Math 39100 K (19392) - Lectures 02

Ethan Akin Email: eakin@ccny.cuny.edu

Fall, 2024

Contents

Second Order Linear Equations, B & D Chapter 4

Second Order Linear Homogeneous Equations with Constant Coefficients

Polar Form of Complex Numbers; The Euler Identity

Reduction of Order

Nonhomogeneous Equations

Undetermined Coefficients

Question

Illustration

Higher Order Equations with Constant Coefficients, Chapter 4 Undetermined Coefficients for Higher Order Equations

Second Order Linear Equations, Again

Variation of Parameters

Spring Problems

Ordinary Point Problems, B & D Sections 5.2, 5.3

Second Order Differential Equations

A general second order ode (= ordinary differential equation) is of the form y'' = F(x, y, y') or $\frac{d^2y}{dt^2} = F(t, y, \frac{dy}{dt})$.

For second order equations, we require two integrations to get back to the original function. So the *general solution* has two separate, arbitrary constants. An IVP in this case is of the form:

$$y'' = F(t, y, y'),$$
 with $y(t_0) = y_0, y'(t_0) = y'_0.$

Interpreting y' as the velocity and y'' as the acceleration, we thus determine the constants by specifying the initial position and the initial velocity with t_0 regarded as the initial time (usually = 0).

The Fundamental Existence and Uniqueness Theorem says that an IVP has a unique solution.

The General Solution

The general solution of the equation y'' = F(t, y, y') is of the form $y(t, C_1, C_2)$ with two arbitrary constants. Supposing that these are solutions for every choice of C_1 , C_2 , how do we now that we have <u>all</u> the solutions? The answer is that we have all solutions if we can solve every IVP. To be precise:

THEOREM: If y'' = F(t, y, y') is an equation to which the Fundamental Theorem applies and $y(t, C_1, C_2)$ is a solution for every C_1 , C_2 , then every solution is one of these provided that for every pair of real numbers A, B, we can find C_1 , C_2 so that $y(t_0, C_1, C_2) = A$ and $y'(t_0, C_1, C_2) = B$.

PROOF: If z(t) is any solution then let $A = z(t_0)$ and $B = z'(t_0)$, and choose C_1 , C_2 so that $y(t, C_1, C_2)$ solves this IVP. Then $y(t, C_1, C_2)$ and z(t) solve the same IVP. This means that $z(t) = y(t, C_1, C_2)$.

Linear Equations and Linear Operators

We will be studying exclusively second order, *linear* equations. These are of the form

$$\frac{d^2y}{dt^2} + p(t)\frac{dy}{dt} + q(t)y = r(t), \quad \text{or} \quad y'' + py' + qy = r.$$

Just as in the first order linear case, if we see Ay'' + By' + Cy = D with A, B, C, D functions of t we can obtain the above form by dividing by A. When A, B and C are constants we often won't bother.

The equation is called *homogeneous* when r = 0. It has constant coefficients when p and q are constant functions of t.

These are studied by using *linear operators*. An *operator* is a function \mathcal{L} whose input and output are functions. For example, $\mathcal{L}(y) = yy'$. If $y = e^x$ then $\mathcal{L}(y) = e^{2x}$ and $\mathcal{L}(\sin)(x) = \sin(x)\cos(x)$.

An operator \mathcal{L} is a linear operator when it satisfies *linearity* or *The Principle of Superposition*.

$$\mathcal{L}(Cy_1+y_2)=C\mathcal{L}(y_1)+\mathcal{L}(y_2).$$

Given functions p, q we define $\mathcal{L}(y) = y'' + py' + qy$. Observe that:

$$C \times (y_1'' + py_1' + qy_1) + y_2'' + py_2' + qy_2$$

$$(Cy_1 + y_2)'' + p(Cy_1 + y_2)' + q(Cy_1 + y_2)$$

So the homogeneous equation y'' + py' + qy = 0 can be written as $\mathcal{L}(y) = 0$.

General Solution of the Homogeneous Equation, Section 3.2

If y_1 and y_2 are solutions of the homogeneous equation $\mathcal{L}(y)=0$ then by linearity $C_1y_1+C_2y_2$ are solutions for every choice of constants C_1 and C_2 , because

$$\mathcal{L}(C_1y_1 + C_2y_2) = C_1\mathcal{L}(y_1) + C_2\mathcal{L}(y_2) = C_10 + C_20 = 0.$$

Notice there are two arbitrary constants. This is the general solution provided we can solve every IVP. So given numbers A, B we want to find C_1, C_2 so that

$$C_1y_1(t_0) + C_2y_2(t_0) = A,$$

 $C_1y_1'(t_0) + C_2y_2'(t_0) = B.$

Cramer's Rule says that this has a solution provided the coefficient determinant

$$\begin{vmatrix} y_1(t_0) & y_2(t_0) \\ y_1'(t_0) & y_2'(t_0) \end{vmatrix}$$
 is nonzero.

