2025

(1) (12 points each)Compute the general solution of each of the following differential equations:

$$(a) y' + y^2 \sin(x) = 0.$$

Variables Separable: $\int y^{-2} dy = -\int \sin(x) dx$.

$$-y^{-1} = C + \cos(x)$$
 or $y = -\frac{1}{\cos(x) + C}$.

(b)
$$(1+t^2)\frac{dy}{dt} + 4ty = (1+t^2)^{-2}$$

Linear:
$$\frac{dy}{dt} + (\frac{4t}{1+t^2})y = (1+t^2)^{-3}$$

$$\mu = exp(\int \frac{4t}{1+t^2} dt) = exp(2\ln(1+t^2)) = (1+t^2)^2.$$

$$(1+t^2)^2 \frac{dy}{dt} + (4t(1+t^2))y = [(1+t^2)^2 y]' = (1+t^2)^{-1}.$$

So
$$(1+t^2)^2 y = \arctan(t) + C$$
 or $y = (\arctan(t) + C)/(1+t^2)^2$.

(c)
$$y'' - 5y = 0$$
 (y is a function of x).

Second Order Linear: Characteristic Equation $r^2 - 5 = 0$ with roots r =

$$y = C_1 e^{\sqrt{5}x} + C_2 e^{-\sqrt{5}x}.$$

$$(d) ydy + (6x - 5y)dx = 0.$$

Homogeneous with $\frac{dy}{dx} = \frac{5y-6x}{y}$. Let z = y/x.

$$x\frac{dz}{dx} = \frac{5z-6}{z} - z = -\frac{z^2 - 5z + 6}{z}.$$

$$-\int \frac{z}{(z-3)(z-2)}dz = \int -\frac{dx}{x}.$$

$$\frac{z}{(z-3)(z+1)} = \frac{A}{z-3} + \frac{B}{z-2}.$$

So z = A(z-2) + B(z-3).

With z = 3, A = 3 and with z = 2, B = -2.

$$C - \ln(x) = 3\ln(\frac{y - 3x}{x}) - 2\ln(\frac{y - 2x}{x}).$$

$$3\ln(y-3x) - 2\ln(y-2x) = C$$
, or $\frac{(y-3x)^3}{(y-2x)^2} = C$.

(2) (12 points each) Solve the following initial value problems:

(a)(a)
$$y'y'' = 2$$
, with $y(0) = 1, y'(0) = 2$.

Reduction of Order: Let y' = v so that $y'' = \frac{dv}{dt}$.

$$v\frac{dv}{dt} = 2.$$

$$v^2/2 = \int v dv = \int 2dt = 2t + C_1.$$

When t=0, v=2 and so $C_1=2, v^2=4(t+1)$. $\frac{dy}{dt}=v=2\sqrt{t+1}$ (positive square root because v=2 when t=0.So

$$y = 2 \int (1+t)^{1/2} dt = \frac{4}{3} (t+1)^{3/2} + C_2.$$

When t = 0, y = 1 and so $C_2 = -\frac{1}{3}$.

$$y = \frac{4(t+1)^{3/2} - 1}{3}.$$

(b)
$$(1 + e^{xy}(y\cos x - \sin x)) dx + (xe^{xy}\cos x - y) dy = 0$$

with $y(0) = 2\pi$.

$$\frac{\partial}{\partial y}(1+e^{xy}(y\cos x-\sin x))=e^{xy}(xy\cos x-x\sin x+\cos x)=\frac{\partial}{\partial x}(xe^{xy}\cos x-y)$$

Exact Equation: $F = \int (xe^{xy}\cos x - y) \ dy = e^{xy}\cos x - \frac{y^2}{2} + H(x)$.

$$\frac{\partial F}{\partial x} = e^{xy}(y\cos x - \sin x) + H'(x) = 1 + e^{xy}(y\cos x - \sin x).$$

$$H'(x)=1 \text{ and so } H(x)=x.$$
 $e^{xy}\cos x-\frac{y^2}{2}+x=C.$ Since $y(0)=2\pi,\,1-2\pi^2+0=C$ and so $C=1-2\pi^2.$

- (3)(9 points) Assume that y_1, y_2 are solutions of the equation y'' + py' + qy = 0where p and q are functions of t.
 - (a) Define the Wronskian W of y_1, y_2 . $W = y_1y_2' y_2y_1'$.
- (b) Prove Abel's Theorem. That is, show that the Wronskian satisfies a first order differential equation.

$$0 = y_1 y_2 - y_2 y_1.$$

$$W = y_1 y_2 - y_2 y_1.$$

$$W = y_1 y_2' - y_2 y_1'.$$

 $W' = y_1 y_2" - y_2 y_1".$

Multiply the first row by q, the second row by p, the third row by 1 and add.

Because y_1 and y_2 are solutions we obtain:

$$0 + pW + W' = 0 + 0$$
. That is, $\frac{dW}{dt} + pW = 0$.

(4) (4) (10 points) A 400 gallon tank contains 120 gallons of water in which is dissolved 20 pounds of salt. Starting at time t = 0, a solution with a concentration of 5 pounds per gallon is pumped into the tank at a rate of 7 gallons per minute. At the same time, the well-stirred mixture is pumped out at the rate of 5 gallons per minute.

Set up an initial value problem (differential equation and initial conditions) for the amount Q(t) of salt (in pounds) in the tank at time t until the tank is full. You need not solve the equation.

 $\frac{dV}{dt}=7-5$ in gal/min with $V_0=120.$ So V=120+2t. In pounds/min

$$\frac{dQ}{dt} = 7 \cdot 5 - 5\frac{Q}{V} = 35 - \frac{5}{120 + 2t}Q$$

with $Q_0 = 20$.

(5) (9 points) I borrow \$15,000 at an interest rate of 6% per year, compounded continuously. I pay off the loan continuously at a rate of \$1200 per year. Set up an initial value problem (differential equation and initial conditions) whose solution is the quantity S(t) of dollars that I owe at time t, until the loan is paid off. You need not solve the equation.

$$\frac{dP}{dt} = .06P - 1200,$$

with $P_0 = 15,000$.

Remember to show your work. Good luck.