Math 39100 K (19392) - Homework Solutions - Post 02

Ethan Akin Email: eakin@ccny.cuny.edu

Fall, 2024

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 @

Chapter 3, Section 3.3 - BD 10; BDM 7 : $y'' + 2y' + 2y = 0$ with characteristic equation $r^2 + 2r + 2 = 0$. Roots: $r=[-2\pm\sqrt{4-8}]/2=-1\pm\text{i}.$

$$
y=C_1e^{-t}\cos t+C_2e^{-t}\sin t.
$$

Contrast with $y'' + 2y' - 2y = 0$ with characteristic equation $r^2 + 2r + 2 = 0$. Roots: $r = [-2 \pm \sqrt{4+8}]/2 = -1 \pm \sqrt{3}$.

$$
y = C_1 e^{(-1+\sqrt{3})t} + C_2 e^{(-1-\sqrt{3})t}.
$$

KORKARYKERKER OQO

BD 17; BDM 12 : $y'' + 4y = 0$ with characteristic equation $r^2 + 4 = 0$. Roots: $r = \pm 2i$.

$$
y = C_1 \cos(2t) + C_2 \sin(2t),
$$

\n
$$
y' = -2C_1 \sin(2t) + 2C_2 \cos(2t).
$$

$$
y(0) = 0
$$
 and $y'(0) = 1$. So $0 = C_1(1) + C_2(0)$ and
 $1 = -2C_1(0) + 2C_2(1)$.
 $C_1 = 0$, $C_2 = \frac{1}{2}$ and so

.

 $y = \sin(2t)/2$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Example 3.4/25 : $t^2y'' + 3ty' + y = 0$, $t > 1$ with $y_1(t) = t^{-1}$.

$$
1 \times y_2 = ut^{-1}
$$

\n
$$
3t \times y'_2 = -ut^{-2} + u't^{-1}
$$

\n
$$
t^2 \times y''_2 = 2ut^{-3} - 2u't^{-2} + u''t^{-1}
$$

\n
$$
0 = 0 + u' + u''t
$$

\nLet $v = u'$ and $v' = u''$. $t\frac{dv}{dt} = -v$.
\n
$$
\ln v = -\ln t, \text{ and so } \frac{du}{dt} = v = t^{-1}.
$$

\nHence, $u = \int t^{-1} dt = \ln t$.
\n
$$
y_2 = ut^{-1} = t^{-1} \ln t.
$$

KO KKOKKEKKEK E DAG

Example 3.5/9 : $2y'' + 3y' + y = t^2 + 3 \sin t$.

1. Homogeneous Equation $2y'' + 3y' + y = 0$ has characteristic equation $2r^2+3r+1=(2r+1)(r+1)=0.$ So $y_h = C_1 e^{-t/2} + C_2 e^{-t}.$

2. t^2 has associated root 0 and 3 sin t has associated root the conjugate pair $\pm i$. So our first guess for the test solution is $Y = At^2 + Bt + C + D \cos t + E \sin t$. Since none of the associated roots is a root of the characteristic equation, this is what we use for Y_p .

3. Substitute in the equation.

$$
1 \times Y_p = At^2 + Bt + C + D\cos t + E\sin t,
$$

\n
$$
3 \times Y'_p = 6At + 3B + 3E\cos t - 3D\sin t,
$$

\n
$$
2 \times Y''_p = +4A - 2D\cos t - 2E\sin t.
$$

KORKAR KERKER SAGA

So
$$
t^2 + 3\sin t = At^2 + (B + 6A)t + (C + 3B + 4A)
$$

+ $(-D + 3E)\cos t + (-E - 3D)\sin t$.
 $A = 1$.
 $B + 6A = 0$, and so $B = -6$.
 $C + 3B + 4A = 0$, and so $C = 14$.
 $-D + 3E = 0$ and so $D = 3E$.
 $-E - 3D = 3$ and so $-10E = 3$.
Thus, $E = -3/10$, $D = -9/10$.

$$
y_g = C_1 e^{-t/2} + C_2 e^{-t} + t^2 - 6t + 14 - (9/10) \cos t - (3/10) \sin t.
$$

Kロトメ部トメミトメミト ミニのQC

Example 3.5/17 : $y'' - 2y' + y = te^{t} + 4, \quad y(0) = 1, y'(0) = 1.$

1. Homogeneous Equation $y'' - 2y' + y = 0$ has characteristic equation $r^2 - 2r + 1 = (r - 1)^2 = 0$. So $y_h = C_1 e^t + C_2 t e^t$.