The Wronskian

Given two functions y_1 , y_2 the *Wronskian* is defined to be the function:

$$W(y_1, y_2) = \begin{vmatrix} y_1 & y_2 \\ y'_1 & y'_2 \end{vmatrix} = y_1 y'_2 - y_2 y'_1.$$

Two functions are called *linearly dependent* when there are constants C_1 , C_2 not both zero such that $C_1y_1 + C_2y_2 \equiv 0$ and so when one of the two functions is a constant multiple of the other. If $y_2 = Cy_1$ then $W(y_1, y_2) \equiv 0$. The converse is almost true:

 $W/y_1^2=rac{y_1y_2'-y_2y_1'}{y_1^2}=(rac{y_2}{y_1})'$ and so if W is identically zero the ratio $rac{y_2}{y_1}$ is some constant C and so $y_2=Cy_1$.

On the other hand, $y_1(t) = t^3$ and $y_2(t) = |t^3|$ have $W \equiv 0$ but are not linearly dependent. What is the problem? Hint: look for a division by zero.

Now suppose the Wronskian vanishes at a single point t_0 . If $y_1'(t_0) = y_2'(t_0) = 0$ then we can pick C_1 , C_2 , not both zero, such that with $z = C_1y_1 + C_2y_2$ is zero at t_0 and of course $z'(t_0) = C_1y_1'(t_0) + C_2y_2'(t_0) = 0$. Otherwise, choose $C_1 = y_2'(t_0)$ and $C_1 = -y_1'(t_0)$. Check that with $z = C_1y_1 + C_2y_2$ we have

$$z(t_0) = y_1(t_0)y_2'(t_0) - y_2(t_0)y_1'(t_0) = W(y_1, y_2)(t_0) = 0,$$

$$z'(t_0) = y_1'(t_0)y_2'(t_0) - y_2'(t_0)y_1'(t_0) = 0.$$

If y_1, y_2 are solutions of the homogeneous equation y'' + py' + qy = 0 then $z = C_1y_1 + C_2y_2$ is a solution with zero initial conditions. This means that $z \equiv 0$ and so y_1 and y_2 are linearly dependent.

A pair y_1, y_2 of solutions of the homogeneous equation y'' + py' + qy = 0 is called a *fundamental pair* if the Wronskian does not vanish. The general solution is then $C_1y_1 + C_2y_2$ because we can solve every IVP.

Abel's Theorem

Abel's Theorem shows that the Wronskian of two solutions y_1, y_2 of y'' + py' + qy = 0 satisfies a first order linear ode:

$$W' = y_1 y_2'' - y_2 y_1'' + y_1' y_2' - y_2' y_1' = y_1 y_2'' - y_2 y_1''$$

The left side adds up to $y_10-y_20=0$ and so 0=W'+pW or $\frac{dW}{dt}+pW=0$.

This is variables separable with solution $W=C\times e^{-\int p(t)dt}$. Since the exponential is always positive, $W\equiv 0$ if C=0 and otherwise W is never zero.

Homogeneous, Constant Coefficients, Sections 3.1, 3.3

The derivative itself is an example of a linear operator: D(y) = y'. For a linear operator \mathcal{L} a function y is an eigenvector with eigenvalue r when $\mathcal{L}(y) = ry$. For the operator D, an eigenvector y satisfies y' = D(y) = ry. This is exponential growth with growth rate r and so the solutions are constant multiples of $y = e^{rt}$. Thus, such exponential functions have a special role to play.

Example:
$$y'' - y' - 6y = 0$$
. So that $\mathcal{L}(y) = y'' - y' - 6y$.

We can write

$$\mathcal{L} = (D^2 - D - 6)(y) = (D + 2)(D - 3)(y) = (D - 3)(D + 2)(y).$$

So if
$$(D-3)(y) = 0$$
 or $(D+2)(y) = 0$, then $\mathcal{L}(y) = 0$.

$$(D-3)(y) = 0$$
 when $y' = 3y$ and so when $y = e^{3t}$.

$$(D+2)(y) = 0$$
 when $y = e^{-2t}$.

So
$$y_1 = e^{3t}$$
 and $y_2 = e^{-2t}$ are solutions of $y'' - y' - 6y = 0$.

A second order, linear, homogeneous equation with constant coefficients is of the form Ay'' + By' + Cy = 0 with A, B, C constants and $A \neq 0$.

We look for a solution of the form $y = e^{rt}$. Substituting and factoring we get

$$(Ar^2+Br+C)e^{rt}=0.$$

Since the exponential is always positive, e^{rt} is a solution precisely when r satisfies the characteristic equation $Ar^2 + Br + C = 0$.

The quadratic equation $Ar^2 + Br + C = 0$ has roots

$$r = \frac{-B \pm \sqrt{B^2 - 4AC}}{2A}.$$

For the equation $Ar^2 + Br + C = 0$ the nature of the two roots

$$r = \frac{-B \pm \sqrt{B^2 - 4AC}}{2A}.$$

depends on the discriminant $B^2 - 4AC$.

