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Second Order Differential Equations

A general second order ode (= ordinary differential equation)

is of the form y” = F(x,y,y’) or F = F(t,y,%),

For second order equations, we require two integrations to get
back to the original function. So the general solution has two
separate, arbitrary constants. An IVP in this case is of the
form:

y'=F(ty,y), with y(t) =yo, ¥'(to) = ¥g-

Interpreting y’ as the velocity and y” as the acceleration, we
thus determine the constants by specifying the initial position
and the initial velocity with ty regarded as the initial time
(usually = 0).

The Fundamental Existence and Uniqueness Theorem says
that an IVP has a unique solution.



The General Solution

The general solution of the equation y” = F(t,y,y’) is of the
form y(t, C;, G;) with two arbitrary constants. Supposing that
these are solutions for every choice of C;, G5, how do we now
that we have all the solutions? The answer is that we have all
solutions if we can solve every IVP. To be precise:

THEOREM: If y” = F(t,y,y’) is an equation to which the

Fundamental Theorem applies and y(t, C;, G;) is a solution for
every (1, Gy, then every solution is one of these provided that
for every pair of real numbers A, B, we can find C;, G, so that

y(to, G, G) = Aand y'(to, G, &) = B.

PROOF: If z(t) is any solution then let A = z(ty) and

B = Z/(t), and choose Cj, G, so that y(t, Ci, G;) solves this
IVP. Then y(t, C1, ;) and z(t) solve the same IVP. This
means that z(t) = y(t, G, G).



Linear Equations and Linear Operators

We will be studying exclusively second order, linear equations.
These are of the form

d’y dy

—z TPt Ta(t)y = £(t), or y'+py +qy ="
Just as in the first order linear case, if we see
Ay" + By’ + Cy = D with A, B, C, D functions of t we can
obtain the above form by dividing by A. When A, B and C are

constants we often won't bother.

The equation is called homogeneous when f = 0. It has
constant coefficients when p and g are constant functions of t.

These are studied by using linear operators. An operator is a
function £ whose input and output are functions. For
example, L(y) = yy'. If y = < then L(y) = e*>* and
L(sin)(x) = sin(x) cos(x).



An operator L is a linear operator when it satisfies linearity or
The Principle of Superposition.

L(Cy1+ y2) = CL(y1) + L(y2)-

Given functions p, g we define L(y) = y” + py’ + qy. Observe
that:

Cx(w + pyn + qv1)
+ v o+ pyn + qy>
(G +y2)" + p(Cyr + y2) + q(Cyi + y»)

So the homogeneous equation y” + py’ + qy = 0 can be
written as L(y) = 0.



General Solution of the Homogeneous Equation, Section
3.2

If y1 and y» are solutions of the homogeneous equation

L(y) = 0 then by linearity C;y; + Gy» are solutions for every
choice of constants C; and G,, because

E(Clyl + C2y2) = Clﬁ(yl) + C2£(_y2) = C10 + CQO =0.
Notice there are two arbitrary constants. This is the general
solution provided we can solve every IVP. So given numbers
A, B we want to find (i, G, so that

Ciyi(to) + Goya(to) = A,

Ciyi(to) + Coys(to) = B.
Cramer's Rule says that this has a solution provided the
coefficient determinant

yi(to) ya(to)

IS nonzero.
yi(to) ys(to)




The Wronskian

Given two functions y;, y» the Wronskian is defined to be the
function:

yi )2
Ny
Two functions are called linearly dependent when there are

constants C;, G, not both zero such that Cyy; + Gy, = 0 and
so when one of the two functions is a constant multiple of the

other. If y, = Cy; then W(y1, y2) = 0. The converse is almost
true:

W/y? = Wi# — (i’f)’ and so if W is identically zero the
1

ratio % is some constant C and so y» = Cy;.

On the other hand, y;(t) = t3 and y»(t) = |t3| have W =0
but are not linearly dependent. What is the problem? Hint:
look for a division by zero.

W(Yl, )’2) = = )’1)4 - )’2)’{~




Now suppose the Wronskian vanishes at a single point ty. If
yi(to) = y5(to) = 0 then we can pick Ci, Gy, not both zero,
such that with z = Gy, + Gy, is zero at ty and of course
Z'(ty) = Giyi(to) + Gys(to) = 0. Otherwise, choose

G = yé(tg) and G = —y{(to). Check that with

z = Gy1 + Gy, we have

z(to) = y1(to)ya(to) — y2(to)y1(to) = W(y1,y2)(to) =0,
Z'(to) = yi(to)ys(to) — y5(to)y1(to) = 0.

If y1, y» are solutions of the homogeneous equation

y"+ py’ + qy = 0 then z = Giy; + Gy» is a solution with
zero initial conditions. This means that z =0 and so y; and
y» are linearly dependent.

A pair yi, y» of solutions of the homogeneous equation

y" + py’ + qy = 0 is called a fundamental pair if the
Wronskian does not vanish. The general solution is then
C1y1 + Gy, because we can solve every IVP.



Abel’s Theorem

Abel’s Theorem shows that the Wronskian of two solutions
yi, ¥o of y" + py’ + qy = 0 satisfies a first order linear ode:

W' = y1y) — yovi + yi¥s — Yavi = 1¥s — Yoyi

gx yiyo — yoyr =0
pPX viys — yayp =W
Ix yiyy — yoyy =W

The left side adds up to y;0 — y»0 =0 and so 0 = W' + pW
or % +pW =0.

This is variables separable with solution W = C x e~/ P(D)dt,
Since the exponential is always positive, W =0 if C =0 and
otherwise W is never zero.



Homogeneous, Constant Coefficients, Sections 3.1, 3.3

The derivative itself is an example of a linear operator:

D(y) = y'. For a linear operator £ a function y is an
eigenvector with eigenvalue r when L(y) = ry. For the
operator D, an eigenvector y satisfies y' = D(y) = ry. This is
exponential growth with growth rate r and so the solutions are
constant multiples of y = e". Thus, such exponential
functions have a special role to play.

Example: y” —y’ — 6y = 0. So that L(y) = y" — y' — 6y.

We can write
L= (D*~-D-6)(y) = (D+2)(D-3)(y) = (D-3)(D+2)(y).