2. te^{t} has associated root 1 and 4 has associated root 0. So our first guess for the test solution is $Y = A t e^{t} + B e^{t} + C$. Since 1 is a root for the homogeneous, we must multiply the block $Ate^{t} + Be^{t}$ first by t and then by another t since 1 is a repeated root. So $Y_p = At^3 e^t + Bt^2 e^t + C$.

3. Substitute in the equation. Leave columns for the te^{t} and e^t terms.

$$
1 \times Y_{\rho} = At^{3}e^{t} + Bt^{2}e^{t} + C,
$$

\n
$$
-2 \times Y'_{\rho} = -2At^{3}e^{t} + (-6A - 2B)t^{2}e^{t} - 4Bte^{t},
$$

\n
$$
1 \times Y''_{\rho} = At^{3}e^{t} + (6A + B)t^{2}e^{t} + (6A + 4B)te^{t} + 2Be^{t}
$$

.

So $te^{t} + 4 = 0 + 0 + 6Ate^{t} + 2Be^{t} + C$, Notice that the first two columns on the right add up to 0. $A = 1/6, B = 0, C = 4$, So that

$$
y_g = C_1 e^t + C_2 t e^t + (1/6) t^3 e^t + 4,
$$

\n
$$
y'_g = (C_1 + C_2) e^t + C_2 t e^t + (1/2) t^2 e^t + (1/6) t^3 e^t.
$$

\n
$$
1 = y(0) = C_1 + 4, \qquad 1 = y'(0) = C_1 + C_2.
$$

\n
$$
C_1 = -3, \quad C_2 = 4.
$$

$$
y = -3e^{t} + 4te^{t} + (1/6)t^{3}e^{t} + 4.
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 @

For 19-23, just solve the homogeneous equation and get the test function $Y(t)$. Don't try to solve for the coefficients. Example 3.5/21 : $y'' + 3y' = 2t^4 + t^2e^{-3t} + \sin 3t$. The characteristic equation of the homogeneous equation is $r^2 + 3r = 0$ with roots $r = 0, -3$. So $y_h = C_1 + C_2 e^{-3t}$.

For $2t^4$ the associated root is 0 For t^2e^{-3t} the associated root is -3 For sin 3t the associated root(s) are $\pm 3i$. First version of test function is $\overline{Y}(t) =$

$$
(At4+Bt3+Ct2+Dt+E)+(Ft2+Gt+H)e-3t+(I\cos 3t+J\sin 3t).
$$

Because 0 and -3 are roots from the homogeneous equation, each of those blocks must be multiplied by t to get $Y(t) =$

 $t(At^4+Bt^3+Ct^2+Dt+E)+t(Ft^2+Gt+H)e^{-3t}+(I\cos 3t+J\sin 3t).$

YO A 4 4 4 4 5 A 4 5 A 4 D + 4 D + 4 D + 4 D + 4 D + 4 D + + E + + D + + E + + O + O + + + + + + + +

Example 3.5/22 : $y'' + y = t(1 + \sin t) = t + t \sin t$. Characteristic equation is $r^2 + 1 = 0$ with roots $r = \pm i$. $y_h = C_1 \cos t + C_2 \sin t$.

For t the associated root is 0. For t sin t the associated root is $+i$. First version of test function is

$$
\overline{Y}(t) = (At+B) + ((Ct+D)\cos t + (Et+F)\sin t).
$$

Because $\pm i$ are roots from the homogeneous equation, the corresponding block must be multiplied by t to get

$$
Y(t) = (At + B) + t((Ct + D)\cos t + (Et + F)\sin t).
$$

KORKARYKERKER POLO

Example $3.5/25$:y'' $-4y' + 4y = 2t^2 + 4te^{2t} + t \sin 2t$. Characteristic equation is $r^2-4r+4=(r-2)^2=0$ with roots $r = 2, 2$. $y_h = C_1 e^{2t} + C_2 t e^{2t}$.