CASE 1: The simplest case is when $B^2 - 4AC > 0$. There are then two distinct real roots r_1 and r_2 . This gives us two special solutions $y_1 = e^{r_1t}$ and $y_2 = e^{r_2t}$ with the Wronskian.

$$W = \begin{vmatrix} e^{r_1 t} & e^{r_2 t} \\ r_1 e^{r_1 t} & r_2 e^{r_2 t} \end{vmatrix} = (r_2 - r_1) e^{(r_1 + r_2)t} \neq 0.$$

The general solution is then $C_1e^{r_1t} + C_2e^{r_2t}$.

CASE 2: If $B^2 - 4AC < 0$ then the roots are a complex conjugate pair $a \pm \mathbf{i}b = \frac{-B}{2A} \pm \mathbf{i} \frac{\sqrt{|B^2 - 4AC|}}{2A}$. This requires a consideration of complex numbers.

Polar Form of Complex Numbers; The Euler Identity

We represent the complex number $z=a+\mathbf{i}b$ as a vector in \mathbb{R}^2 with x-coordinate a and y-coordinate b. Addition and multiplication by real scalars is done just as with vectors. For multiplication $(a+\mathbf{i}b)(c+\mathbf{i}d)=(ac-bd)+\mathbf{i}(ad+bc)$. The conjugate is $\bar{z}=a-b\mathbf{i}$ and $z\bar{z}=a^2+b^2=|z|^2$ which is positive unless z=0.

Multiplication is also dealt with by using the *polar* form of the complex number. This requires a bit of review.

Recall from Math 203 the three important Maclaurin series:

$$e^{t} = 1 + t + \frac{t^{2}}{2} + \frac{t^{3}}{3!} + \frac{t^{4}}{4!} + \frac{t^{5}}{5!} + \frac{t^{6}}{6!} + \frac{t^{7}}{7!} + \dots$$

$$\cos(t) = 1 - \frac{t^{2}}{2} + \frac{t^{4}}{4!} - \frac{t^{6}}{6!} + \dots$$

$$\sin(t) = t - \frac{t^{3}}{3!} + \frac{t^{5}}{5!} - \frac{t^{7}}{7!} + \dots$$

The exponential function is the first important example of a function f on $\mathbb R$ which is neither even with f(-t)=f(t) nor odd with f(-t)=-f(t) nor a mixture of even and odd functions in an obvious way like a polynomial. It turns out that any function f on $\mathbb R$ can be written as the sum of an even and an odd function by writing

$$f(t) = \frac{f(t) + f(-t)}{2} + \frac{f(t) - f(-t)}{2}.$$

You have already seen this for $f(t) = e^t$

$$e^{-t} = 1 - t + \frac{t^2}{2} - \frac{t^3}{3!} + \frac{t^4}{4!} - \frac{t^5}{5!} + \frac{t^6}{6!} - \frac{t^7}{7!} + \dots$$

$$\cosh(t) = \frac{e^t + e^{-t}}{2} = 1 + \frac{t^2}{2} + \frac{t^4}{4!} + \frac{t^6}{6!} + \dots$$

$$\sinh(t) = \frac{e^t - e^{-t}}{2} = t + \frac{t^3}{3!} + \frac{t^5}{5!} + \frac{t^7}{7!} + \dots$$

Now we use the same trick but with e^{it}

$$\begin{split} e^{\mathbf{i}t} &= 1 + \mathbf{i}t - \frac{t^2}{2} - \mathbf{i}\frac{t^3}{3!} + \frac{t^4}{4!} + \mathbf{i}\frac{t^5}{5!} - \frac{t^6}{6!} - \mathbf{i}\frac{t^7}{7!} + \dots \\ e^{-\mathbf{i}t} &= 1 - \mathbf{i}t - \frac{t^2}{2} + \mathbf{i}\frac{t^3}{3!} + \frac{t^4}{4!} - \mathbf{i}\frac{t^5}{5!} - \frac{t^6}{6!} + \mathbf{i}\frac{t^7}{7!} + \dots \\ \frac{e^{\mathbf{i}t} + e^{-\mathbf{i}t}}{2} &= 1 - \frac{t^2}{2} + \frac{t^4}{4!} - \frac{t^6}{6!} + \dots \\ \frac{e^{\mathbf{i}t} - e^{-\mathbf{i}t}}{2} &= \mathbf{i}[t - \frac{t^3}{3!} + \frac{t^5}{5!} - \frac{t^7}{7!} + \dots] \end{split}$$

So the even part of e^{it} is cos(t) and the odd part is isin(t). Adding them we obtain *Euler'sIdentity* and its conjugate version.

$$e^{it} = \cos(t) + i\sin(t)$$

 $e^{-it} = \cos(t) - i\sin(t)$

Substituting $t=\pi$ we obtain $e^{i\pi}=-1$ and so $e^{i\pi}+1=0$.

