Math 392 notes: Integration on surfaces

On any surface, two important integrals are
· flux integrals and 
· mass integrals, also called integrals with respect to surface area. 
Two types of surfaces you need to work with are 
· simple surfaces and 
· general surfaces.
1. Surface descriptions: language and algebra 
Surfaces can be described in various ways. To solve problems, you need an algebraic description of the surface as the set of points satisfying an equation (required) and constraints on one or more variables (optional).

· An equation for S of the form 
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· An equation of the form 
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Here are some examples showing how to translate textbook descriptions to algebra descriptions. 
· Let S1 be  the sphere with center (0,0,0) and radius 4. Using algebra:

S1: 
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   Here the colon means “is the set of points satisfying.” 
This is an implicit description of S.  

An explicit description of the whole sphere requires separate equations for the top and bottom hemispheres.   
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Bottom: 
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Warning: Do not assume (using a false concept of symmetry) that integrals on the two hemispheres are equal!
· Let S2 be the top half of S1.  
S2: 
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   is an implicit description.
S2 
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   is an explicit description.  
An equation of the form 
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·  Let S3 be the part of the sphere S1 above the plane z = 1.

S3: 
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S3: 
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     is an explicit description.

· Let S4 be the part of the paraboloid 
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S4: 
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  is an explicit description. 
S4:   
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    is another explicit description.
Many more examples will be discussed later. 

2. Surface descriptions: general parametrizations

In general, a parametrization of surface S is given by expressing x, y, and z as functions of two variables (u,v), which must lie in a region R in the (u,v)-plane. The parametrization expresses algebraically how to wrap the flat region R onto the curved surface S. It is often summarized in vector notation as 
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 for (u,v) in R, a region in the u,v-plane
Example 2.1: the part of the cylinder 
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 between planes z = 1 and z = 5 is can be parametrized by angle u and height v :
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Example 2.2: The whole sphere 
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In this course, this sort of general parametrization is needed only for spheres and cylinders. Most surfaces are easier to work with, as described in the next section.
3. Surface descriptions: z-simple surfaces
Definition: A z-simple surface is one described algebraically as   
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 where R is a finite region in the x,y-plane. 
Such a description simplifies the equivalent general parametrization
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which should be avoided.
Example 3.1: some z-simple surface descriptions and parametrizations  

SS1: the part of the plane x + y + z = 2 that lies in the first octant (x,y,z all positive).
S can be described as the part of the surface z = f(x,y) = 2 – x – y for (x,y) in R: the triangle with vertices (0,0), (2,0), and (0,2) in the x,y-plane. To see this, set z = 0 to find the trace of the surface in the (x,y)-plane. 
The region R is most easily described using “horizontal strips” as R: 
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SS2:  the part of the surface 
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Here z = f(x,y) = 
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SS3:  the part of the cone 
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SS4:  the part of 
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 in the first octant (x,y,z all positive)
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  for (x,y) in R: the triangle with vertices (6,0),  (0,3), and (0,0).
SS5:   the part of 
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SS6:  the part of 
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Since  
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 above the x,y-plane  and  x = z on S, 
a parametrization is 
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4. Finding normal vectors to surfaces
The tangent plane to a surface S at point P on S is the plane that you see when a computer algebra system magnifies a small neighborhood of the point. A vector N is normal to the surface at P if it is perpendicular(orthogonal) to the tangent plane at P.  Normal vectors will be needed for computing flux integrals, which measure fluid flow through the surface. Keep in mind:
· An equation of the plane with normal vector  
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· Any non-zero scalar multiple of a normal vector to S is a normal vector to S.

· If 
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 is any normal vector to S, then the scalar multiple 
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is a unit normal vector to S that points in the same direction as
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In general, suppose S is parametrized as
[image: image53.wmf]ï

ï

î

ï

ï

í

ì

=

=

=

R

v

u

v

u

z

z

v

u

y

y

v

u

x

x

in 

 

)

,

(

)

,

(

)

,

(

)

,

(

 .  Rewrite with vector notation as
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 for (u,v) in R, a region in the u,v-plane. Then
Two vectors in the tangent plane  to S at  point 
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A normal vector to the surface S at the point
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If S is a simple surface given by 
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 we use x and y as parameters in place of u and v. Then 
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 and it’s easy to see that a normal vector to S is 
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 , which has positive z-component and therefore points upward from S. 