So if (D —3)(y)=0o0r (D+2)(y) =0, then L(y) = 0.
(D —3)(y) = 0 when y’ = 3y and so when y = &%,
(D +2)(y) =0 when y = e2t.

2

So y; = €3 and y, = e~2! are solutions of y” — y’ — 6y = 0.



A second order, linear, homogeneous equation with constant
coefficients is of the form Ay” + By’ + Cy = 0 with A, B, C
constants and A # 0.

We look for a solution of the form y = e™. Substituting and
factoring we get

(Ar* 4+ Br+ C)e™ = 0.

Since the exponential is always positive, e is a solution
precisely when r satisfies the characteristic equation
Ar> + Br+ C =0.

The quadratic equation Ar? + Br 4+ C = 0 has roots

 —B+VB?—4AC
a 2A '

r



For the equation Ar? + Br + C = 0 the nature of the two roots

_ —B++VB?—4AC
- 2A '

r

depends on the discriminant B2 — 4AC.

CASE 1: The simplest case is when B? — 4AC > 0. There are
then two distinct real roots r; and r,. This gives us two special
solutions y; = e"* and y, = e™' with the Wronskian.

t t
. el e _ (r2 _ rl)e(r1+r2)t 7& 0.

nt

ret rent

The general solution is then Ciet + Cye™t.

CASE 2: If B2 — 4AC < 0 then the roots are a complex
conjugate pair a &+ ib = ;—f + i—”‘B;MC'

consideration of complex numbers.

. This requires a



Polar Form of Complex Numbers; The Euler Identity

We represent the complex number z = a + ib as a vector in
R? with x-coordinate a and y-coordinate b. Addition and
multiplication by real scalars is done just as with vectors. For
multiplication (a +ib)(c +id) = (ac — bd) +i(ad + bc). The
conjugate is Z = a — bi and zZ = a*> + b? = |z|? which is
positive unless z = 0.
Multiplication is also dealt with by using the polar form of the
complex number. This requires a bit of review.
Recall from Math 203 the three important Maclaurin series:
2 3 4 5 6 7
e = 1ttt L +t + 4L +t + ..

2 3! 51 6!
t2 t4 £©
COS(t):l —E +E —5—{—
t3 té t’
sin(t) =t —— +—= —=+



The exponential function is the first important example of a
function f on R which is neither even with f(—t) = f(t) nor
odd with f(—t) = —f(t) nor a mixture of even and odd
functions in an obvious way like a polynomial. It turns out
that any function f on R can be written as the sum of an even
and an odd function by writing

f(t)+f(—t) f(t) —f(—t)
2 + 2 '

f(t) =

You have already seen this for f(t) = et



Now we use the same trick but with et

T S R Y B

TR TR TR TR TR
, 2 .t t4 2 5t
—1t - Ha - -
e = 1—it 2—|—|3!—|—4! |5! 6l +|7|—|—
- - -1 - = -

> Tm et
elt e—it 3 t5 7

L T R T

So the even part of €'t is cos(t) and the odd part is isin(t).
Adding them we obtain Euler'sldentity and its conjugate
version.

e = cos(t) + isin(t)
e = cos(t) — isin(t)

Substituting t = m we obtain €™ = —landsoe™ + 1 = 0.



Now we start with a complex number z in rectangular form
z = x +1iy and convert to polar coordinates with
x = rcos(f),y = rsin(f) so that r> = x> + y> = zz. The
length r is called the magnitude of z. The angle 6 is called the
argument of z. We obtain

z = x +iy = r(cos(d) + isin(d) = re’.
Now we return to CASE 2 with the pair of roots r = a + ib.
We obtain two complex solutions

e(atib)t — o3t(cos(bt) + isin(bt)),
e(a—ib)t _ e"’t(cos(bt) —isin(bt))
When we add these two solutions and divide by 2 we obtain

the real solution e cos(bt) When we subtract and divide by 2i
we obtain the real solution e?* sin(bt).



Thus, when the roots are r = a+ib, we have the two solutions
y1 = e cos(bt) and y, = e? sin(bt) with the Wronskian

B e?* cos(bt) e?* sin(bt)
~ |ae? cos(bt) — be?* sin(bt) ae? sin(bt) + be’* cos(bt)

This is be??* which is not zero because the imaginary part b is
not zero. Thus we have so far:

CASE 1 (B? — 4AC > 0, Two distinct real roots r;,r, ) The
general solution is Ciet + Gye™!

CASE 2 (B? — 4AC < 0, Complex conjugate pair of roots

a £ ib) The general solution is C;e? cos(bt) + Cye?" sin(bt).



Example 3.3/ BD 19, BDM 13: y” — 2y’ + 5y =0,
y(7/2) =0, y'(n/2) =3.

The characteristic equation is r> — 2r + 5 = 0 with roots
r = 12£v4-20 v24—20 =1+ 2i.

So the general solution is:
y = Grefcos(2t) + Gre'sin(2t).

When t = 7/2,sin(2t) = 0, cos(2t) = —1.



y = Ge'cos(2t) + Ge'sin(2t),
y' = Glef cos(2t) — 2e’sin(2t)]+
Golet sin(2t) + 2e’ cos(2t)].

At t =7/2, 0= C[—e™?]+ GJ0],
3= Cl[—e”/2] + C2[—2€7r/2].

So G, =0,C = —(3/2)e™™/? and so
y = —(3/2)e ™/2etsin(2t).



We looked at y” — 3y = 0 which had, we saw, general solution
y = GeV3¥ + Ge V3

Now look at y” + 3y = 0 with characteristic equation

r’+3=0.

It has conjugate roots ++/3i and so the general solution is:

y = Gy cos(V/3t) + Gysin(V/3t).



Reduction of Order, Section 3.4

There remains CASE 3: If B2 — 4AC = 0 there is a single
(real) root r = 32, “repeated twice”. So we have so far in
that case only one solution e and we need a second

independent solution.

For a general second order, linear homogeneous equation
y" + py’ + qy = 0 with constant coefficients or not, we need

two independent solutions yi, y» to get the general solution
Gy + Gys.