Now we start with a complex number z in rectangular form $z=x+\mathbf{i}y$ and convert to polar coordinates with $x=r\cos(\theta), y=r\sin(\theta)$ so that $r^2=x^2+y^2=z\bar{z}$. The length r is called the *magnitude* of z. The angle θ is called the *argument* of z. We obtain

$$z = x + iy = r(\cos(\theta) + i\sin(\theta)) = re^{i\theta}$$
.

Now we return to CASE 2 with the pair of roots $r = a \pm ib$. We obtain two complex solutions

$$e^{(a+\mathbf{i}b)t} = e^{at}(\cos(bt) + \mathbf{i}\sin(bt)),$$

$$e^{(a-\mathbf{i}b)t} = e^{at}(\cos(bt) - \mathbf{i}\sin(bt))$$

When we add these two solutions and divide by 2 we obtain the real solution $e^{at}\cos(bt)$ When we subtract and divide by 2i we obtain the real solution $e^{at}\sin(bt)$.

Thus, when the roots are $r = a \pm ib$, we have the two solutions $y_1 = e^{at} \cos(bt)$ and $y_2 = e^{at} \sin(bt)$ with the Wronskian

$$W = \begin{vmatrix} e^{at}\cos(bt) & e^{at}\sin(bt) \\ ae^{at}\cos(bt) - be^{at}\sin(bt) & ae^{at}\sin(bt) + be^{at}\cos(bt) \end{vmatrix}$$

This is be^{2at} which is not zero because the imaginary part b is not zero. Thus we have so far:

CASE 1 ($B^2-4AC>0$, Two distinct real roots r_1,r_2) The general solution is $C_1e^{r_1t}+C_2e^{r_2t}$

CASE 2 ($B^2 - 4AC < 0$, Complex conjugate pair of roots $a \pm ib$) The general solution is $C_1e^{at}\cos(bt) + C_2e^{at}\sin(bt)$.

Example 3.3/ BD 19, BDM 13:
$$y'' - 2y' + 5y = 0$$
, $y(\pi/2) = 0$, $y'(\pi/2) = 3$.

The characteristic equation is $r^2-2r+5=0$ with roots $r=\frac{\pm 2\pm\sqrt{4-20}}{2}=1\pm2\mathbf{i}$.

So the general solution is:

$$y = C_1 e^t \cos(2t) + C_2 e^t \sin(2t).$$

When
$$t = \pi/2$$
, $\sin(2t) = 0$, $\cos(2t) = -1$.

$$y = C_1 e^t \cos(2t) + C_2 e^t \sin(2t),$$

$$y' = C_1 [e^t \cos(2t) - 2e^t \sin(2t)] +$$

$$C_2 [e^t \sin(2t) + 2e^t \cos(2t)].$$

At
$$t = \pi/2$$
, $0 = C_1[-e^{\pi/2}] + C_2[0]$, $3 = C_1[-e^{\pi/2}] + C_2[-2e^{\pi/2}]$. So $C_1 = 0$, $C_2 = -(3/2)e^{-\pi/2}$ and so $y = -(3/2)e^{-\pi/2}e^t\sin(2t)$.

We looked at y'' - 3y = 0 which had, we saw, general solution

$$y = C_1 e^{\sqrt{3}t} + C_2 e^{-\sqrt{3}t}.$$

Now look at y'' + 3y = 0 with characteristic equation $r^2 + 3 = 0$.

It has conjugate roots $\pm \sqrt{3}i$ and so the general solution is:

$$y = C_1 \cos(\sqrt{3}t) + C_2 \sin(\sqrt{3}t).$$

Reduction of Order, Section 3.4

There remains CASE 3: If $B^2 - 4AC = 0$ there is a single (real) root $r = \frac{-B}{2A}$, "repeated twice". So we have so far in that case only one solution e^{rt} and we need a second independent solution.

For a general second order, linear homogeneous equation y'' + py' + qy = 0 with constant coefficients or not, we need two independent solutions y_1, y_2 to get the general solution $C_1y_1 + C_2y_2$.

Suppose we have one solution y_1 . We look for another solution of the form $y_2 = uy_1$, with u not a constant. Substitute:

$$q \times y_2 = uy_1$$
 $p \times y'_2 = uy'_1 + u'y_1$
 $1 \times y''_2 = uy''_1 + 2u'y'_1 + u''y_1$
 $0 = 0 + u'(py_1 + 2y'_1) + u''y_1$

The equation $(y_1)u'' + (py_1 + 2y_1')u' = 0$ has no variable u and so by letting v = u', v' = u'' we obtain the first order equation $(y_1)v' + (py_1 + 2y_1')v = 0$ which variables separable with solution $v = exp(-\int p + 2(y_1'/y_1))$. Notice that u' = v is not zero and so when we integrate to get u it is not a constant and so $y_2 = uy_1$ together with y_1 forms a fundamental pair of solutions.

