Section 10.1
Limits

We summarize some of the material in Section 10.1 and
some new material.

We will use the terminology

“a sequence of statements A(n), is said to be eventually

true if there is some ng such that A(n) true for n > ng.”

We say lim,,_,x a,, = L, for a real number L, if a,, is even-
tually in the interval (L — ¢, L + ¢€) for every positive number
€.

We say lim,_,x ap, = oo (—0), if a, > (<)M eventually
for every real number M.

For example, if a, = n®+n+1 and M is any real number,
then a,, > M eventually, so lim,,_, o, a, = oo.

Since the distance between integers n and k is less than 1
only if n = k, lim,_,x a, = L if and and only if, for some k,
L = aj, and eventually a,, = ax. This is not a useful result, so
only limits of a sequence a,, as n goes to infinity are considered,
and just lim will be used to mean the limit as the variable
goes to infinity.

We will frequently be computing limits of sequences for

the material in Chapter 10, and the following three results will
be useful:

1. lima, = 0 if and only if lim|a,| = 0, because |a, — 0| =

[(lan| = 0)].

2. If a, is a sequence and f(z) is a function defined for all
real numbers z greater than or equal to 1 and a,, = f(n) for all
positive integers n and the lim f(z) exists, then lim a, exists
and

lim a,, = lim f(z).



3. A bounded monotone sequence is convergent.

Example 1: lim — = lim — = 0.

em et

We sometimes call a sequence a discrete function, more
precisely discretely varying, function, and call a function that
varies over all real numbers in some interval a continuously
varying function.

Because of the relationship between discretely and conti-
nously varying functions, the material in the supplementary
notes for Section 8.8 is repeated here for convenient reference:



Rate of Growth of Functions

The material presented here is similar to that in Section
7.4. It is useful when applying the Limit Comparison for im-
proper integrals, and a discrete analogue of this: material will
be essential for much of what is done in Chapter 10 on infinite
series.

By the phrase “f = o(g) at ” we mean lim,_,, g—(%)l = 0.
Usually, we will be interested in ¢ = co and functions f and
g for which limg;_, o, f(2) = o0 and lim; o, g(z) = oco. Our
intuitive interpretation of f = o(g) is that the function ¢ is
getting large faster than f as z — oo.

From now on lim will mean lim,_, .

Example 1: If 0 <m < n, then 2 = o(z"), i.e,,

lim — = lim
a:n xn—m

For a more specific example, z2 and z3® both get large as z
becomes large; 1002 is ten thousand, quite large, but 100° is a
million, much larger.

The notation used here, instead of f = o(g), is f << g.
This is done to call attention to the fact that the relation is
transitive: if f << g and ¢ << h, then f << h. The proof is
simply that

i I8 g @0
h(z) g(z) h(z)
If f and g are non-negative functions, then lim(f/g) = 0 if and
only if lim(g/f) = oo.

Example 2: By L’Hopital’s rule, lim % = lim ;> = 0.
Now lim ﬁ—z = lim 22 = 0. In the same fashion if p(z) is any

polynomial, then p(z) << €®. If a is a positive real number,
then, for an integer n > a, z% << z™ << b"™ for b > 1.



Example 3: For a > 0,

| ) 1 1
hmH = lim /:r =lim— =0
o axe—1 axr?

Y

ie. lnzx << z2.

Reasoning as in Examples 1-3, we see that if a > 0, b > 1
and ¢ > 1 and p(z) is a polynomial or is equal to %, then

log, ¢ << p(z) << c*

Consider functions U, V, u;, and v; such that u; << U and
v; <<V for all 7 and

f:U+u1+...+um
g=V +v1+ -+ vy.