Suppose we have one solution y;. We look for another solution
of the form y, = uy;, with u not a constant. Substitute:

gx y» = uny
pX y, = uy + Un
Ix y3 = uyf + 22Uy + u"yr

0 = 0 + dipn+2y) + u'n



The equation (y1)u” + (py1 + 2y;)v’ = 0 has no variable u and
so by letting v = ', v/ = u” we obtain the first order equation
(y1)v' + (py1 + 2y;)v = 0 which variables separable with
solution v = exp(— | p+ 2(y;/y1)). Notice that v’ = v is not
zero and so when we integrate to get u it is not a constant
and so y» = uy; together with y; forms a fundamental pair of
solutions.

Now we return to CASE 3 where the quadratic equation
Ar? 4+ Br + C = 0 has a repeated root r = r*. This means
that Ar> + Br+ C = A(r — r*)? and so B = —2Ar* and
C = A(r*)%



The ode is y” — 2r*y’ + (r*)%y = 0 with a solution y; = e" t.
We look for y» = ue’t.

(r'?x y» = ue't
=2r'x yy = ure"t +det
* Lok ar ¥t ¥t
1 % yé/ — u(r*)2er t+2u'r*e” *+u'e
0 = 0 + 0 + dJlet

Sov =u"=0,v=1and u=t. So the general solution for
CASE 3 is Gie"'t + Gote™ .



This completes the story for second order, linear homogeneous
equations with constant coeeficients.

CASE 1 (B? — 4AC > 0, Two distinct real roots ry, r, ) The
general solution is Ciet + Gye™!

CASE 2 (B? — 4AC < 0, Complex conjugate pair of roots
a £ ib) The general solution is Cie cos(bt) + C,e? sin(bt).

CASE 3 (B? — 4AC = 0, single repeated, real root r*) The

. . * *
general solution is Cie" ' + Gote" *.

In CASE 3, we used the method of Reduction of Order, but we
simply write down the solution. However, for nonconstant
coefficients we will require the method itself.



Example 3.4/ BD11, BDMO :
9y" =12y’ +4y =0, y(0)=2,y'(0) = -1

Characteristic Equation 0 = 9r> — 12r + 4 = (3r — 2)(3r — 2)
r = 2/3 repeated twice,

The general solution is

y = Cle(2/3)t + C2t€(2/3)t.



y = Cle(2/3)t + Cgte(2/3)t
y/ = [(2/3) G+ Cz]e(2/3)t + (2/3) C2te(2/3)t

y(0) =2,y'(0) = —1 and so
2=G, -1=(2/3)G+G,

And so —(7/3) = G,.
The solution is y = [2 — (7/3)t]e(?/3)t.



Example 3.4/BD28 : (x —1)y” — xy’ +y = 0,x > 1 with
yi(x) = e~.

1x yw» = ue
—xX yy = ue + e
(x=1)x y) = ue" + 2u'e + u"e
0 = 0 + JdKx—-2)¢ + dJ'(x—1)&

(x—1)v' =—(x—2)v,andso [ L = [ -1+ L-dx.

v=v=(x—1)e ™ and so u = —xe ¥ and y» = uy; = —x.



Using the Wronskian

As one student pointed out, there is an alternative way of
obtaining a second solution by using Abel's Theorem. Recall
that it says that if W is the Wronskian for a pair of solutions
¥1, ¥» of the second order, homogeneous, linear equation
y"+ py' + qy =0 then

W = C-exp[—/p(t)dt].



Suppose we have a solution y;. We look for a second solution
y> such that W(y1, y») = exp[— [ p(t)dt]. We choose C =1
because we are looking for a single solution y,. So y, satisfies
the first order linear equation

VY — Yiya = expl— / p(t)dt].

As an example the student chose: x2y” — 7xy’ + 16y = 0 with

= x"



16 x y» = ux*

—Tx X yh = ubx®  + u'x*
x*x yif = ul2x*  + u'8x® + u'x*
0 =0+ ux> + u'x°
6,/ _ _ 5 dv __ [ _dx
x®v' = —x’v,and so [ = [ -
Inv=—Inxand so ' = v =x71,

u=lInx, yo = uy; = x*Inx



Instead we use Abel's Theorem applied to: y” — Ly’ + 18y =
x*y) — 4y, = exp[7Inx] = x7
4
Yo— =Y = X,
X

o= X—47 [X—4y2]/ — X_l.

x "ty =Inx, v = x*Inx.

0.



Second Order Linear Nonhomogeneous Equations

Consider now a second order linear equation which is not
homogeneous y” + py’ + qy = f where p,q and f are
functions of t.

Recall the linear operator L(y) = y” + py’ + qy. To solve the
homogeneous equation £(y) = 0 we saw that we need a pair
of independent solutions y1, y». Then the general solution of
the homogeneous equation is y, = C1y; + Goy». To solve the
equation L£(y) = f we need just one solution, particular
solution y, so that L(y,) = f. Then the general solution is
Ye =Yn+Yp = Giyr + Gys + yp. Notice first

L(Cun+Coyatyp) = GL)+CL(y2)+L(y,) = 0+0+f = £.

So for every choice of C; and G, y, is a solution.



To show that by varying the two arbitrary constants y, gives
us all solutions, it is enough to show that we can solve every
initial value problem. That is, given A, B we have to choose

Cl,. C, to satisfy the initial conditions yg(to) = A, y,(to) = B.
This means that we want to solve:

Cin(to) + Gya(to) + yp(to) = A,
Cryi(to) + Goys(to) + yp(to) =

©

But this is the same as:

Cyni(to) + Gya(to) = A— y,(to),
Guyi(to) + Gys(to) = B — y,(to).
This has a solution because the Wronskian W (yy, y»)(ty) # 0.

Since every IVP has a solution of the form y,, we have all
solutions.



Nonhomogeneous Equations: Undetermined Coefficients,
Section 3.5

Our first method for finding the particular solution applies
when the homogeneous equation Ay” + By’ + Cy = 0 has
constant coefficients the forcing function is a sum so that each
term has an associated root according to the following table.

poly(t) = root equals 0,
poly(t)e™ = root equals r,

poly(t)e® cos(bt)

poly(t)estsin(bt) — O equals a & ib.

The key is that when you take the derivative of expressions
associated with a particular root (or conjugate root pair) you
get expressions associated with the same root and with the
polynomial in front of no higher degree.



To solve Ay” + By’ + Cy = f with forcing function f(t) w
find the Test Function (First Version) Y} (t) in two steps:

STEP 1: Find the associated root for each term and group
according to the associated roots.

