SUPPLEMENTARY NOTES FOR MATH 212

Chapter and section numbers refer to both 14th and 15th
edition of the textbook:

- Thomas’ Calculus: Early Transcendentals, Haas, Heil, and
Weir (Pearson)
Review of Chapte.rv5
From first semester calculus, students are expected to
know three techniques (theorems) for evaluating integrals.

1 Linearity. Integration is linear viz., for a constant ¢ and
continuous functions f(z) and g(=z

ferte / I
[ 1@ 49w d = f f(z) do / o(z) do

2 Substitution Theorem. For continuous functions f(z),
u(z) and g¢(z), /f(u(x))u'(a:) dr = /f(u) du. The meaning
of the right side of this equality is that if F' is an antiderivative
of f, then / f(u) du = F(u(x)).

3 The Fundamental Theorem of Calculus. If f(z) is a
differentiable function and a is a constant, then

[ rma=1@ wmd ["Ta @),

(The Fundamental Theorem could be stated more gener-
ally, but this 1s is sufficient to produce entries in a table of
integrals in Section 8.1)

Example: Since Z—zsinx = cosz, we have [coszdr =

sinz + C.



Example: Evaluate / z(z? —4)° dz.

Solution 1: We rewrite the integral in a form for which
the substitution theorem apphes with f(z) = z°, and u(z) =
2
x“ — 4.
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/:c(xZ —4)° dz :/ §2$(x2 ~4)°dz = %/2:1:(3:2 —4)° dg

1 2 _ 4)10
=— /u du—lu—:(x 4) +C

2 2 10 20
Solution 2 (Wthh shows Why the theorem 18 named the Sub—

stitution Theorem) The symbol I means the derlvatlve of f
x

but we treat it as if it were a fraction.

u = 2 4
/:1:(:1:2 —4)° dz ;
du
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For a definite integral, one must distinguish between limits for
z and limits for u. We illustrate with the function above inte-

grated from 2 to 3. As z ranges from 2 to 3, u(x) ranges from
u(2) =0 to u(3) =5, so
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Some elementary facts about integration are listed below.

b

1. For constants a, b and c, / cdz = ¢(b — a).
b MF
2. / f(z) dzx is equal to the total |
area gelow the curve when it is Q ’)L

H

above the z-axis minus the total
area above the curve where it is
below the z-axis. For example, for the function whose graph is
on the right, the value of the integral is A; + A3 — (A2 + Ay).

94
?

3. Fora<bandff da:—F(m)b

a’

[{f(@)de = [ f(z)dz = F(z)|2.

Example: Instead of
[sinzdz = —cosz|% = —cosb — (—cosa) = cosa — cosb
= b = —
one can write
inzdr = — b= o = — cosb
sinz dxr = —cosz|) = cosz|§ = cosa — cosb.
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4. A function f is called

even if f(—z) = f(z) for

all z in it’s domain; f(z) =z

is even. A function is even if and only

if it has symmetry about the y-axis.
If f is even,

ffaf( dx—ZfO ) dz.
A function f is called T e

odd if f(—z) = —f(z) for

all z in it’s domain; f(z) = 22 is

odd. A function is odd if and only

if it has symmetry about the origin.

If fis odd, fja f(z)dz = 0.

A product of two even or two odd
functions is even; a product of an even
and an odd function is odd. A polynomial
is even (odd) if and only if only even
(odd) power terms have nonzero coefficients: |

2

f: sin(cz) dz = 0 and f: cos(cz) dz = 0 if the length b — a
of the interval of integration is an integral multiple of 27 /c.
We explain why. First, the period sin(cz) and cos(cz) is found
by setting cx = 2, so the period is 2w /c. Now we illustrate
with an example.

Example: Show f;;;/s sin2xdxr = 0 by looking at the

graph. The period of sin 2z LIy <\‘\ .

is 2w /2 = w. By looking at - Y
T o i‘ir

the graph, we see we could move \ SN ,' 5

the portion of the graph from

27 to 177 /8 back to the origin to obain two loops of the graph
above the z-axis and two loops below the z-axis, and this cut
and paste from the end to the beginning works because the
entire graph is a whole number (namely 2) periods of the curve.



Section 7.1 =

For integration (and differentiation) of exponential and
logarithmic functions, the following change of base formulas
can be useful:

loga ¢ b — af log, b

1 =
28 ¢ log, b

Use of the special case a = e occurs frequently:

Inec o .
_ - be — clnp
logy, ¢ 0 e



Section 7.2
Exponential Growth and Decay

~ Quantities y whose size can be described by the equation

y(t) = AeF®, where A and k are constants are said grow (if
k > 0) or decay (if £ < 0) exponentially. Letting ¢t = 0 in this
equation shows y(0) = A. Often yo is used to denote y(0).

Using the change of base formula et = p¥* 198 ¢ we see
that the equation above can be described using any base. Fre-
quently, using base e is convenient, but there are times when
another base is convenient.