IfU <<V or lim% — a where 0 < a < éé, theﬁ, by dividing
both numerator and denominator by V', we see

= lim —.

v

lim = = lim

T = U
g 1L+ 3 +... 5

If V << U, divide f and g by U to again get lim*g = lim %

.ozt —32% 4+ 4 .ozt
Example 4: lim 2 1622 £ 1 = lim 5= 0.
e S R
E le 5: li = lim — = occ.
xample im — Tz im —5 = oo

All of the statements for continuously varying functions in
the material repeated above is valid also for discretely vary-
ing variables, and we continue to use the notation above for
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discretely varying functions. In particular, as examples of the
discrete analogue of the boxed material above, we have

Inn << n®+n+1or+/n<<?2”

We would like to add two more sequences to the discrete ana-
logue of the boxed material. For this we will use the Sandwich
(Squeeze) Theorem for sequences:

Theorem: Let {a,}, {b,}, and {c,} be sequences of real
numbers. If a, < b, <c¢, eventually and lima,, = lime¢, = L,
then limb,, = L.

We define 0! and 1! both to be 1 and define n! to be the
product of the integers from 1 to n, for integers n > 2. The
sequence {n!} grows quickly:

3'=6 4! = 24 5! =120
6! = 720 7! = 5040 8! = 40, 320

Exponentials also grow quickly: 10° = 10,000, 000,000, while
10! = 3,628;800. The question is which function grows faster.
L’Hopital’s Rule is not helpful because we do not know about a
continuous version of the discrete n!. We illustrate the method
for finding lim a™ /n! with the example a = 3: write, for n > 4,

and ¢ = 9/2,

3™ 3:-3-3 3 3 3 3c
— nl 1-2-3 4 n—1/ n n

Since lim ?;L—C =0, lim ?;L—r: = 0, by the Sandwich Theorem. Thus,
our “pecking order” for which functions grow faster can be
extended:

log, n << p(n) << ™ << nl,

where b, c,p are as before.



Similar reasoning allows us to extend this list one more
time:

Ogizl(z...ﬁ)gl; im ™ o,
n

n n nm ’

logyn << p(n) << "™ << nl << n®

We calculate some further limits that will be useful and
will use the fact that if f and g are continuous functions, then

lim; o f(g(z)) = f(limz—, g(z)).

L. lim {n = limge 2/ = lime®E"") = lime(m2)/z =

elim[(ln z)/z] _ O — 1. o

2. lim /a = 1 for each positive number a:

Since a product of real numbers less (greater) than 1 is
less (greater) than 1, {/a is less (greater) than 1 if and only
a=(¥a)---({/a) is less (greater) than 1.

If a > 1, then, since a < n eventually, 1 < lim {/a <
lim {/n = 1. If a < 1, then 1/a > 1, and 1 = lim {/1/a =
1/lim {/a, and again lim {/a = 1.

3. lim(1+ 2)™ = ¢* for each real number a.”
First we will calculate

z In(1+ 2
limln(1+3) zlimxln(1+ﬁ) — lim n( :1:)
z x 1/z
. %a% . —a/x? —2% a
= lim — = lim — lim — q.
T2 l+a/z 1 1+ a/x

lim(1 + =)™ = lim(1 + <)*
n T

— lim B+ 2)0) = limln(1+2)7) _



( does not exist, r < —1
0, 0<|r| <1
1, r=1

L oo, r>1

Proof: Suppose 0 < |r| < 1, and let a,, = |r™|. Then {a,}
1s a bounded monotone sequence: 0 < a, <.1 for all n and
Unt+1 = |r|an < an. Thus, {a,} is convergent. We denote its
limit by L.

Since ap+1 = |r|a,, by setting the limit of the left and
right sides equal to each other, we obtain L = |r|L. Except
when L = 0 this leads to the contradiction L < L. Thus,
lim r™ = 0, because lim |r,, | = 0.

If r > 1, then 1/r < 1 and lim 7™ = lim

The remaining cases are obvious.