For $2t^2$ the associated root is 0. For $4te^{2t}$ the associated root is 2. For t sin 2t the associated root is $+2i$. First version of test function is $\overline{Y}(t) =$

$$
(At2+Bt+C)+(Dt+E)e2t + ((Ft+G)cos 2t+(Ht+I)sin 2t).
$$

Because 2 is a twice repeated root of the homogeneous equation, the corresponding block must multiplied by t^2 . The test function $Y(t) =$

$$
(At2+Bt+C)+t2(Dt+E)e2t+((Ft+G)\cos 2t+(Ht+I)\sin 2t).
$$

KORKAR KERKER SAGA

Example 4.2/11 : $y''' - y'' - y' + y = 0$. Characteristic equation is $r^3 - r^2 - r + 1 = 0$. Factor by grouping: $r^3-r^2-r+1=r^2(r-1)-(r-1)=(r^2-1)(r-1)=$ $(r + 1)(r - 1)(r - 1)$ with roots $-1, 1, 1$. $y_g = C_1 e^{-t} + C_2 e^{t} + C_3 t e^{t}.$

Example $4.2/13$: $2y''' - 4y'' - 2y' + 4y = 0$. Divide the characteristic equation by 2 and factor by grouping to get $r^3 - 2r^2 - r + 2 = (r^2 - 1)(r - 2)$ with roots 1, -1, 2.

Example 4.2/15 : $y^{(6)} + y = 0$. The characteristic equation $r^6=-1$ requires DeMoivre's Theorem. The modulus is $1^{1/6}=1$. Each step is 60°, beginning with half-step 30°. The six roots are

(cos 30) \pm **i**(sin 30) = ($\sqrt{3}/2$) \pm **i**(1/2), (cos 90) \pm **i**(sin 90) = \pm **i**, $(\cos{150})\pm\mathbf i(\sin{150})=(-\cos{30})\pm\mathbf i(\sin{30})=(-$ √ $3/2) \pm i(1/2)$. $y_{\rm g} = C_1 e^{t\sqrt{3}/2} \cos(t/2) + C_2 e^{t\sqrt{3}/2} \sin(t/2) + C_3 \cos(t) + C_4 \sin(t)$ $+C_5e^{-t\sqrt{3}/2}\cos(t/2)+C_6e^{-t\sqrt{3}/2}\sin(t/2).$ $+C_5e^{-t\sqrt{3}/2}\cos(t/2)+C_6e^{-t\sqrt{3}/2}\sin(t/2).$

Example 4.2/21 : $y^{(8)} + 8y^{(4)} + 16y = 0$. The characteristic equation is $r^8 + 8r^4 + 16 = (r^4 + 4)^2 = 0$. $r^4 = -4$ requires DeMoivre's Theorem. The modulus is $4^{1/4} = \sqrt{2}$. Each step is 90° , beginning with half-step 45 $^{\circ}$. The four roots are

$$
\sqrt{2}((\cos 45) \pm i(\sin 45)) = 1 \pm i,
$$

$$
\sqrt{2}((\cos 135) \pm i(\sin 135)) = \sqrt{2}(-(\cos 45) \pm i(\sin 45)) = -1 \pm i.
$$

Each pair of complex roots is repeated.

$$
y_g = C_1 e^t \cos t + C_2 e^t \sin t + C_3 t e^t \cos t + C_4 t e^t \sin t + C_5 e^{-t} \cos t + C_6 e^{-t} \sin t + C_7 t e^{-t} \cos t + C_8 t e^{-t} \sin t
$$

KORKAR KERKER SAGA

Example 4.3/13 : $y''' - 2y'' + y' = t^3 + 2e^t$. The characteristic equation for the homogeneous equation is $r^3 - 2r^2 + r = r(r-1)^2 = 0$ with roots $0, 1, 1$.

$$
y_h = C_1 + C_2e^t + C_3te^t.
$$

For t^3 the associated root is 0. For $2e^{t}$ the associated root is 1. The first guess for the test function Y^1_ρ is thus

$$
Y_p^1 = (At^3 + Bt^2 + Ct + D) + (Ee^t).
$$

Because 0 is a root for the homogeneous equation, we must multiply the first block by t .