If  S is defined implicitly as the graph of the equation f(x,y,z) = c (a constant), the gradient vector    
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 is normal to the surface. 
All of the above can be used to find an equation for the tangent plane to a surface S at a point P on S.

Example 4.1:  Find an equation of the tangent plane to the surface 
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  at the point P(2,1,0).
Solution:   The surface is described implicitly as 
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  = < 4, 4, 0 > is a normal vector at P. Thus an equation of the tangent plane to S at P is  
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,  a simpler equation that  could have been obtained directly by using the shorter normal vector 
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Example 4.2:  The outward pointing unit normal vector at point P(x,y,z) on the sphere  
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Example 4.3:  The outward pointing unit normal vector at point P(x,y,z) on the cylinder  
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Exercise 4.1: Find equations of the tangent planes to

a) the sphere 
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 at the points P(1,2,2) and Q(0,0,3) .

b) the surface 
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 at the points P(1,1,3) and Q(1,2,2).
Exercise 4.2: Prove the statement in Example 4.2.
Exercise 4.3: Prove the statement in Example 4.3.

5. Integrals with respect to surface area

On surface S, the symbol dS stands for area of a small piece of S. 

· If S is a z-simple surface given by z = f(x,y) for (x,y) in R,   
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· If  S is defined implicitly by the equation f(x,y,z) = c for (x,y) in R, 
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· If S is parametrized by 
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Area integral: The area of S is equal to
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Mass integral: Let 
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Then the integral  
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· on a z-simple surface:       
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where
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· on an implicitly defined surface: Suppose S is given by  f(x,y,z) = 0 for (x,y) in R, and S satisfies the vertical line test:

 For each (x,y) in R, exactly one value of z satisfies f(x,y,z) = 0.  Then 
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where 
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· on a general surface parametrized by 
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Exercise 5.1: Calculate the areas of each of the z-simple surfaces SS1 through SS6 given earlier in  Section 3. 
6. Flux integrals  
The flux integral for a vector field 
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 is a unit normal vector to S.  At any point on S, there are two unit normal vectors, each the negative of the other. The choice of normal vector is normally specified in the problem. The value of the integral is the flow rate (normal to the surface and with units volume/time) of a fluid whose velocity vector at points (x,y,z) on and near the surface S is given by 
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· If  S is is a z-simple surface parametrized by z = f(x,y) for (x,y) in R:
· 
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· If  S is defined implicitly as the graph of the equation f(x,y,z) = 0:  
· 
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· If  S is a general surface parametrized by 
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Note: the last two formulae are seldom used, since the general surfaces in this course are cylinders and spheres, on which 
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 and dS can be computed easily, as discussed below in Example 6.5.
Example 6.1: Integrals on a paraboloid, a basic z-simple surface
Let S be the part of 
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 in polar coordinates.

  Mass integral  
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       where the bounds of integration are given by R:
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 The flux integral 
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Exercise 6.1: Evaluate this integral for the vector field 
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Example 6.2: Integrals on a z-simple part of a sphere, viewed as defined implicitly
Let S be the part of 
[image: image159.wmf]16

2

2

2

=

+

+

z

y

x

 with 
[image: image160.wmf]1

³

z

.

This description can be rewritten as 
[image: image161.wmf](

)