4. lmr™ = <

(1/ w90



Section 10.2
Analogue Between Series and Bank Accounts

- It sometimes helpful to view infinite series as bank ac-
counts. Consider these three bank accounts

oo
> an
=i

Day Amt Bal

n an Sn Day Amt Bal Day Amt Bal
O ]. 1 n a/n Sn n an Sn
1 1 3 1 1 1 0 1 1
1 & ;2 b -t 0
S § % S 3 ) 2 1 1
; - 4 : =2 3 1 0

1 : : : . .

n % n (=1)"

|
% cio no limit

In a typical check book, there is a column for the Date
(labelled as Day above) which in mathematics is labelled as
the index n. , e

A check book has columns marked Deposit and With-
drawal, which we combine into a single column, using positive
numbers for deposits and negative numbers for withdrawals,
and we use a, as the label for a deposit or withdrawal on the
nth day. |

Finally, a check book has a column for the balance, and
we use s, for the balance on the nth day and call it nth partial

sum since
n

Sn:Gm+"'+an=Zaz'-



The symbol > >°  a, has two meanings. First, it is the
“name” of the bank account with deposits/withdrawals a,,.

The partial sums form a sequence. If the sequence has a
limit (finite or infinite), the symbol Y >° a, is also used to
denote the limit.

Consider next the second series above. Since the deposits
an = 1/n have limit 0, intuition might lead you to believe that
the limiting balance can’t be very big. But, surprisingly, that
1s not true: by choosing n sufficiently large, we can obtain an
arbitrarily large balance. For the second series, lim s,, = oo.

For the third series, the limit of the sequence {s,} does
not exist.

Recall that, for a sequence, exactly one of these three
things is true: the sequence has a finite limit, the sequence has
an infinite limit, or the limit of the sequence does not exist.
The sequences of balances in the three bank accounts above
are examples of these three possibilities. A sequence with a
finite limit we called convergent, and if the partial sums of a
series 1s convergent, we call the series convergent. In the other
two cases the sequence is called divergent, and a series is called
divergent if its sequence of balances is divergent. Most of the
material in the first five sections of Chapter 10 are meant to
answer the question “is a given series convergent or divergent?”
Only in special cases can we find an exact numerical sum of a
convergent series.

An infinite sum is the discrete analogue of an improper
integral for continuously varying variables:

oo M
[ f@de= tim [ f(@)do

a

(o, 8]
E a, = lim Ay,
M—co

n=—a n—a



Telescoping. (Coilapsing) Serles |

An infinite series Z;O:m by, is said to be a telescoping (col-
lapsing) series if there exists a sequence {a,} and a positive
integer k such that b, = a, — an4x for all n > m.

Theorem: If {a,} is a convergent sequence with limit L,
then the telescoping series

Z (an — an+k) :(a,1+ o4 a,k) — kL. .

n=1



Proof: In one of the summations we replace 1 by 7 — k.

n
Sp-— (az — ai—}-k)
1—1
n n
— Z a; — Z Qi+ k
i—1 i—1
n n
— Z a; — Z Ay —k+k
1—1 t—k=—1
n n+k
Ya- Y
=1 1=k+1
k . oo e o e . . -k .
= ait Y oa)— () a+t Y a)
1=1 1—=k+1 1=k41 1=n-+1
k n+k
= ) )
=1 t=n+1
k n—+k
lim s,, = 1im(z a; — lim Z a;)
=1 i=n-+1
k n+k
lim s,, = lim(z Z hm a;
o i=1 z_n—i—l

lims, = (a; + ...+ ax) — kL.



12

Example 1: Find the value of }_>° | WT%%_)

We use the partial fraction decomposition
1 11 1
nin+3) 3\n n+3

imzéi(%_ni?))

n=1 n=1

1 11 11
= (1+=+2-3.0)==—.
3(+2+3 ) 18

Example 2: Find the value of Y00 (n!/® — (n + 2)1/(»+2)),
Recall that limn'/" =1. . ... . .. . ..

(0. 0]
DMt = (n 2V = (14 V)~ 2 1= V21
n=1

Example 3: For which positive integers a is

Z (a¥/™ — a¥/("+2)) an integer?

n=1

Solution: This is a telescoping series with a, = a/",

which converges to 1, and k& = 2, so the sum is a + y/a — 2,
which is an integer if and only if a is a perfect square.

For the same sequence with .k = 3, the series is an. integer
if and only if a is a perfect sixth power, since the sum is

a+a+ ¥a—3=(a—3)+aV%a® +a?).

