	10)	0	1.10.0	0
Name:	MN	0	WER	7

Instructions: No calculators! Answer all problems in the space provided!

1. Suppose you can describe a region D by $D = \{(x,y) | a \le x \le b, g_1(x) \le y \le g_2(x)\}$ and assume you can easily integrate f(x, y) with respect to x or y. How would you set up?

 $\iint f(x,y)dA = \int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} f(x,y) dy dx$

2. Suppose you have a rectangular region $R = [a, b] \times [c, d]$ and it is difficult to integrate f(x, y) with respect to x. How would you set up?

 $\iint f(x,y)dA = \int_{a}^{b} \int_{c}^{a} f(x,y) \, dy \, dx$

- 3. Find the volume of the solid that lies under the hyperbolic paraboloid $z=3y^2-x^2+2$ and above the rectangle $R=[-1,1]\times[1,2]$. Since $x=[-1,1]\times[1,2]$ and $x=[-1,1]\times[1,2]$ by $x=[-1,1]\times[1,2]$. Integral set-up: $x=[-1,1]\times[1,2]$ by $x=[-1,1]\times[1,2]\times[1,2]$ by $x=[-1,1]\times[1,2$
- 4. Find the volume of the solid under the surface $z = 1 + x^2y^2$ that lies above the region enclosed by $x = y^2$ and x = 4. Integral set-up: $\int_{-2}^{2} \int_{y^2}^{4} 1 + x^2y^2 dx dy$ or $\int_{-\sqrt{x}}^{4} 1 + x^2y^2 dy dx$ Volume: $\frac{2336}{27}$
- 5. Evaluate the following integrals:

Bonus Problems:

1. Use a double integral to compute the area of the region in the xy-plane enclosed by $y = \sqrt{x}$ and $y = x^2$.

2 I dydx

2. Use polar coordinates to set-up and evaluate the integral

$$\iint\limits_{D}\sqrt{x^2+y^2+1}\ dA$$
 where D is the region in the first quadrant between the circles $x^2+y^2=1$ and $x^2+y^2=9$.

J3 Jr2+1. rdrd0 Answer: 3 J63-55 T