Now we return to CASE 3 where the quadratic equation $Ar^2 + Br + C = 0$ has a repeated root $r = r^*$. This means that $Ar^2 + Br + C = A(r - r^*)^2$ and so $B = -2Ar^*$ and $C = A(r^*)^2$.

The ode is $y'' - 2r^*y' + (r^*)^2y = 0$ with a solution $y_1 = e^{r^*t}$. We look for $y_2 = ue^{r^*t}$.

$$(r^*)^2 \times y_2 = ue^{r^*t}$$

$$-2r^* \times y_2' = ur^*e^{r^*t} + u'e^{r^*t}$$

$$1 \times y_2'' = u(r^*)^2 e^{r^*t + 2u'r^*e^{r^*t} + u''e^{r^*t}}$$

$$0 = 0 + 0 + u''e^{r^*t}$$

So v'=u''=0, v=1 and u=t. So the general solution for CASE 3 is $C_1e^{r^*t}+C_2te^{r^*t}$.

This completes the story for second order, linear homogeneous equations with constant coefficients.

CASE 1 ($B^2-4AC>0$, Two distinct real roots r_1,r_2) The general solution is $C_1e^{r_1t}+C_2e^{r_2t}$

CASE 2 ($B^2 - 4AC < 0$, Complex conjugate pair of roots $a \pm ib$) The general solution is $C_1e^{at}\cos(bt) + C_2e^{at}\sin(bt)$.

CASE 3 ($B^2 - 4AC = 0$, single repeated, real root r^*) The general solution is $C_1e^{r^*t} + C_2te^{r^*t}$.

In CASE 3, we used the method of Reduction of Order, but we simply write down the solution. However, for nonconstant coefficients we will require the method itself.

Example 3.4/ BD11, BDM9 : 9y'' - 12y' + 4y = 0, y(0) = 2, y'(0) = -1 Characteristic Equation $0 = 9r^2 - 12r + 4 = (3r - 2)(3r - 2)$ r = 2/3 repeated twice.

$$y = C_1 e^{(2/3)t} + C_2 t e^{(2/3)t}.$$

$$y = C_1 e^{(2/3)t} + C_2 t e^{(2/3)t},$$
 $y' = [(2/3)C_1 + C_2]e^{(2/3)t} + (2/3)C_2 t e^{(2/3)t},$ $y(0) = 2, y'(0) = -1$ and so $2 = C_1, \quad -1 = (2/3)C_1 + C_2,$ And so $-(7/3) = C_2.$ The solution is $y = -[1 + (7/3)t]e^{(2/3)t}.$

Example 3.4/BD28 : (x-1)y'' - xy' + y = 0, x > 1 with $y_1(x) = e^x$.

$$\begin{array}{rclcrcl}
 1 \times & y_2 & = & ue^x \\
 -x \times & y_2' & = & ue^x & + & u'e^x \\
 (x-1) \times & y_2'' & = & ue^x & + & 2u'e^x & + & u''e^x \\
 0 & = & 0 & + & u'(x-2)e^x & + & u''(x-1)e^x
 \end{array}$$

$$u' = v = (x - 1)e^{-x}$$
, and so $u = -xe^{-x}$ and $y_2 = uy_1 = -x$.

(x-1)v' = -(x-2)v, and so $\int \frac{dv}{dx} = \int -1 + \frac{1}{1-x} dx$.

Using the Wronskian

As one student pointed out, there is an alternative way of obtaining a second solution by using Abel's Theorem. Recall that it says that if W is the Wronskian for a pair of solutions y_1, y_2 of the second order, homogeneous, linear equation y'' + py' + qy = 0 then

$$W = C \cdot exp[-\int p(t)dt].$$

Suppose we have a solution y_1 . We look for a second solution y_2 such that $W(y_1,y_2)=exp[-\int p(t)dt]$. We choose C=1 because we are looking for a single solution y_2 . So y_2 satisfies the first order linear equation

$$y_1y_2' - y_1'y_2 = exp[-\int p(t)dt].$$

As an example the student chose: $x^2y'' - 7xy' + 16y = 0$ with $y_1 = x^4$.

$$16 \times y_2 = ux^4$$

$$-7x \times y_2' = u4x^3 + u'x^4$$

$$x^2 \times y_2'' = u12x^2 + u'8x^3 + u''x^4$$

$$0 = 0 + u'x^5 + u''x^6$$

$$x^6v' = -x^5v, \text{ and so } \int \frac{dv}{v} = \int -\frac{dx}{x}.$$

$$\ln v = -\ln x \text{ and so } u' = v = x^{-1},$$

$$u = \ln x, \qquad y_2 = uy_1 = x^4 \ln x$$

.