2

2

16

y

x

z

+

-

=

 for  (x,y) in R: 
[image: image162.wmf]15

0

2

2

£

+

£

y

x

.
If we mimic the above calculations for paraboloids, calculations get messy (see Appendix 1).  It’s better to define S implicitly by 
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First calculate dS = 
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Here we know that |z| = z because z is positive on S. Then 
Mass Integral:
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Flux integral:  
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Exercise 6.2a: Use polar coordinates on R to calculate the above integrals for the density function 
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Exercise 6.2b :   Let 
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Show that
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Example 6.3: Integrals on parts of a sphere, viewed as z-simple surfaces
Warning: it’s easier to use the general  
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Let S be the hemisphere[image: image186.wmf]2
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Then S is a z-simple surface given by 
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Since the denominator of the above fractions is z, an upward normal vector to S  is 
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dS = 
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Mass integral:  
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Flux integral: 
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again using 
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The above calculations used R :
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H2: the part of 
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Exercise 6.3 (8 parts!): For each of the surfaces H1, H2, H3 and S (the whole hemisphere) use the above  z-simple surface descriptions to find 
·  the surface area  
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Example 6.4: Integrals on cylinders using cylindrical coordinates  
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An easy calculation: the element of area on S is 
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Mass integral on the cylinder is  
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  with R as above. 
Flux integral on the cylinder is   
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If S consists of just part of the cylinder, the region R has to be adjusted:
If S is the half cylinder C1: 
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If S is the quarter cylinder C2: 
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Exercise 6.4 (4 parts!): Find mass integrals on surfaces C1 and C2 for the density function 
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Example 6.5: Integrals on spheres using spherical coordinates

Let S be the sphere 
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[image: image262.wmf]a

.
Then S  is parametrized using latitude 
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 and longitude
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A careful drawing of the sphere shows that the element of area on the sphere S is   
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Since the sphere’s equation is 
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Mass integral on the whole sphere is calculated as 
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Flux integral  on the whole sphere is calculated as
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In both integrals, use 
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You need to adjust R if you working with just part of the sphere. Some examples:
Sph1: For the top hemisphere
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Sph2: For
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Exercise 6.5 (4 parts!): For each of the surfaces Sph1 and Sph2, find
·  the surface area  
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 EMBED Equation.3  [image: image306.wmf]dS
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 for the vector field F = < x,y,2z >  

An application of calculus to cooking
A recipe for candy requires ground orange peel. I am slicing a spherical orange with radius 
[image: image307.wmf]a

 into 10 slices by cutting the orange along parallel planes. How do I slice the orange if I want the area of orange peel in all slices to be the same?

Suppose I decide to slice the orange along horizontal planes. Then the problem is easy if we can solve the following  
Orange peel problem: Suppose b > a. Find the area of  
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Solution: In spherical coordinates, 
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Then S is defined using spherical coordinates on R:
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This result says that the area of the part of a sphere between two horizontal planes 
z = b and z = a depends only on the vertical distance  
[image: image318.wmf]a
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 between the planes. At first glance, this is surprising. To see what’s going on, think of the peel on each orange slice as a circular belt. The length(circumference) of the belt gets smaller as you move up from the equator, but the width of the belt gets larger, since the belt becomes more and more slanted as you move up. 
Since this is a real-life problem, the answer must be stated clearly. Note that the height (diameter) of the orange is 
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Answer to orange peel problem: To get 10 equal portions of orange peel, slice the orange into slices with thickness
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Appendix: Answers to some even numbered exercises in
Smith-Minton 15.6

(not guaranteed: these are from a solution manual)
15.6.6: y= 3cos u;  z = 3 sin u; x = v for (u,v)in R: 
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15.6.8:
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 for (x,y) in R: 
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 (When you encounter this surface in an actual integral,  you need to convert to polar coordinates)

15.6.20: 
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Math 392 notes: Integration on solids

The triple integral over a solid T of a scalar function 
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is written
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.  Here dV is a symbol for the volume of a small piece of the solid T. The triple integral represents the mass of the solid if 
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 is the density of the solid at point (x,y,z) on T.  To compute the integral, you need to 
· describe the solid algebraically, with inequalities involving x,y,z; 

· choose variables of integration:  rectangular coordinates (x,y,z), or cylindrical coordinates(
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), or spherical coordinates 
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; 
· express dV in terms of these variables;

· set up bounds of integration; and finally  
· integrate three times, beginning with the innermost integral. 
1. Descriptions of solids: language and algebra
In these notes, we   to use the letters T to denote a solid, S a surface,

R a flat surface, usually a region in the x,y-plane, and C a curve.

There are many ways to use language to describe a solid. Here are some examples.

Try to sketch each solid before reading further.