STEP 2a: For the real associated root r (including r = 0), you
use

(Antn + An_]_tn_l + ... A]_t + Ao)ert
where n is the highest power of t attached to any e in r(t).

STEP 2b: For the complex pair a & ib, you use

(Apt" + Ap_1t" . At + Ag)e® cos(bt)+
(Bat" + B,_1t" ' 4+ ... Byt + By)e™ sin(bt)

where n is the highest power of t attached to any e cos(bt)
or e*sin(bt) in r(t).

IMPORTANT: You have to include both the sines and the
cosines with that highest power applied to both.



To get the final version of the test function we need a
preliminary step.

STEP 0: Solve the homogeneous equation
Ay” + By’ + Cy = 0. In the process, you get the roots of the
characteristic equation Ar? 4 Br + C = 0.

STEP 3: If a root from the homogeneous equation occurs
among the associated roots then the corresponding expression
in Yp1 is multiplied by the just high enough power of t so that
the sum includes no solution of the homogeneous equation.
After this adjustment we have the final Test Function Y.

STEP 4: Substitute Y}, into the equation and equate
coefficients to determine the unknown coefficients to obtain
the particular solution y,.

The general solution is then y, = y, + y,. If there are initial
conditions, then substitute to determine C; and G, after y,
has been obtained.



Example: f(t) =
t3+2t — 5+ 7cos(3t) — (t2 + 1)e* — e* sin(3t) — t2sin(3t).

STEP 1: The associated roots are as follows:

t34+2t—5 = root equals 0,
7cos(3t) — t?sin(3t) =  root equals 0 =+ 3i,
—(*+1)e* = root equals 2,
—e’*sin(3t) = root equals 2 & 3i.

STEP 2: The first version of the test function, Y (t) is

[At® + Bt* + Ct + D]+
[(Et? + Ft 4+ G)cos(3t) + (Ht* + It + J)sin(3t)]+
[(Kt? + Lt + M)e*']+
[Ne®t cos(3t) + Pe?* sin(3t)].



The final form of Y, depends on the left side of the equation.
Example A: y” — 2y’ = f(t), with characteristic equation

r?> —2r = 0 and so with roots 0, 2.

STEP 0: Yn = Cl -+ C2€2t.

STEP 3: In Y, the terms D and Me®" are solutions of the
homogeneous equation. When we apply L(y) = y” — 3y/,
these terms drop out, with D and M gone. For the remaining
13 unknowns we get 15 equations and usually no solution. We
multiply each of the corresponding blocks by t so that Y, is

[t(At* + Bt® + Ct + D)+
[(Et> + Ft 4+ G)cos(3t) + (Ht* + It + J)sin(3t)]+
[t(Kt* + Lt + M)e*']+
[Ne?* cos(3t) + Pe? sin(3t)].
STEP 4: Substitute Y, into the equation L(y) = f and solve

for the 15 unknowns to obtain the particular solution y,. The
general solution is then y, = y4 + yp.



Example B: y” — 4y’ + 4y = f(t), with characteristic equation
r> —4r +4 = 0 and so with roots 2, 2.
STEP O: Yn = Cle2t + Cgtezt.

STEP 3: In Y, the terms Lte®* + Me®" are solutions of the
homogeneous equation. Multiplying by t will not suffice as we
then obtain Mte?t which is still a solution of the homogeneous
equation. Multiply by t again to get for Y}:

[At? + Bt* + Ct + D]+
[(Et> + Ft + G)cos(3t) + (Ht* + It + J)sin(3t)]+
[?(Kt? + Lt + M)e* ]+
[Ne®* cos(3t) + Pe? sin(3t)].



Example C: y” + 9y = f(t) with characteristic equation
r? +9 = 0 and so with roots +3i.
STEP 0: y, = G cos(3t) + G sin(3t).

STEP 3: Now it is G cos(3t) + Jsin(3t) which case the
problem. Multiplying by t we get for Y

[At® + Bt* + Ct + D]+
[t(Et? + Ft + G)cos(3t) + t(Ht* + It + J)sin(3t)]+
[(Kt? + Lt + M)e*']+
[Ne®* cos(3t) + Pe?* sin(3t)].



Question:

c 4y —4y'+y

(& Y'—-y -2
{(b) y'=y'+2y =
(c)
+ 7te®t — et/?sin((V7/2)t) — t?et/? 4 1.

t2



(0) Solve each of the three homogeneous equations.

(1) Block together the terms with the same associated root.
(2) Obtain the first version of the test function Y*(t) by using
the highest power ot t for each block. Remember to include
both sines and cosines.

(3) Adjust any block whose associated root is a root of the
homogeneous equation to get the test function Y(t).



(0 - a) Characteristic equation r> —r —2 = (r—2)(r+1)=0
with roots 2, —1. So y, = Ce?t + Ge ™.

(0 - b) Characteristic equation r?> — r +2 = 0 with roots

1+ 4,

2Tt

So y, = Giet’? cos((v/7/2)t) + Coet/?sin((v/7/2)t).

(0 - ¢) Characteristic equation

4r* —4r+1=(2r — 1)(2r — 1) = 0 with roots 3,

So Yn = Clet/z + Cgtet/2.



(1) [t? + 1] associated root 0.
7te®! associated root 2.
—e'/2sin((V/7/2)t) associated roots 1 + 4i.

—t%e!/2 associated root 3.



Yi(t) = [At? + Bt + (]
+[(Dt + E)e*]
+[Fet/? cos((v/7/2)t) + Get/?sin((v/7/2)t)]

+[(HE? + It + J)e'/?].



For equation (a) the root 2 is a root of the homogeneous
equation and so

Y(t) = [At? + Bt + C] + t[(Dt + E)e*]

+[Fet/? cos((v/7/2)t) + Get/?sin((v/7/2)t)] + [(Ht? + It +
Net’?].

For equation (b) the roots 1 + 41 are roots of the
homogeneous equation and so

Y(t) = [At? + Bt + C] + [(Dt + E)e*]

+t[Fet/? cos((v/T/2)t) + Get/?sin((v/7/2)t)] + [(Ht? + It +
J)et/2



For equation (c) the root 1 is a repeated root of the
homogeneous equation and so

Y(t) = [At? + Bt + C] + [(Dt + E)e*]

—|—[F§f/2 cos((v/7/2)t) + Ge/?sin((v/7/2)t)] + t2[(Ht? + It +
J)et/?].