Example 4: For a real number r such that |r| < 1, Find
2211("'” — Tn+2)-

As two Ge%metric serigs: : 2)

r r r—r r(l—r

1—» 1-—r 1—r 1—r r(l+r)

As a telescoping series: limr,, = 0, so the sum is r + r2.

In most texts, only the case lima,, = 0 and £ = 1 is con-
sidered; see, for example, 10.2/Exaimple 5 and 10.2/Exercises
5, 6 and 39-52 in the text.
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Section 10.3

The following fact related to improper integrals is worth

remembering, and its analogue for infinite sums is also worth
remembering:

If f(z) is continuous for all £ > @ and =z > b, then

faoo f(z)dz and fb z)dz are both convergent or both di-
vergent.

The reason for this is that we have , For 6 < by

| t@de= [ @i [ 1w e

a a b

Since f: f(z) dz is finite, the left side is finite, infinite, or fails
to exist if and only the second term on the right side is finite,

infinite, or fails to exist, respectwely
Example: Is fo —a? dx convergent?

Solution: Let f(z) = ™% and g(z) = e~%; f(z) has no
closed form integral, so we can not evaluate the given integral
directly. However, for z > 1, 22 > z, so €* > e and

1 1
fz) = — < - =¢g(2),
e e
and [~ e "dz = —e"%|° = 1/e, s0 fl z) dx is convergent,
and by the Comparlson Test, f ) dx 1s also convergent.

Since convergence is mdependent of the (finite) lower limit of
. . oo .
integration, [~ f(z)dz is also convergent.

Here is the discrete analogue, with a similar proof:

If @ and b are integers, then > .- a, and > ;° a, are both
convergent or both divergent.



1%

1

Example: Is ) o° — s
on? —n—

convergent?

—*enz;ﬁ_'g“an’d let b,, = gn;—.

an < b, exactly when

n*—n—-3>n or n=2n-3=(n+1)(n-3)>0.

Thus a, > b, for 0 < n < 2 and a, < b, for n > 3.
Since Y 5 by, is a geometric series with common ratio r = 1 /e,
Zgo b, is convergent, and by the Comparison Test, Sa ay
1s convergent. Since convergence is independent of the lower

. . (0. @] .
limit, ) "~ ay, is also convergent.

Solution: Let a,, =
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Section 10.5-6

Alternate Approach to Absolute and Conditional Con-
Verge;ﬂ e

For our-current discussion we are going to have our-“check-
book” show in the traditional way, having separate columns for
the deposits, with the nth deposit denoted by d,,, and for the
withdrawals, with the nth withdrawal denoted by b,,. We will
consider

the series Z n=1dn, which we will abbreviate with the sym-

bol Z

the series Z;ozl by, which we will abbreviate with the sym-

bol > 7.

For the alternating harmonlc series, the “bank account”

looks like this.

i n+1
S U
— 2 3 4
Day Dep Wlthd Bal 1
n gdn bn Sn n:2n-1
1 11 l 1 b—l
O R
AR FU foNn
4 ; .Q'Z 12 Z :..ZZn.—lzoo
. . C 1
: ©
n ﬁnl—— l/ = - = OO
n+1 o ﬁz_lﬁ Z ;2”
LT ! oo i
00 00 In2 ~ Z|an|zz+—l—z

We will use the example above to illustrate what can hap-
pen when both Z+ and )~ are infinite and lim d,, = lim b,, =



0. Mr. X has income which constitutes all the deposits into his
account above, and pays bills which constitutes all his with-
drawals. He schemes to get rich by paying his bills late as
follows. Since his deposits form a divergent series, he doesn’t
pay any of his bills until his balance from payments received,
sn = S N1 d,, is over $1000. Then he pays one bill b;. Then
he waits until the payments he is receiving brings his balance
to $2000, at which point pays he his second bill b3. He contin-
ues these cycles of letting his deposits build his balance to n
thousand dollars on the nth cycle and then paying one bill, b,,.
In this fashion he becomes richer and richer, yet he still pays
all his bills, just very slowly.