Instead we use Abel's Theorem applied to: $y'' - \frac{7}{x}y' + \frac{16}{x^2}y = 0$.

$$x^{4}y_{2}' - 4x^{3}y_{2} = exp[7 \ln x] = x^{7},$$

$$y_{2}' - \frac{4}{x}y_{2} = x^{3}.$$

$$\mu = x^{-4}, [x^{-4}y_{2}]' = x^{-1}.$$

$$x^{-4}y_2 = \ln x, \qquad y_2 = x^4 \ln x.$$

Second Order Linear Nonhomogeneous Equations

Consider now a second order linear equation which is not homogeneous y'' + py' + qy = r where p, q and r are functions of t.

Recall the linear operator $\mathcal{L}(y)=y''+py'+qy$. To solve the homogeneous equation $\mathcal{L}(y)=0$ we saw that we need a pair of independent solutions y_1,y_2 . Then the general solution of the homogeneous equation is $y_h=C_1y_1+C_2y_2$. To solve the equation $\mathcal{L}(y)=r$ we need just one solution, particular solution y_p so that $\mathcal{L}(y_p)=r$. Then the general solution is $y_g=y_h+y_p=C_1y_1+C_2y_2+y_p$. Notice first

$$\mathcal{L}(C_1y_1+C_2y_2+y_p) = C_1\mathcal{L}(y_1)+C_2\mathcal{L}(y_2)+\mathcal{L}(y_p) = 0+0+r = r.$$

So for every choice of C_1 and C_2 , y_g is a solution.

To show that by varying the two arbitrary constants y_g gives us all solutions, it is enough to show that we can solve every initial value problem. That is, given A, B we have to choose C_1, C_2 to satisfy the initial conditions $y_g(t_0) = A, y_g'(t_0) = B$. This means that we want to solve:

$$C_1y_1(t_0) + C_2y_2(t_0) + y_p(t_0) = A,$$

 $C_1y_1'(t_0) + C_2y_2'(t_0) + y_p'(t_0) = B.$

But this is the same as:

$$C_1y_1(t_0) + C_2y_2(t_0) = A - y_p(t_0),$$

 $C_1y_1'(t_0) + C_2y_2'(t_0) = B - y_p'(t_0).$

This has a solution because the Wronskian $W(y_1, y_2)(t_0) \neq 0$. Since every IVP has a solution of the form y_g , we have all solutions.

Nonhomogeneous Equations: Undetermined Coefficients, Section 3.5

Our first method for finding the particular solution applies when the homogeneous equation Ay'' + By' + Cy = 0 has constant coefficients the *forcing function* is a sum so that each term has an associated root according to the following table.

$$poly(t) \Rightarrow \text{root equals } 0,$$
 $poly(t)e^{rt} \Rightarrow \text{root equals } r,$
 $poly(t)e^{at}\cos(bt)$
 $poly(t)e^{at}\sin(bt) \Rightarrow \text{root equals } a \pm \mathbf{i}b.$

The key is that when you take the derivative of expressions associated with a particular root (or conjugate root pair) you get expressions associated with the same root and with the polynomial in front of no higher degree.

To solve Ay'' + By' + Cy = r with forcing function r(t) we find the *Test Function (First Version)* $Y_p^1(t)$ in two steps:

STEP 1: Find the associated root for each term and group according to the associated roots.

STEP 2a: For the real associated root r (including r=0), you use

$$(A_n t^n + A_{n-1} t^{n-1} + \dots A_1 t + A_0)e^{rt}$$

where n is the highest power of t attached to any e^{rt} in r(t).

STEP 2b: For the complex pair $a \pm ib$, you use

$$(A_n t^n + A_{n-1} t^{n-1} + \dots A_1 t + A_0) e^{at} \cos(bt) + (B_n t^n + B_{n-1} t^{n-1} + \dots B_1 t + B_0) e^{at} \sin(bt)$$

where n is the highest power of t attached to any $e^{at}\cos(bt)$ or $e^{at}\sin(bt)$ in r(t).

IMPORTANT: You have to include both the sines and the cosines with that highest power applied to both.

To get the final version of the test function we need a preliminary step.

STEP 0: Solve the homogeneous equation Ay'' + By' + Cy = 0. In the process, you get the roots of the characteristic equation $Ar^2 + Br + C = 0$.

STEP 3: If a root from the homogeneous equation occurs among the associated roots then the corresponding expression in Y_p^1 is multiplied by the just high enough power of t so that the sum includes no solution of the homogeneous equation. After this adjustment we have the final Test Function Y_p .

STEP 4: Substitute Y_p into the equation and equate coefficients to determine the unknown coefficients to obtain the particular solution y_p .

The general solution is then $y_g = y_h + y_p$. If there are initial conditions, then substitute to determine C_1 and C_2 after y_p has been obtained.

Example:
$$r(t) = t^3 + 2t - 5 + 7\cos(3t) - (t^2 + 1)e^{2t} - e^{2t}\sin(3t) - t^2\sin(3t)$$
.