Exercise 3.5/ BD19; BDM14 :

y” + 4y = 3sin 2t, y(0) =2,y'(0) = —1.

STEP 0: Roots for the homogeneous are +2i. So

yn = G cos(2t) + Gy sin(2t).

STEP 1: Associated root for 3sin 2t is +2i and so STEP 2:
Y, = Acos(2t) + Bsin(2t).

STEP 3: Y, = Atcos(2t) + Btsin(2t), because the associated
roots are roots of the homogeneous equation.

STEP 4: Substitute

4 x Y, = Atcos(2t) + Btsin(2t)

0 x Y, = 2Btcos(2t) — 2Atsin(2t) + Acos(2t) 4 Bsin(2t)

1 x Y= —4Atcos(2t) — 4Btsin(2t) + 4B cos(2t) — 4Asin(2t)
3sin2t = 0 + 0 + 4Bcos(2t) — 4Asin(2t).

So B=0,A=—-3/4and
vg = Cicos(2t) + Gsin(2t) — 3t cos(2t).



Now for the initial conditions:

yg = Cicos(2t) + Gsin(2t) — 2tcos(2t) + Otsin(2t),
=(2G — Z) cos(2t) — 2C;y sin(2t) + Ot cos(2t) + %tsin(2t).

Substitute t = 0.
2 - Yg(o) - C17
3

So(G=2,C=—z and

1
y = 2cos(2t) — gsin(2t) — %tcos(2t).



[[lustration

As an illustration of the Method of Undetermined Coefficients,
we consider the integral problems from Calculus 2:

/ e® cos bx dx, / e sin bx dx.

These were done there by a looping pair of integrations by
parts. Instead think of these are the solutions to the first order
linear equations with constant coefficients:

"' = e cos bx, y'=e™sinbx, (b#0)

which we will solve using the Method of Undetermined
Coefficients



y = Ae®™ cos bx + Be® sin bx
y' = (Aa + Bb)e®™ cos bx+(—Ab + Ba)e™ sin bx.

Equating coefficients between y’ and 1e® cos bx we get

Aa + Bb =1
—Ab + Ba = 0.

Solve using Cramer's Rule with coefficient determinant a + b?



A=a/(a®+ b*),B = b/(a* + b?) and so

ae? cos bx + be? sin bx
e? cos bxdx =
a% + b?
Similarly, using
Aa + Bb = 0
—Ab + Ba = 1,

we obtain

ax —be® cos bx + ae® sin bx
e™ sin bxdx = .
a> + b2



For those who have had linear algebra:

The functions {e®* cos bx, e sin bx} form a basis for a two
dimensional vector space of functions.

On it the derivative map D is a linear map with matrix

2= (%)

That is, the first and second columns are the coefficients of D
applied to €™ cos bx and e® sin bx, respectively.



The inverse of D is the integral map / with inverse matrix:

[ — 1 (a —b
a2+ b2 \b a

with the first and second columns the coefficients of / applied
to e cos bx and e? sin bx, respectively.



Higher Order, Homogeneous, Linear Equations
with Constant Coefficients, Section 4.2

For n = 3,4,... an n'" order linear equation with constant
coefficients is of the form

Ay + Ay o+ Ay + Ay =
It is homogeneous when f = 0. We will consider just the
homogeneous case and the cases with associated roots so that
the method of Undetermined Coefficients can be used.

For an n" order equation the general solution will have n
arbitrary constants. In the linear case, we look for n
independent solutions yi, ..., ¥, and get the general solution
of the homogeneous equation y, = Ciy; + -+ - + C,y,.

As in the second order case, we look for solutions of the form
e. When we substitute and divide away the common factor
of e™ we obtain the n'" degree characteristic equation

P(rl =0 with



P(r) = Anr" + Ap 1"t o Arr + Ao

The equation P(r) = 0 has, in general, n roots obtained by
factoring. There are two CASES.

Real roots (r = a): The root r = a from the factor r — a gives
a solution e?f. “Repeated roots” really means repeated
factors. If we have (r — a)* in the characteristic polynomial
P(r), that is, k copies of (r — a) then, as in the second order
case, the additional solutions are obtained by multiplying by t,
to get solutions e, te?t, ... thk—le?,

Complex conjugate pairs (r = a =+ bi): The conjugate pair

r = a = bi comes from a quadratic factor r?> — 2ar + (a* + b?)
gives the two solutions e cos(bt) and e®' sin(bt). But now
you can have repeated complex roots. If

(r? — 2ar + (a* + b%))* occurs in the factoring of P(r) then we
have 2k solutions e cos(bt), te®t cos(bt), . .., t*"te? cos(bt)
and e sin(bt), te** sin(bt), ..., t""Le sin(bt).



The hard work here is doing the factoring. So we have to
review (or for some of you introduce) some factoring methods.

Example A: y(D — 2y(1) 4 y(3) = 0 with
P(r)=r**—2r" 4 r3.
First, pull out the common factor P(r) = r3(r® — 2r* + 1).

Next notice that r® — 2r* + 1 is quadratic in r* and factors to
(r* —1)%. Now use the difference of two squares
rr—1=(rP+1)(rP-1)=(r*+1)(r+1)(r—1). So

P(r) = r*(r* + 1)*(r + 1)*(r — 1)°
with eleven roots 0,0,0, +i, +i,—1, -1, 41, +1.

yh = G + Gt + Gst? + Gy cos(t)+Cst cos(t)+
Gssin(t) + Grtsin(t) + Gge " + Gote "+ Crpe’ + Cyyte’.



Example B: y(® — 3y() — 8y” 1 24y = 0 with

P(r) = r’—3r*—8r*+24 = (r*-3)r*—(r*-3)8 = (r*-3)(r*-8).

This is factoring by grouping. The roots of r> —3 = 0 are

4++/3. For the cubic we need the difference of two cubes

rP—a=(r—a)(r*+ar+a%),

r+a=r—(-a)P=(r+a)(r* —ar+a).

So P(r) = (r — v/3)(r + V3)(r — 2)(r? 4 2r + 4) with roots

\/§, —\/§, 2,—1+ V/3i and the solution is

v = CreV3+Ce V34 Ge® 4 Cuet cos(V/3t)+Cse Fsin(V/3t).