T1 is the solid below  
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T2 is the solid contained between z = 4 and
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T3 is the solid ball bounded by the sphere
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T3a is the solid below 
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T4 is the solid inside 
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T5 is the solid inside the cylinder
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T6 is the solid inside
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T7 is the solid inside the cone
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T8 is the solid contained in the first octant below
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T9 is the solid inside 
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To do problems, you must use inequalities to describe the solid algebraically. These inequalities will translate easily into bounds of integration.  
Definition: A solid T is called z-simple if the following condition holds: 
There are functions 
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and a region R in the x,y-plane  such that point (x,y,z) is on the solid  if and only if (x,y) is in R and 
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The surface 
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 for (x,y) in R is the bottom surface of T.
The surface 
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 for (x,y) in R is the top surface of T.
The top and bottom surfaces are z-simple surfaces, as described earlier. 

If T is a z-simple solid, then a triple integral over T can be computed by first integrating with respect to x and y on the region R, and then integrating with respect to z:
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The inside integral will evaluate to a (possibly complicated) function of x and y, and finishing the computation will require integrating that function over the region R.  As usual, 
[image: image359.wmf]=

dA

 area in R, given by dxdy, dydx, or or 
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For each solid listed above, we now discuss how to convert the given language description to a description as a z-simple solid.

Example: T1 is the solid below  
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This below/above description suggests that 
· the top surface’s equation is  z = 
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· the bottom surface’s equation is   z =
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To figure out the region R, find out the curve C where the top and bottom surfaces meet. To do this, solve
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, which is an equation of a curve in the x,y-plane. Then R is the region inside C.
In this case:
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The last equation defines a circle in the x,y-plane, and R, the disc inside of that circle, is defined by 
[image: image369.wmf]4

2

2

£

+

y

x

.
To find out about z on the curve C, you can use  
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 to conclude that z = 0 on C.  However, this information is not actually used to set up the bounds of integration. 
We now set up the triple integral as 
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. The outside integral is integration on the radius 2 disc with center (0,0). 
Use polar coordinates
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 . This triple integral represents the mass of the solid with density
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 = 1, you get the volume of the solid, which is  
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Exercise T1: Work out this integral 
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. Remember to use polar coordinates to convert (x,y) to 
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Example: T2 is the solid contained between z = 4 and
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This problem is different. There are no words ‘above’ and ‘below.’ Begin by setting the two expressions for z equal to each other to get 
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 , which tells us that the surfaces intersect (meet) on the curve 
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In the previous example the intersection curve happened to lie in the plane z = 0, which is the (x,y)-plane embedded in 3-space. That was an accident. In this problem, the intersection curve is a circle in the plane z = 2. 
To find R, the region of integration, we ignore the z-value on the intersection curve and let C be that curve’s projection to the x,y-plane.  

In this problem, C is the circle
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. R is the region inside that circle and is described by R:
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To figure out which surface is on top, compare z-values at any point inside R.

For example, at the point (x,y) = (0,0),   z = 4 on the surface z = 4 (of course!), but z = 2 on the surface 
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2 < 4. Thus we obtain

[image: image388.wmf]dV

z

y

x

T

)

,

,

(

d

òòò

=
[image: image389.wmf]dA

dz

z

y

x

R

y

x

f

y

x

f

z

T

B

òò

ò

=

)

,

,

(

)

,

(

)

,

(

d

 =
[image: image390.wmf]ò

ò

ò

=

=

+

+

=

=

2

0

4

2

2

0

)

,

,

(

2

2

r

z

y

x

z

dzrdrd

z

y

x

q

d

p

q


Exercise T2: Use polar coordinates
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 to work out this integral for the density function
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Example: T3 is the solid ball bounded by the sphere
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You know that the equation defines   a radius 2 sphere. If you solve for z, you get top surface equation 
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The equations represent surfaces that meet in the circle z = 0; 
[image: image399.wmf]4