Because 1 is a repeated root for the homogeneous equation, we must multiply the second block by t^2 .

$$
Y_p = t(At^3 + Bt^2 + Ct + D) + t^2(Ee^t).
$$

Example 4.3/15 : $y^{(4)} - 2y'' + y = e^{t} + \sin t$. The characteristic equation for the homogeneous equation is $r^4 - 2r^2 + 1 = (r^2 - 1)^2 = 0$ with roots $1, 1, -1, -1$. $y_h = C_1 e^t + C_2 t e^t + C_3 e^{-t} + C_4 t e^{-t}.$

For e^t the associated root is 1. For sin t the associated root is the complex pair $\pm i$. The first guess for the test function Y^1_ρ is thus

$$
Y_p^1 = (Ae^t) + (B\cos(t) + C\sin(t)).
$$

Because 1 is a repeated root for the homogeneous equation, we must multiply the first block by t^2 .

$$
Y_p = t^2(Ae^t) + (B\cos(t) + C\sin(t)).
$$

KORKAR KERKER SAGA

Example 4.3/16 : $y^{(4)} + 4y'' = \sin 2t + te^{t} + 4$. The characteristic equation for the homogeneous equation is $r^4 + 4r^2 = r^2(r^2 + 4)$ with roots $0, 0, \pm 2i$. $v_h = C_1 + C_2t + C_3 \cos(2t) + C_4 \sin(2t).$

For sin 2t the associated root is the complex pair $\pm 2i$. For te^{t} the associated root is 1. For 4 the associated root is 0. The first guess for the test function φ^1_ρ is thus

$$
Y_p^1 = (A\cos(2t) + B\sin(2t)) + (Ct + D)e^t + (F).
$$

Because $\pm i$ are roots for the homogeneous equation, we must multiply the first block by t .

Because 0 is a repeated root for the homogeneous equation, we must multiply the third block by t^2 .

$$
Y_p = t(A\cos(2t) + B\sin(2t)) + (Ct+D)e^t + t^2(F).
$$

Example $4.3/18 : y^{(4)} + 2y''' + 2y'' = 3e^t + 2te^{-t} + e^{-t} \sin t$. The characteristic equation for the homogeneous equation is $r^4 + 2 r^3 + 2 r^2 = r^2 (r^2 + 2r + 2) = 0.$ For the quadratic we use the Quadratic Formula, to get roots $0, 0, -1 \pm i$.

$$
y_h = C_1 + C_2 t + C_3 e^{-t} \cos(t) + C_4 e^{-t} \sin(t).
$$

For $3e^{t}$ the associated root is 1. For $2te^{-t}$ the associated root is -1 . For e^{-t} sin t the associated root is $-1\pm\mathbf{i}$. The first guess for the test function Y^1_ρ is thus

$$
Y_p^1 = (Ae^t) + (Bt + C)e^{-t} + (De^{-t}\cos(t) + Ee^{-t}\sin(2t)).
$$

Because $-1 \pm i$ are roots for the homogeneous equation, we must multiply the third block by t .

$$
Y_p = (Ae^t) + (Bt + C)e^{-t} + t(De^{-t}\cos(t) + Ee^{-t}\sin(2t)).
$$

 $\mathbb{\sim}$

Example 3.6/3 : $y'' + 2y' + y = 3e^{-t}$. The roots of the characteristic equation for the homogeneous equation $r^2+2r+1=(r+1)^2=0$ are $-1,-1$ and so $y_h = C_1 e^{-t} + C_2 t e^{-t}.$

Undetermined Coefficients:

The associated root for $3e^{-t}$ is -1 . Our first guess for test function $Y_p^1 = Ae^{-t}$. Because -1 is a root repeated twice, we must multiply by t^2 . So $Y_p = At^2e^{-t}$.