DeMoivre's Theorem

Remember that if we start with a complex number z in
rectangular form z = x + iy and convert to polar coordinates
with x = rcos(f), y = rsin(f). The length r is called the
magnitude and the angle 6 is called the argument of the
complex number. So we have

z = x +iy = r(cos(d) + isin(d) = re"’.

If z=rel’ and w = ae'® then, by using properties of the
exponential, we see that zw = rae'®*?). That is, the
magnitudes multiply and the arguments add. In particular, for
n=1,273..., we see that z" = r"e"".

DeMoivre's Theorem describes the solutions of the equation
z" = a which has n distinct solutions when a is nonzero. We
describe these solutions when a is a nonzero real number.



Notice that re® = rel(®*+27) When we raise this equation to

the power n the angles are replaced by nf and nf 4+ n27 and
so they differ by a multiple of 7. But when we divide by n we
get different angles. So if a > 0, then a = ae® and —a = ae'™.

M=—g = 7= a1/n . {e|07 e|27r/n7 e|47r/n7 " e|(n—1)27r/n}

M= _a= = al/n . {eiﬂ'/n’ ei(7r+27r)/n’ ei(ﬂ'+47‘r)/n, » ei(7r+(n71)27r)/n}

For z" = a we start at angle 0 and go around the circle of
radius a*/" with n equal steps of 27/n radians for each step.
For z" = —a we again go around the circle with n equal steps
but this time starting a half step up at angle 7/n.



Example C: y(®) — 64y = 0, with P(r) = r® — 2°. By
DeMoivre's Theorem the roots are
2{17 ei7r/3’ ei27r/37 _17 ei47r/37 ei57r/3}.

26'™/3 2e7/3 s the conjugate pair 1 +iv/3 and
2e27/3 2¢7/3 is the conjugate pair —1 + iv/3.

So the roots of P(r) =0 are 2, —2,1+iv3, -1 +i/3.

In this case, one can also factor using the difference of two
squares and difference of two cubes:

r°—64=(r—-8)(r+8)=
(r—=2)(r* +2r +4)(r +2)(r* — 2r + 4),

yp = Ge* + Ge *t+
Cse cos(V/3t) + Cpetsin(V/3t) + Gse* cos(V/3t) + Cee tsin(V/3t)



Example D: y©® 4+ 81y” = 0 with
P(r) = r®+81r*> = r’(r* + 81).

By DeMoivre's Theorem the roots of r* +3* =0 are
3{ei7r/4’ ei37r/4’ ei571'/4’ ei77r/4}.

3\[:*:'3\[
3\/ 3\/
> + i2¥e 5=

3ei™/4 3e’™/* is the conjugate pair

3e'37/4 3ei57/4 is the conjugate pair

So

Yn = G + G+

3\/5 3V2t 3\/§t
2 2

G’ cos( )+ Cae 2 sin(

3v2t 3\/§t 32t 3\/§t
2

2 cos( )+ Gee™ 2 sin(

)
).

+C5€7



Undetermined Coefficients for Higher Order Equations,
Section 4.3

Example E:
yM 432y 4 256y/(3) =
312 — 7teV?t 4 e V2 sin(V2t) + t2eV? cos(V/21).
P(r) = r'' +32r" +256r° = r*(r* + 16)?
with roots
0,0,0,v2 + v2i,v2 £ v2i, =2 £ V2i, —/2 + V2i.
vn=C + Gt + Gt?
CreV? cos(V/2t) + CseY?! sin(vV/2t)+
CoteV cos(v/2t) + Crte¥?! sin(v/2t)
Cee V2t cos(V2t) + Coe V2t sin(V/2t)+
Ciote V2t cos(V/2t) + CirteY?!sin(V/2t).



The associated roots for the four terms of the forcing function

are 0,2, —v/2 £ v/2i,v/2 £ V2i.

The first version of the test function is

Y! = [At? + Bt + C] +[(Dt + E)eV?]+
[Fe~V?t cos(v/2t) + Ge™ V2t sin(v/2t)]
F[(HE + It + J)eV? cos(V2t) + (K2 + Lt + M)eY?! sin(v/2t)].

From the interference with the roots of the homogeneous
equation, we must use as the correct test function:

Y, = t*[At? + Bt + C] + [(Dt + E)e¥?]+
t2[Fe~V? cos(v/2t) + Ge™ V2t sin(V/2t)]
+2[(HE + It + J)eV? cos(V/2t) + (K> + Lt + M)eV? sin(v/2t)].



Variation of Parameters, Section 3.6

For a general second order linear equation

L(y)=y"+ py' + qy = f, suppose we have two independent
solutions y, y» for the homogeneous equation £(y) = 0. So
the general solution of the homogeneous equation is

yh = Gy + Gys.

We need a particular solution for the equation with forcing
term f. We look for y, = u1y; + upy» with vy, u» nonconstant
functions to be determined.

We impose two conditions. First, we want y, to be a solution
of L(y) =f.

Second, when we take the derivative
Y, = U1y; + toys + tyy1 + tpys. Our second condition is
Uy + upy, = 0.



So when we substitute we have

qx Yo = i1+ Wy

pX y, = iy + oy

1x  y) = wy)+uy +uy + uy,
fo= 0 + 0+ uy+ uy.

So u}, U}, are determined by two linear equations

uyr + thy, = 0
my; + oy, = f.

Notice that the determinant of coefficients is the Wronskian
and so is nonzero.



Example 3.6/ BD6; BDM5 : y” 4+ 9y = 9sec?(3t). The roots
of the homogeneous are £3i and so y; = cos(3t), y» = sin(3t).
We look for y, = uy cos(3t) 4 uzsin(3t). We have the linear

equations:
up(cos(3t)) + us(sin(3t)) = 0
uj(—3sin(3t)) + uy(3cos(3t)) = 9sec?(3t).

The Wronskian is 3(cos?(3t) + sin?(3t)) = 3 and so by
Cramer's Rule

uj = —3sin(3t)sec’(3t) = —3sec(3t)tan(3t) = u; = — sec(3t)
uy, = 3cos(3t) sec’(3t) = 3sec(3t) = u = In|sec(3t) + tan(3t)|

yp = —sec(3t) cos(3t) + (In|sec(3t) + tan(3t)|) sin(3t) =
—1+ (In|sec(3t) + tan(3t)|) sin(3t).