STEP 1: The associated roots are as follows:

$$t^3 + 2t - 5 \Rightarrow \text{root equals } 0,$$
 $7\cos(3t) - t^2\sin(3t) \Rightarrow \text{root equals } 0 \pm 3\mathbf{i},$
 $-(t^2 + 1)e^{2t} \Rightarrow \text{root equals } 2,$
 $-e^{2t}\sin(3t) \Rightarrow \text{root equals } 2 \pm 3\mathbf{i}.$

STEP 2: The first version of the test function, $Y_p^1(t)$ is

$$[At^{3} + Bt^{2} + Ct + D] +$$

$$[(Et^{2} + Ft + G)\cos(3t) + (Ht^{2} + It + J)\sin(3t)] +$$

$$[(Kt^{2} + Lt + M)e^{2t}] +$$

$$[Ne^{2t}\cos(3t) + Pe^{2t}\sin(3t)].$$

The final form of Y_p depends on the left side of the equation. Example A: y'' - 2y' = r(t), with characteristic equation $r^2 - 2r = 0$ and so with roots 0, 2.

STEP 0: $y_h = C_1 + C_2 e^{2t}$.

STEP 3: In Y_p^1 the terms D and Me^{2t} are solutions of the homogeneous equation. When we apply $\mathcal{L}(y) = y'' - 3y'$, these terms drop out, with D and M gone. For the remaining 13 unknowns we get 15 equations and usually no solution. We multiply each of the corresponding blocks by t so that Y_p is

$$\begin{aligned} &[t(At^3+Bt^2+Ct+D)]+\\ &[(Et^2+Ft+G)\cos(3t)+(Ht^2+It+J)\sin(3t)]+\\ &[t(Kt^2+Lt+M)e^{2t}]+\\ &[Ne^{2t}\cos(3t)+Pe^{2t}\sin(3t)]. \end{aligned}$$

STEP 4: Substitute Y_p into the equation $\mathcal{L}(y) = r$ and solve for the 15 unknowns to obtain the particular solution y_p . The general solution is then $y_g = y_h + y_p$.

Example B: y'' - 4y' + 4y = r(t), with characteristic equation $r^2 - 4r + 4 = 0$ and so with roots 2, 2.

STEP 0:
$$y_h = C_1 e^{2t} + C_2 t e^{2t}$$
.

STEP 3: In Y_p^1 the terms $Lte^{2t} + Me^{2t}$ are solutions of the homogeneous equation. Multiplying by t will not suffice as we then obtain Mte^{2t} which is still a solution of the homogeneous equation. Multiply by t again to get for Y_p :

$$[At^{3} + Bt^{2} + Ct + D] +$$

$$[(Et^{2} + Ft + G)\cos(3t) + (Ht^{2} + It + J)\sin(3t)] +$$

$$[t^{2}(Kt^{2} + Lt + M)e^{2t}] +$$

$$[Ne^{2t}\cos(3t) + Pe^{2t}\sin(3t)].$$

Example C: y'' + 9y = r(t) with characteristic equation $r^2 + 9 = 0$ and so with roots $\pm 3i$.

STEP 0:
$$y_h = C_1 \cos(3t) + C_2 \sin(3t)$$
.

STEP 3: Now it is $G\cos(3t) + J\sin(3t)$ which case the problem. Multiplying by t we get for Y_p

$$[At^{3} + Bt^{2} + Ct + D] +$$

$$[t(Et^{2} + Ft + G)\cos(3t) + t(Ht^{2} + It + J)\sin(3t)] +$$

$$[(Kt^{2} + Lt + M)e^{2t}] +$$

$$[Ne^{2t}\cos(3t) + Pe^{2t}\sin(3t)].$$

Question:

$$\begin{cases} (a) & y'' - y' - 2y \\ (b) & y'' - y' + 2y = \\ (c) & 4y'' - 4y' + y \end{cases}$$
$$t^{2} + 7te^{2t} - e^{t/2}\sin((\sqrt{7}/2)t) - t^{2}e^{t/2} + 1.$$

- (0) Solve each of the three homogeneous equations.
- (1) Block together the terms with the same associated root.
- (2) Obtain the first version of the test function $Y^1(t)$ by using the highest power of t for each block. Remember to include both sines and cosines.
- (3) Adjust any block whose associated root is a root of the homogeneous equation to get the test function Y(t).

(0 - a) Characteristic equation $r^2 - r - 2 = (r - 2)(r + 1) = 0$ with roots 2, -1. So $y_h = C_1 e^{2t} + C_2 e^{-t}$. (0 - b) Characteristic equation $r^2 - r + 2 = 0$ with roots $\frac{1}{2} \pm \frac{\sqrt{7}}{2}\mathbf{i}$. So $y_h = C_1 e^{t/2} \cos((\sqrt{7}/2)t) + C_2 e^{t/2} \sin((\sqrt{7}/2)t)$. (0 - c) Characteristic equation $4r^2 - 4r + 1 = (2r - 1)(2r - 1) = 0$ with roots $\frac{1}{2}, \frac{1}{2}$ So $y_h = C_1 e^{t/2} + C_2 t e^{t/2}$.