$$
1 \times Y_{p} = At^{2}e^{-t},
$$

\n
$$
2 \times Y'_{p} = -2At^{2}e^{-t} + 4Ate^{-t},
$$

\n
$$
1 \times Y''_{p} = At^{2}e^{-t} - 4Ate^{-t} + 2Ae^{-t}.
$$

KORKAR KERKER SAGA

So 3 $e^{-t} = 2Ae^{-t}$. So $A = 3/2$ and $y_g = C_1 e^{-t} + C_2 t e^{-t} + (3/2) t^2 e^{-t}.$

Variation of Parameters:

We look for $y_p=u_1e^{-t}+u_2te^{-t}.$ We have the linear equations:

$$
u'_1(e^{-t}) + u'_2(te^{-t}) = 0
$$

$$
u'_1(-e^{-t}) + u'_2(e^{-t} - te^{-t}) = 3e^{-t}.
$$

KO K K Ø K K E K K E K V K K K K K K K K K

Wronskian is
$$
e^{-2t}
$$
 so
\n
$$
u'_1 = \begin{vmatrix} 0 & te^{-t} \\ 3e^{-t} & (e^{-t} - te^{-t}) \end{vmatrix} / e^{-2t},
$$
\n
$$
u'_2 = \begin{vmatrix} e^{-t} & 0 \\ -e^{-t} & (3e^{-t}) \end{vmatrix} / e^{-2t}.
$$
\n
$$
u'_1 = -3t, u'_2 = 3. u_1 = -(3/2)t^2, u_2 = 3t.
$$
\n
$$
Y_p = -(3/2)t^2 e^{-t} + (3t)te^{-t} = (3/2)t^2 e^{-t}.
$$

Example 3.6/5 $: y'' + y = \tan(t)$. The roots of the characteristic equation for the homogeneous equation $r^2+1=0$ are $\pm {\bf i}$ and so $y_h = \mathcal{C}_1 \cos(t) + \mathcal{C}_2 \sin(t).$

We look for $y_p = u_1 \cos(t) + u_2 \sin(t)$. We have the linear equations:

$$
u'_1(\cos(t)) + u'_2(\sin(t)) = 0
$$

$$
u'_1(-\sin(t)) + u'_2(\cos(t)) = \tan(t).
$$

KORK ERKER ADAM ADA

Wronskian is 1.

\n
$$
u'_1 = -\sin(t)\tan(t) = -\sin^2(t)/\cos(t) =
$$
\n
$$
(\cos^2(t) - 1)/\cos(t) = \cos(t) - \sec(t),
$$
\n
$$
u'_2 = \cos(t)\tan(t) = \sin(t).
$$
\n
$$
u_1 = \sin(t) - \ln|\sec(t) + \tan(t)|, u_2 = -\cos(t),
$$
\n
$$
y_p = -\sin(t)\ln|\sec(t) + \tan(t)|.
$$

Example 3.6/10 : $y'' - 2y' + y = e^t/(1 + t^2)$. The roots of the characteristic equation for the homogeneous equation $r^2-2r+1=0$ are 1, 1 and so $y_h = C_1e^t + C_2te^t$. $y_p = u_1 e^t + u_2 t e^t$

$$
u'_1(e^t) + u'_2(te^t) = 0
$$

$$
u'_1(e^t) + u'_2(e^t + te^t) = e^t/(1+t^2).
$$

KORKARYKERKER POLO

Wronskian is
$$
e^{2t}
$$
.
\n
$$
u'_1 = -t/(1+t^2), u'_2 = 1/(1+t^2).
$$
\n
$$
u_1 = -\frac{1}{2}\ln(1+t^2), u_2 = \arctan(t).
$$
\n
$$
y_p = -\frac{1}{2}e^t\ln(1+t^2) + te^t \arctan(t).
$$

Example 3.6/14 :
$$
t^2y'' - t(t+2)y + (t+2)y = 2t^3
$$
. Divide
by t^2 to get
 $y'' - t^{-1}(t+2)y + t^{-2}(t+2)y = 2t$.
Given $y_1 = t$, $Y_2 = te^t$. (Check that these are solutions).