With the scheme above, all deposits are made and all bills
eventually get paid exactly once. This is known as a rearrange-
ment of the series.. L . L

A more reahstlc rearrangement 1S that many bllls come in
before his first deposit, and many more bills come in before his
second deposit, and so forth, so that he gets deeper and deeper
in debt.

With any bank account Y a, with series Y7 a, of de-
posits and Y~ a, of withdrawals, exactly one of three things
must happen (see page 18 for a tablular summary):

Case (1): Both 3.7 and Y.~ are divergent.
Case (2): Exactly one of these is divergent.
Case (3): Neither is dlvergent (i.e., both are convergent)

If " |ay| is convergent, the series ) ay, is called absolutely
convergent. Notice that a series is absolutely convergent if and
only if it is in Case (3), that is, when both .7 and 37 are
finite. In Case{3) the original series »_ a, is convergent. That
is:

An absolutely convergent series is convergent.
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In Case (1) a series may also be convergent, and when
this happens the series is called conditionally convergent. Note
that in Case 1, a series is never absolutely convergent. Thus, a
series is conditionally convergent if and only if it is convergent,
but not absolutely convergent.

In summary, every series is either convergent or divergent,
but not both. Every convergent series is either conditionally
convergent or absolutely convergent, but not both. Every series
is in exactly one of these categories: divergent, conditionally
convergent or absolutely convergent. cgt di\ilv

AT TC

Here are three observations:

1. Any time you use the Alternating Series Test a SECOND
test MUST be used: Either the Alternating Series Test fails
and you have to use another test or the Alternating Series Test
works and you have to test ) |a,| to see if the series AC or

2. A series with only non-negative terms is absolutely conver-
gent if it is convergent: ) a, and )_ |a,| are the same series.

3. If ) a, is a geometric series with common ratio r, then
Y_lan| is a geometric series with common ratio |r|. Thus, if a
geometric series is convergent, it is absolutely convergent.



2laal =3 " +3 "

Case ¢) Both 37 =7 = oo Y_ a, may converge; Y. |a,| = oo

coased Y1 = o, Y. <00 Y. an =) |ag] = 00
YT <00, 37 = oo Y ap =—00, Y |lap| =

Case @ .7, 37 both finite: Ya, =37 =37, cgt
> lan| = Z+ +2. 7, cgt

All rearrangements give same sum.

absolutely convergent = )_ |a,| cgt = > a, cgt

conditionally convergent = ) a,, cgt, but > |a,| div

i ' -
/cgt\ div
AC CC ]

Procedure to decide AC, CC, or Div:
(1) Test > apyif it is Div, you’re done.
(2) Otherwise ALSO test > |ay]:

If > |an| cgt, answer is AC.
If > |ay| div, answer is CC.
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The Ratio and Root Test Limits

Suppose that a, is a sequence of real numbers. It is a
fact, which we will not prove, that if lim @,/ an| exists then
so does lim {/|a,| and the two limits are equal. It can happen
that lim {/|a,| may exist, but lim |@n+1/ay| does not, and it
can happen that neither limit exists.

Example 1 (=Example 3 from text Section 10.5, modified
to be an alternating series):

lim {/|a,| exists, but lim |a,;/a,| does not exist. This
also provides an example of an alternating series > a, for
which the Alternating Series Test fails, yet the series is ab-
solutely convergent.

i 1 1+3 1+5 1+ _n 13t
Ay, = - — — _—— — _—— — - = —
1 2 4 8 16 32 64 on  9n

1 1 3 1 5 1 n 1
—(5—1) (5_16) (3—2—@).,+ (27—‘,2“;).+

Example 2: Neither lim {/|a,| nor lim |ap+1/ay]| exist. In
this example the Alternating Series Test fails and the series
>~ an is divergent.

cOo

1 1 1 1 1 1 1
I P I PP S
zlza 22 2t373 T
1.1 1. 1 1 11
=1=3)+G-7) (3-g)+ (= o)+

If we replace the terms % by n% in this example, we obtain an
example of an alternating absolutely convergent series for which
neither lim {/|a,| nor lim |a,41/ay,| exist and the Alternating
Series Test fails. The series is absolutely convergent because

Y=y -z and )7 =" L are finite.



