g(x)} = 0$ . Usually, we will be interested in  $a = \infty$  and functions f and g for which  $\lim_{x\to\infty} f(x) = \infty$  and  $\lim_{x\to\infty} g(x) = \infty$ . Our intuitive interpretation of f = o(g) is that the function g is getting large faster than f as  $x\to\infty$ .

For now  $\lim \text{ will mean } \lim_{x\to\infty}$ .

Example 1: If 0 < m < n, then  $x^m = o(x^n)$ , i.e.,

$$\lim \frac{x^m}{x^n} = \lim \frac{1}{x^{n-m}} = 0.$$

For a more specific example  $x^2$  and  $x^3$  both get large as x becomes large;  $100^2$  is ten thousand, quite large, but  $100^3$  is a million, much larger.

The notation used here, instead of f = o(g), is  $f \ll g$ . This is done to call attention to the fact that the relation is transitive: if  $f \ll g$  and  $g \ll h$ , then  $f \ll h$ . The proof is simply that

$$\lim \frac{f(x)}{h(x)} = \lim \frac{f(x)}{g(x)} \frac{g(x)}{h(x)} = 0.$$

If f and g are non-negative functions, then  $\lim (f/g) = 0$  if and only if  $\lim (g/f) = \infty$ .

Example 2: By L'Hôpital's rule,  $\lim \frac{x}{e^x} = \lim \frac{1}{e^x} = 0$ . Now  $\lim \frac{x^2}{e^x} = \lim \frac{2x}{e^x} = 0$ . In the same fashion if p(x) is any polynomial, then  $p(x) << e^x$ . If  $0 < a \le 1$  and  $x \ge 1$ , then  $x^a \le x$ , so  $x^a << e^x$ . For a > 1, continued iteration of

$$\lim \frac{x^a}{e^x} = \lim \frac{ax^{a-1}}{e^x} = \dots$$

leads to the conclusion that  $x^a \ll e^x$ , for all a > 0.

Example 3: For a > 0,

$$\lim \frac{\ln x}{x^a} = \lim \frac{1/x}{ax^{a-1}} = \lim \frac{1}{ax^a} = 0,$$

i.e.  $\ln x \ll x^a$ .

Reasoning as in Examples 1–3, we see that if:

 $\log \operatorname{log}_b x, b > 1;$ 

p(x) is a polynomial, or a positive power of x; and exp is an exponential  $a^{cx}$ , a > 1, c > 0,

then  $\log \ll p(x) \ll \exp$ .

If  $U, V, u_i, v_i$ , for all i, are non-negative functions and

$$f = U + u_1 + \cdots + u_m$$
, where  $u_i \ll U$  for all  $i$ ;  $g = V + v_1 + \cdots + v_n$ , where  $v_i \ll V$  for all  $i$ ; and  $U \ll V$ ,

then, by dividing both numerator and denominator by V, we see

$$\lim \frac{f}{g} = \lim \frac{\frac{U}{V} + \frac{u_1}{V} + \dots \frac{u_m}{V}}{1 + \frac{v_1}{V} + \dots \frac{v_n}{V}} = \lim \frac{U}{V}.$$

Example 4:

$$\lim \frac{x^4 + 3x^3 + 4}{x^6 + 6x^2 + 1} = \lim \frac{x^4}{x^6} = 0.$$

Example 5:

$$\lim \frac{e^x + x^2 + 1}{x^8 + \ln x} = \lim \frac{e^x}{x^8} = \infty.$$