2

2

=

+

y

x

.  As in the 
previous problem, ignore the value of z to get C: 
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Exercise T3: Use polar coordinates and density function 
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to evaluate    
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Note: when we use polar coordinates on the outside integral, we wind up using coordinates
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, which are called cylindrical coordinates. 
This problem can be solved instead by using spherical coordinates 
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= 2.   Let’s review solid ball coordinates, which we will still refer to as spherical coordinates.
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At point P((x,y,z) in space, let 
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,  the distance from the origin(0,0,0) to point P.   That point lies on the sphere with equation
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 .  Conversion from rectangular coordinates (x,y,z) to   spherical coordinates 
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 in the spherical coordinate parametrization of the radius 
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 sphere. Refer to Smith-Minton Section 14.7 for a quick review. Here’s what you need:
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Furthermore, it’s not hard to see that
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  is the element of surface area on the sphere 
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For example, let’s find the volume of the ball
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Exercise T3 : Use spherical coordinates  and density function 
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Example:  T4 is the solid inside 
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The language here is again a bit different. You have seen this kind of problem before. 
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 is a radius 2 sphere. Solve for
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 to get the equation of the top surface of solid T4.  Then z = 1 on the bottom surface.  To find the region R, set 
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Note: you can’t use spherical coordinates on this solid, because the distance  
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 from the origin to point (x,y,z) on the bottom surface : 
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Exercise T4: Find the volume of the solid T4. 
Example T5: the solid inside the cylinder
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This problem is unlike any previous ones because the planes z = 0 and z = 10 do not intersect. T5 is a solid cylinder, described algebraically as   


[image: image447.wmf]ï

î

ï

í

ì

£

£

£

+

10

0

4

2

2

z

y

x

 .  But this description already fits the definition of z-simple surface!
Indeed, use
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which is easy to work out by using polar coordinates on the disc R. 
Exercise T5a:  Find 
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Exercise T5b:  Find 
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Example: T6 is the solid inside
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This is similar to the previous problem. It looks like the bottom surface is z = 0, the top surface is z = 10 – x – y , and so the solid should be described as a  z-simple surface
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 . This is a bit annoying to verify algebraically, but much easier to see if you draw a sketch and check that the disc 
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y = 10 – x.  Therefore 
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and so
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[image: image468.wmf]q

q

sin

,

cos

r

y

r

x

=

=

, and dA = 
[image: image469.wmf]q

rdrd

.

Exercise T6:  Find 
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Example: T7 is the solid inside the cone
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The solid can be described algebraically as T7: 
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 This problem is completely different from previous ones because the solid is not z-simple! Unfortunately, the top inequality involves z and so the region R that we need also depends on z. That stops the surface from being z-simple. 

Sketch solid T7 to see that it really has two bottom surfaces. We have seen this sort of thing before. Suppose you want to figure out a double integral over the triangle with vertices (1,0), (0,1), and (2,1). The top of the triangle is the horizontal line segment 
y = 1;
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Similarly , since solid T7 has two bottom surfaces, it must be broken into two solids, each with a single top surface.  An easy sketch shows that T7 can be broken into two z-simple solids,

T7A: 
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T7B: 
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Exercise T7:  Find 
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We can try to avoid using two solids by reversing the order of integration on T7: put the dz integral on the outside and the dR integral on the inside. This requires care!!!
Example: T8 is the solid contained in the first octant (
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The best approach to this problem is to realize that the plane 
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 meets the coordinate axes at A(2,0,0); B(0,3,0) and C(0,0,6). The part of the plane in the first octant is the triangle ABC.  From the sketch it is apparent that the solid is

 defined by 
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, and that the region R, which always represents the top view of T, is the triangle in the (x,y) plane with vertices obtained by omitting the z-coordinates of points A, B, C. Thus R is the triangle with vertices (2,0), (0,3), and (0,0) .  
This is a right triangle. Its hypotenuse lies in the plane z = 0 and on the plane 
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It follows that 
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In general this would be messy to calculate. 