Example 3.6/ BD7; BDM6 : y” + 4y’ + 4y = t2e . The
characteristic equation is r> + 4r +4 = (r +2)> = 0 and so
yn = Gie?t + Gyte™?'. We look for y, = uje™% + upte 2t
We have the linear equations:

upe %t + upte™ = 0
up(—2e7%) + up(—2te '+ e ) = t e
The Wronskian is e=** and so
up=—tlte e =t = u=—In(t)
wy=t2e e =t2 = up=-t"

= Ge %t 4+ Gte? —In(t)e ? — t te ™ or
Ye

= Cie 2% + Gote 2t — In(t)e 2.
Ye



Example 3.6/ BD16 : (1 —t)y” +ty' —y = 2(t — 1)?e~* with
y1 = €', y» = t. Check that y; and y, are solutions of the
homogeneous equation.

Divide by (1 — t) to get r = —2(t — 1)e~* and so

uiet + ujt = 0
et + uy = =2(t—1e "

The Wronskian is (1 — t)ef and so

w=2(t—1)te t/(1 —t)ef = —2te™® = uy =te X+ e

2
uy=-2(t—1)/(1—-t)e'=2e" = u=-2e"

Yo=(t+3)et—2tet = (3 —t)e "

—2t



Spring Problems, Sections 3.7, 3.8

The restoring force of a spring is in the opposite direction to
its displacement y from equilibrium. In the case of a linear
spring, which is all we is consider, it is proportional to the
displacement and so is —ky with k a positive constant called
the spring constant.

If there is friction - imagine the spring moving through a liquid
like molasses - then the friction force is in the opposite
direction to its velocity v = dy = y’. We will assume it is
proportional to the velocity and so is —cv where c is a positive
constant (or zero if there is no friction).

Finally, there may be an external force, called the forcing term,
f(t) which may not be a constant. It is usually assume
periodic.



Thus, the total force is —ky — cy’ + f(t). Newton's Third Law
says that the total force is proportional to the the acceleration
a= % = y” and the proportionality constant is the mass m.
That is, F = ma. So the differential equation for the spring is:

my” +cy’' + ky = 0.
The weight w of an object is the force due to gravity. The
acceleration due to gravity is a constant (near the surface of
the earth) denoted —g. (Why the minus sign?) In English
units g = 32ft/sec?. Thus, weight and mass are related by
w = mg.

When a weight is attached to a hanging spring it stretches it a
distance denoted AL. The equilibrium position is when the
spring force exactly balances the weight. That is, w = kKAL.
So the equations which relate the constants in these problems
are

w = mg, w = kAL.



Suppose there is no friction and no external force so that
my” + ky = 0. This is a second order, linear, homogeneous
equation with constant coefficients. The characteristic
equation is mr? 4+ k = 0 with roots +wi where

w = +/k/m=\/g/AL, the natural frequency of the spring.
Thus, the general solution is

y = G cos(wt) + Gy sin(wt),

with the constants C; = y(0), the initial position, and
wG = y’(0), the initial velocity.

Regarding the pair (C;, (;) as a point in the plane we can
write it as (Acos(¢), Asin(¢)), with A2 = C2+ C3. Remember
that cos(a & b) = cos(a) cos(b) F sin(a) sin(b) and so

y = Acos(wt) cos(¢) + Asin(wt)sin(¢) = Acos(wt — ¢).



If there is damping, and so ¢ > 0, then the characteristic
equation is r* + 2(c/2m)r + (k/m) =0

If the damping is small, with (¢/2m) < \/k/m then the roots
are a complex conjugate pair —(c/2m) & /(k/m) — (c/2m)?i
and the solution is

y = e’(c/2m)t[C1 cos(\/(k/m) —(c/2m)> t) +
Cosin(y/(k/m) — (c/2m)? t)].

If the damping is large, with (c/2m) > y/k/m then the roots
are real with

y = Cyel(e/2mye/(e2m=(k/m) ¢, gl-(e/2m)=/(e/2m>=(k/m)] €

Finally, if (c/2m) = \/k/m then —(c/2m) is a repeated root
and so y = e (/2™ + Got].
In any case, the solution decays exponentially.



In the undamped case, suppose there is periodic forcing:
y" + w3y = cos(wt).

The roots of the characteristic equation r? 4+ w3 = 0 are d=wpi.
wo is the natural frequency of the spring.

The associated roots for the forcing term are +wi.

If w # wo then the test function Y, = Acos(wt) + Bsin(wt).

If w = wg then the test function
Y, = At cos(wt) + Btsin(wt). Forcing at the natural
frequency of the spring is called resonance.



Example 3.8/ BD11; BDM7 : A spring is stretched 6in by a
mass that weighs 4/b. The mass is attached to a dashpot with
a damping constant of 0.25/b - sec/ft and is acted upon by an
external force of 4 cos(2t)/b.
» Determine the general solution and the steady state
response of the system.

» |f the given mass is replaced by one of mass m, determine
m so that the amplitude of the steady state response is a
maximum.

AL:%,W:4,c:%,g:32, and so
k:W/AL:8,m:W/g:é. So

1 1
éy” + Zy/ +8y =4cos(2t), or y"+2y + 64y =32cos(2t).
vh = e f[Ccos(V63 t) + Gysin(vV63 t)]

The particular solution y, = Acos(2t) + Bsin(2t) is the
steady-state solution.



Substitute into the equation y” + 2y’ + 64y = 32 cos(2t)

64 x [y, = Acos(2t) + Bsin(2t) |
2x [y, = 2Bcos(2t) — 2Asin(2t)]
Ix [y, = —4Acos(2t) — 4Bsin(2t)]

32cos2t = (60A+ 4B)cos(2t) + (—4A+ 60B)sin(2t).

154 + B = 8 4
A+ 158 = o = AB=153

The amplitude is V/A? + B2 = 4Y226

113

(15,1).



If the mass m is substituted then the equation is
my” + 1y’ 4+ 8y = 4cos(2t). As there is damping the
steady-state solution is again y, = Acos(2t) + Bsin(2t).