$$
y_{p} = u_{1}t + u_{2}te^{t}.
$$

\n
$$
u'_{1}(t) + u'_{2}(te^{t}) = 0
$$

\n
$$
u'_{1}(1) + u'_{2}(e^{t} + te^{t}) = 2t.
$$

Wronskian is
$$
t^2e^t
$$
.
\n $u'_1 = -2t^2e^t/t^2e^t = -2$, $u'_2 = 2t^2/t^2e^t = 2e^-t$.
\n $u_1 = -2t$, $u_2 = -2e^{-t}$.

$$
y_p=-2t^2-2t.
$$

Kロト K部 K K ミト K ミト 「ミ」 の R (^)

Example 3.7/6 : Units are centimeters, grams and seconds. So $g=980$ cm $/s^2$. m $=100$ gr, $\Delta L=5$ cm, From equilibrium, so $y_0 = 0$. Downward velocity of $10 cm/s$, so $y'_0 = -10$. $w = mg = 98000$ (dynes). $w = k\Delta L$, so $k = 98000/5 = 19600.$ No damping, so $c = 0$. No external force.

$$
100y'' + 19600y = 0, \qquad \text{or} \quad y'' + 196y = 0,
$$

Characteristic equation: $r^2 + 196 = 0$ with roots $r = \pm 14$ i. So

$$
y = C_1 \cos 14t + C_2 \sin 14t
$$

$$
y' = 14C_2 \cos 14t - 14C_1 \sin 14t.
$$

KORKAR KERKER SAGA

 $0 = y(0) = C_1$, $-10 = y'(0) = 14C_2$. So the solution is $y = -(5/7) \sin 14t$.

Example 3.7/7 : Units are feet, pounds and seconds. So $g=32ft/s^2$. $w=3lb$, $\Delta L=3/12=1/4ft$, Lifted up, so $v_0 = 1/12$ ft. Downward velocity of $2ft/s$, so $y'_0 = -2$. $3w = mg = 32m$, so $m = 3/32$ (slugs). $w = k\Delta L$, so $k = 3 \div (1/4) = 12$. No damping, so $c = 0$. No external force.

$$
3y'' + 12y = 0
$$
, or $y'' + 4y = 0$,

Characteristic equation: $r^2 + 4 = 0$ with roots $r = \pm 2i$. So

$$
y = C_1 \cos 2t + C_2 \sin 2t
$$

$$
y' = 2C_2 \cos 2t - 2C_1 \sin 2t.
$$

KORKAR KERKER SAGA

 $-2 = y(0) = C_1, -2 = y'(0) = 2C_2.$ So the solution is $y = -2 \cos 2t + 1 \sin 2t$. $A = \sqrt{5}, \phi = 150^{\circ} = 5\pi/6$ rad $y=\sqrt{5}\cos(2t-5\pi/6).$ [This part I won't ask.] Example 3.7/9 : Units are centimeters, grams and seconds with $g=980$ cm/s². $m = 20$ gr, $\Delta L = 5$ cm, c = 400 Down 2cm, so $y_0 = -2$. Released, so so $y'_0 = 0$. $w = mg = 19600$ (dynes). $w = k\Delta L$, so $k = 19600/5 = 3920$. No external force.

$$
20y'' + 400y' + 3920y = 0, \qquad \text{or} \quad y'' + 20y' + 196y = 0,
$$

Characteristic equation: $r^2 + 20r + 196 = 0$ with roots

$$
r = (-\frac{\sqrt{20}}{2}) \pm \frac{\sqrt{384}}{2}i = -10 \pm 4\sqrt{6}i.
$$

KORKAR KERKER SAGA

So

$$
y = C_1 e^{-10t} \cos(4\sqrt{6}t) + C_2 e^{-10t} \sin(4\sqrt{6}t)
$$

\n
$$
y' = (-10C_1 + 4\sqrt{6}C_2)e^{-10t} \cos(4\sqrt{6}t) + (-10C_2 - 4\sqrt{6}C_1)e^{-10t} \sin(4\sqrt{6}t).
$$

$$
-2 = y(0) = C_1, \quad 0 = y'(0) = -10C_1 + 4\sqrt{6}C_2.
$$

So the solution is

$$
y = -2e^{-10t}\cos(4\sqrt{6}t) - \frac{5}{\sqrt{6}}e^{-10t}\sin(4\sqrt{6}t).
$$