Let’s try another method: writing a description of T as a z-sliceable surface.  Then

We know that on the slanted face of T,    
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Look at the slice of the surface at height z.  That slice is a triangle with 

vertices (0,0,z),   
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 (set y = 0).   The projection of this triangle to the (x,y)-plane is a right triangle with vertices (0,0), 
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In general, this is at least as difficult to calculate as it was with the previous method. 
However, if the density function is 1, (and so the triple integral gives the volume of T)  there is a special simplification. You will get 
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. Here, the inner double integral is just the area of right triangle 
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.  You can check that this is correct by using the pyramid volume formula: 
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Example: T9 is the solid inside 
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Math 392:  Some Mass integral problems by pillars and slices
Mass Integral Problem T2: the solid contained below z = 4 and above 
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Note that R is a disc with radius
[image: image516.wmf]2

. Read across each line below; then go to next line:

[image: image517.wmf]òòò

+

+

2

2

2

2

T

zdV

y

x

= 
[image: image518.wmf]òò

ò

+

+

=

+

+

R

y

x

z

dzdA

z

y

x

4

2

2

2

2

2

)

2

(

=
[image: image519.wmf][

]

òò

+

+

=

=

+

+

R

y

x

z

z

z

z

y

x

2

4

)

2

2

2

2

2

dA
= 
[image: image520.wmf]dA

y

x

y

x

y

x

R

òò

+

+

-

+

-

-

-

+

2

2

2

2

2

2

2

)

2

(

16

)

2

4

)(

(

 .  Use 
[image: image521.wmf]2

2

2

y

x

r

+

=

 when you switch to polar:      
[image: image522.wmf](

)

q

rdrd

r

r

r

R

òò

+

-

+

-

2

2

2

2

)

2

(

16

)

2

)(

(

 =
[image: image523.wmf](

)

q

drd

r

r

r

R

òò

-

-

5

3

2

2

12


=
[image: image524.wmf]ò

ò

=

=

2

0

2

0

r

p

q



 EMBED Equation.3  [image: image525.wmf](

)

q

drd

r

r

r

5

3

2

2

12

-

-

 =  
[image: image526.wmf]3

44

0

2

3

2

6

2

6

4

2

p

p

=

=

ú

ú

û

ù

ê

ê

ë

é

-

-

r

r

r

r

 by pillars.
--------------------------------------------------

To describe T2 with slices, rewrite  
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Mass Integral Problem T4: the solid ball 
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The easiest way is to use spherical coordinates 
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Warning: On the solid ball the value of 
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 goes from 0  at the origin  to  2 on the boundary sphere.  Therefore 
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 runs from 0 to 4. In this problem, it’s totally wrong to write 
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, which is true only on the boundary sphere. 


[image: image552.wmf]ò

ò

ò

ò

ò

ò

òòò

òòò

=

=

=

=

=

=

=

×

=

=

+

+

p

q

p

q

p

f

r

p

f

r

q

q

f

f

r

r

r

f

q

f

r

r

r

2

0

2

0

0

2

0

4

2

2

0

2

0

4

2

4

2

2

2

1

sin

sin

d

d

d

d

d

d

d

dV

dV

z

y

x

T

T

  = 
[image: image553.wmf][

]

5

128

)

1

)

1

(

(

5

64

))

0

cos

(

cos

(

5

32

2

0

cos

0

2

5

2

5

p

p

p

p

p

f

r

p

=

+

-

-

=

-

-

-

ú

û

ù

ê

ë

é

=

-

ú

ú

û

ù

ê

ê

ë

é


-------------------------------------------------- 

Now we find 
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the hard way, by using cylindrical coordinates 
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The solid can be described using pillars or using slices. In this case, as usual, the slice description is the easier choice. 

If you use a slice description you need to rewrite the equation of the solid ball as 
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In this description, 
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 , a disc with radius 
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 The outside integral gives 
[image: image566.wmf][

]

5

128

5

2

2

)

4

(

16

2

2

2

5

16

2

16

2

5

5

4

2

2

p

p

p

p

=

ú

ú

û

ù

ê

ê

ë

é

-

=

-

=

ú

ú

û

ù

ê

ê

ë

é

-

=

-

ò

-

=

z

z

z

z

z


If you use a pillar description T4: 
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the problem is quite difficult. The following computation omits a number of steps, which you may wish to fill in as part of a program to stretch your algebra muscles.
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 Now use the substitution
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