8x [y, = Acos(2t) + Bsin(2t) |
1
e [y, = 2Btcos(2t) — 2Atsin(2t)]
mx [y, = —4Acos(2t) — 4Bsin(2t)]

1
4cos2t = ((—4m+8)A+ EB) cos(2t)

F(~5A+ (~4m+8)B)sin(2t).



(—8m+16)A + B o
—A + (-8m+16)B = O

The coefficient determinant is 64(2 — m)? + 1 and so
8

64(2 — m)> +1
8

—m

(A B) =

(8(2—m),1).

which has its maximum at
)2+1

The amplitude is

m=2.



Series Solutions Centered at an Ordinary Point

We are going to look at second order, linear, homogeneous
equations of the form P(x)y” + Q(x)y’ + R(x)y = 0 with the
coefficients P, @, R polynomials in x. The center x = a is an
ordinary point when P(a) is not zero so that Q/P and R/P
are defined at x = a.

We will look for a series solution centered at x = 0. Thus,

y = X ax".
y = ¥ nax"l.
y" = X n(n—1)a,x"2

We use three steps

Step 1: Write a separate series for each term of the
polynomials P, @ and R.

Step 2: Shift indices so that each series is represented as
powers of x*.

Step 3: Collect terms to obtain the recursion formula for the
a.'s with ag = y(0) and a; = y/(0) the arbitrary constants.



Example: (24 3x?)y” + (x —5x3)y’ + (1 — x> + x*)y = 0. So
there will be seven series.

2y" =% 2n(n — 1)apx" [k = n — 2] = X2(k + 2)(k 4 1)aj42x*.
3x%y" =¥ 3n(n — 1)apx" [k = n] = X 3k(k — 1)axx”.

xy' = Y nax" [k=n= X kax*.
—5x%y' = ¥ —b5na,x"[k=n+2] =X —5(k — 2)a,_ox*.
ly = X ax" [k=n= X ax".
X%y = L —ax"k=n+2 =X — a_px~.
X'y = Tax" [k=n+4= X acsx"

We sum and collect the coefficients of x* to get the recursion
formula.



Recursion Formula:

w2 = 5t 2§(k g3k~ D
—kak + 5(/( — 2)ak_2—ak + ak_o — ak_4] =
S 2;(/( (k3K ~2) = a5k ~ 9acca - 2]
Substitute:
k=0, a=3i[—a) = —%a0.
k=1, a3=5[2a]=—ta.
k=2, ay=2[-9a + lag) = £ [2a0) = ao
k=3, a5= %[—2233 +6a1] = 5[Fa] = 120a1
k =4, 60[ 41a4+11a2—ao] =
60[_ 403,50 oy a0] = 5879630



Example: (1 —x)y” + (x —2x?)y’ + (1 —x+ x*)y = 0.y(0) =
—12,y(0) = 12 So there will again be seven series. Step 1:
and Step 2:

1y” =Y 1n(n—1)ax"?[k = n—2] = Z1(k + 2)(k + 1)axs2x
—xy" =% —n(n—1)ax" k=n—-1=% — (k+ 1)(k)ax 1x*.

xy' = Y nax" [k=n= X kax*
—2x%y' = ¥ —2na,x"[k=n+1 =X —2(k - 1)a,_1x~.
ly = X ax" [k=n]= X ax*.
—xy = Y—ax"k=n+1=% —a_xX
Xy = Yax"? [k=n+2= X ax"

We sum and collect the coefficients of x to get the recursion
formula.



Recursion Formula:

1
A2 = (k+2)(k+ 1)[(k + 1)(K)awsa

—kag 4+ 2(k — 1)ak_1—ak + ak—1 — ak—2| =

[((k + 1)(k)ak+1—(k + 1)ak + (2/( — 1)ak,1 — ak,z].

1
(k+2)(k+1)

Substitute: ag = —12,a; = 12

k=0, a,=21[0—ay+0+0]=6.

k:]., 33:%[232—231+30+0]:—4.

k=2, a;=5[6as—3a+3a;— a) = L.
=3, a5 = 5[12a, —4a3 + 53, — ay] = 2.

k=4, a5 =35[20a5 —5as +7az — a] = &

1 7
y:—12—1—12x—|—6x2—4x3—|—§x4—|—2x5+@x6+...



Example: y” + [2+ (x — 1)?]y’ + (x> — 1)y = 0 centered at
x =1 So we want a solution of the form y = ¥a,(x — 1)".
Let X = x —1sothat x =X+ 1. Then x> — 1= X2 +2X
and y = ¥a,X" with y” + [2+ X%y’ + (X> +2X)y = 0.
Notice that j—f( = % because % =1

y' =% n(n—1)a,X" [k =n—2] = X(k +2)(k + 1)a2X".

2y = Y 2na,X"' [k=n—-1= X 2(k+ 1)a1 X~

X% = T na, X" [k=n+1= X (k—1)a X"
X’y = Ta X" [k=n+2l= ¥ aX~

2Xy = Y 2a,X"' [k=n+1= X 2a_X~

Recursion Formula:

1

k2 = (k T 2)(/( n 1) [—2(k + 1)3k+1 — (k + l)ak_l — ak_2].




From the recursion formula
a2 = g 20k + Dakey — (k+ a1 — ax—2], we
substitute to get k =0, a, = 3[-2a;—0—0] = —

k = ].7 dy = %[—432 — 230 — O] = %31 — %ao.

k=2 a;= %[—633 —3a; — ap] = 1231 + %ao
k =9, dg = %[—834 — 482 31] = a1 30
k=4, ag= %[—1035 —bas — ap| = 1387031 —i— 15

ap = y(1) and a; = y'(1).



If the initial conditions y(1) = 18, y’(1) = —24 are given, it is
best to substitute immediately. From the recursion formula
dk42 = m[—2(k + 1)ak+1 — (k + 1)8[(,1 — ak,g], we
substitute to get

k=0, a=3[48—-0-0]=24
k=1, a;=1[-96—-36—0]=-22.
k=2, a;=5[132+72-18] =3
k=3, a5=3[-124—96+24] = —%.
k=4, a5 =35(98+ 110 —24] = 2.

So that

1
y =18 —24(x — 1)+ 24(x — 1) = 22(x — 1)* + %(X -1)*

49 92
——(x =14+ =(x—1)°+....
(x4 (- 10+
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