K ロ K K d K K B K K B K X A K K K G K C K

Example 3.8/10 : Units are feet, pounds and seconds. $w = 8$ lb. So $m = w/g = 8/32 = 1/4$. $\Delta L = 1/2$. So $k = w/\Delta L = 16$. $c = 0$. $y(0) = -1/4, y'(0) = 0.$ $(1/4)y'' + 16y = 8 \sin(8t)$, or $y'' + 64y = 32 \sin(8t)$. The roots of the characteristic equation for the homogeneous equation $r^2+64=0$ are ± 8 i. So the forcing occurs at resonance.

$$
\begin{array}{l} Y_p = At\cos(8t) + Bt\sin(8t) \\ Y'_p = -8At\sin(8t) + 8Bt\cos(8t) + A\cos(8t) + B\sin(8t). \\ Y''_p = -64At\cos(8t) - 64At\sin(8t) - 16A\sin(8t) + 16B\cos(8t). \\ 32\sin(8t) = Y''_p + 64Y_p = -16A\sin(8t) + 16B\cos(8t). \text{ So} \\ A = -2, B = 0. \\ y = C_1\cos(8t) + C_2\sin(8t) - 2t\cos(8t), \\ y' = -8C_1\sin(8t) + 8C_2\cos(8t) - 2\cos(8t) + 16t\sin(8t). \\ \text{At } t = 0: -1/4 = C_1, 0 = 8C_2 - 2. \text{ So} \end{array}
$$

$$
y = -(1/4)\cos(8t) + (1/4)\sin(8t) - 2t\cos(8t).
$$

KORKARYKERKER POLO

Example 5.2/9 : $(1+x^2)y'' - 4xy' + 6y = 0$

$$
1y'' = \sum 1n(n-1)a_n x^{n-2}[k = n-2] = \sum (k+2)(k+1)a_{k+2}x^k
$$

+x²y'' = \sum n(n-1)a_n x^n [k = n] = \sum k(k-1)a_k x^k.
-4xy' = \sum 4na_n x^n [k = n] = \sum -4ka_k x^k.
6y = \sum 6a_n x^n [k = n] = \sum 6a_k x^k.

$$
a_{k+2} = \frac{1}{(k+2)(k+1)}[-(k(k-1)+4k-6)a_k] = \frac{-k^2+5k-6}{(k+2)(k+1)}a_k
$$

= $-\frac{(k-2)(k-3)}{(k+2)(k+1)}a_k.$
 $k = 0 : a_2 = -3a_0,$ $k = 1 : a_3 = -\frac{1}{3}a_1.$

 $k = 2 : a_4 = 0, \quad k = 3 : a_5 = 0.$ So $a_k = 0$ for $k \ge 2$.

KO K K Ø K K E K K E K V K K K K K K K K K

Example 5.2/12,18:
\n
$$
(1 - x)y'' + xy' + -y = 0, y(0) = -3, y'(0) = 2.
$$

$$
1y'' = \sum 1n(n-1)a_n x^{n-2}[k = n-2] = \sum (k+2)(k+1)a_{k+2}x^k
$$

$$
-xy'' = \sum -n(n-1)a_n x^{n-1}[k = n-1] = \sum -(k+1)(k)a_{k+1}x^k
$$

$$
+xy' = \sum na_n x^n [k = n] = \sum ka_k x^k
$$

$$
-y = \sum -a_n x^n [k = n] = \sum -a_k x^k
$$

$$
a_{k+2}=\frac{1}{(k+2)(k+1)}[(k+1)ka_{k+1}-(k-1)a_k], a_0=-3, a_1=2.
$$

イロト (御) (言) (言) (言) つんぺ

$$
k = 0: a_2 = a_0/2 = -3/2,
$$

\n
$$
k = 1: a_3 = a_2/3 = -1/2.
$$

\n
$$
k = 2: a_4 = [6a_3 - a_2]/12 = -3/4,
$$

\n
$$
k = 3: a_5 = [12a_4 - 2a_3]/20 = -2/5.
$$