For two values, t; and t2, of t, if we know the values y; =
y(t;), and we let At =ty — t1, then

kt
Y2 _ Yoo * _ kat

Y1 Yo ekt

In (yl) — kAt
Y1

k:’iln<—y—2)" L
At Y1

y(t) = yoe[zliln(yl/yz)]t = Yo (elﬂ(yZ/yl))

” t/ At
t) = — ,
y( ) Yo (yl)

and this form of expression of y(t) is also sometimes convenient.

t/At
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Example: Suppose a group of rabbits initially has 60 rab-
bits and the number of rabbits in the group doubles every 8
days.

(a) Find a formula for.the.appr(‘)xkir‘néfel number, N (lt), of
rabbits after ¢ days.
(b)Find the approximate number of rabbits after 44 days.

(c) Find the number (the answer is an integer) of rabbits
after 48 days.

Solution: (a) yo = 60, yg = 2(60), so

t/8
_ Ys _ t/8
y(t) = uo (y) ~ (60)2¢/%.
(b)  y(44) =(60)2*/8 = (60)2°+1/? = (60)(32)v/2
=1920v2 ~ 2715.

(c) y(48) = (60)2° = (60)(64) = 3840.

Note: Applying the change of base formula in (a) we get
y(t) = 60elin2)/8lt and in part (c), we would get y(48) =
60¢°'™ 2 which does simplify to (60)(64), but perhaps this is
less obvious.



Example 3 from section 7.2 in text: A yeast culture origi-
nally has 29 g., and 30 minutes later has 37 g. How long does
it take to double.

Solution: y(t) = 29 (—g—g)t/so. Let ¢t be the time to double
from 29 g to 58 g:

37 t2/30

g7 t2/30
7
(t2/30) ln(z—g) =In2

. 301n 2
a In(37/29)

Example:. All temperatures are in degrees Fahrenheit.
An object is submerged in a liquid maintained at 60°. One hour
after being submerged the temperature of the object is 180°,
and after three hours, the temperature is 90°. Let T'(¢) be the
temperature of the object at time t hours, and let (AT)(t) =
T(t) — 60 be the difference between the temperature of the
object and the temperature of the liquid. Assume that (AT)(t)
satisfies an exponential decay law.

(a) Find 1~ the function T(t).

(b) Find, to the nearest half degree without using a calcu-
lator or other electronic device, the temperature of the object
6 hours after being submerged.

(c¢) Find an exact expression for the time ¢ at which the
temperature of the object is 61°.

Solution: In tabular form the. information given is. .

t T(t) (AT)(t)

0o 7
1 180 120
3 90 30



30 = (AT)(1) =(AT)q (%-) o
(AT)o =60

T(t) =60 + (AT)(t) = 60 + 60 (%) t

6
1 60 15
b = ~) =60+ — =60+ — ~6l.
(b) T(6) 6O+6O(2) 60+ + 7

(c) 61 =T(t) =60 + (60) (%)t

t :1—7 = —. (~ 5.9 hours)
nl
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Section 8.8

Rate of Growth of Functions

The material presented here is similar to that in Section
7.4. It is useful when applying the Limit Comparison for im-
proper integrals, and a discrete analogue of this material will
be essential for much of what is done in Chapter 10 on Infinite
Series.

By the phrase “f = o(g) at a” we mean lim,_,, g—%% = 0.
Usually, we will be interested in ¢ = oo and functions f and
g for which lim; .o f(z) = o0 and lim;_,o g(z) = co. Our
intuitive interpretation of f = o(g) is that the function g is
getting large faster than f as  — oc.

For now lim will mean lim,_, .

Examplet: If 0 < m < n, then 2™ = o(z"), i.e.,

.oz , 1
lim — = lim

For a more specific example z? and z° both get large as z
becomes large; 100? is ten thousand, quite large, but 1002 is a
million, much larger.

The notation used here,instead of f = o(g),is f << g.
This is done to call attention to the fact that the relation is
transitive: if f << g and g << h, then f << h. The proof is
simply that

/(z) = lim
h(z) g(z) h(z)

If f and g are non-negative functions, then lim(f/g) = 0 if and
only if lim(g/f) = oo.

lim
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Example 2: By L’Hopital’s rule, lim % = lim—él; = 0.
Now lim fj— = lim —i—% = 0. In the same fashion if p(z) is any

polynomial, then p(z) << €*. If 0 < @ < 1 and z > 1, then
r* < z,s0 2% << €*. For a > 1, continued iteration of

2 . ama—l

lim — = lim = ...
eZ e’

leads to the conclusion that z% << e%, for all a > 0.

Example 3: For a > 0,

hmiﬂ3 —hm /xl =lim — =0,
i ar®— ax®

le. lnx << 2.

Reasoning as in Examples 1-3, we see that if:

log is logy =, b > 1;
p(z) is a polynomial, or a positive power of z; and
exp 1s an exponential a°*, a > 1, ¢ > 0,

then log << p(z) << exp.
If U, V,u;,v;, for all 7, are non-negative functions and

f=U+us + -+ um, where u; << U for all 7;
g=V +vy+ -+ vy, where v; <<V for all z; and U << V,

then, by dividing both numerator and denominator by V, we
see

U
= hm —.

%

lim = = him

U
Vv
g 1

<ISi<iE

+
+

<|§ | <L§

_.I._
+
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Example 4:
z* + 3z°% + 4 Y
lim =lim-— =0
8 +6x%2 +1 26
Example 5:
e +x2+1 et
lim = lim — = o©