(1) $[t^2 + 1]$ associated root 0.

 $7te^{2t}$ associated root 2.

- $-e^{t/2}\sin((\sqrt{7}/2)t)$ associated roots $\frac{1}{2}\pm\frac{\sqrt{7}}{2}\mathbf{i}$.
- $-t^2e^{t/2}$ associated root $\frac{1}{2}$.

$$Y^{1}(t) = [At^{2} + Bt + C] +[(Dt + E)e^{2t}] +[Fe^{t/2}\cos((\sqrt{7}/2)t) + Ge^{t/2}\sin((\sqrt{7}/2)t) +[(Ht^{2} + It + J)e^{t/2}].$$

For equation (a) the root 2 is a root of the homogeneous equation and so

$$Y(t) = [At^2 + Bt + C] + t[(Dt + E)e^{2t}] + [Fe^{t/2}\cos((\sqrt{7}/2)t) + Ge^{t/2}\sin((\sqrt{7}/2)t) + [(Ht^2 + It + J)e^{t/2}].$$

For equation (b) the roots $\frac{1}{2}\pm\frac{\sqrt{7}}{2}\mathbf{i}$. are roots of the homogeneous equation and so $Y(t)=[At^2+Bt+C]+[(Dt+E)e^{2t}]\\+t[Fe^{t/2}\cos((\sqrt{7}/2)t)+Ge^{t/2}\sin((\sqrt{7}/2)t)+[(Ht^2+It+J)e^{t/2}].$

For equation (c) the root $\frac{1}{2}$ is a repeated root of the homogeneous equation and so $Y(t) = [At^2 + Bt + C] + [(Dt + E)e^{2t}] + [Fe^{t/2}\cos((\sqrt{7}/2)t) + Ge^{t/2}\sin((\sqrt{7}/2)t) + t^2[(Ht^2 + It + J)e^{t/2}].$

Exercise 3.5/ BD19; BDM14:

$$y'' + 4y = 3\sin 2t$$
, $y(0) = 2$, $y'(0) = -1$.

STEP 0: Roots for the homogeneous are $\pm 2i$. So

$$y_h = C_1 \cos(2t) + C_2 \sin(2t).$$

STEP 1: Associated root for $3 \sin 2t$ is $\pm 2i$ and so STEP 2:

$$Y_p^1 = A\cos(2t) + B\sin(2t).$$

STEP 3: $Y_p = At \cos(2t) + Bt \sin(2t)$, because the associated roots are roots of the homogeneous equation.

STEP 4: Substitute

$$4 \times Y_{p} = At \cos(2t) + Bt \sin(2t)$$

$$0 \times Y'_{p} = 2Bt \cos(2t) - 2At \sin(2t) + A\cos(2t) + B\sin(2t)$$

$$1 \times Y''_{p} = -4At \cos(2t) - 4Bt \sin(2t) + 4B \cos(2t) - 4A\sin(2t)$$

$$3 \sin 2t = 0 + 4B \cos(2t) - 4A\sin(2t)$$

So
$$B = 0$$
, $A = -3/4$ and $y_g = C_1 \cos(2t) + C_2 \sin(2t) - \frac{3}{4}t \cos(2t)$.

Now for the initial conditions:

$$y_g = C_1 \cos(2t) + C_2 \sin(2t) - \frac{3}{4}t \cos(2t) + 0t \sin(2t),$$

$$y_g' = (2C_2 - \frac{3}{4})\cos(2t) - 2C_1 \sin(2t) + 0t \cos(2t) + \frac{3}{4}t \sin(2t).$$

Substitute t = 0.

$$2 = y_g(0) = C_1,$$

-1 = $y'_g(0) = 2C_2 - \frac{3}{4}.$

So
$$C_1 = 2$$
, $C_2 = -\frac{1}{8}$ and
$$y = 2\cos(2t) - \frac{1}{8}\sin(2t) - \frac{3}{4}t\cos(2t).$$

Illustration

As an illustration of the Method of Undetermined Coefficients, we consider the integral problems from Calculus 2:

$$\int e^{ax} \cos bx \ dx, \quad \int e^{ax} \sin bx \ dx.$$

These were done there by a looping pair of integrations by parts. Instead think of these are the solutions to the first order linear equations with constant coefficients:

$$y' = e^{ax} \cos bx$$
, $y' = e^{ax} \sin bx$, $(b \neq 0)$

which we will solve using the Method of Undetermined Coefficients

$$y = Ae^{ax}\cos bx + Be^{ax}\sin bx$$
$$y' = (Aa + Bb)e^{ax}\cos bx + (-Ab + Ba)e^{ax}\sin bx.$$

Equating coefficients between y' and $1e^{ax}\cos bx$ we get

$$Aa + Bb = 1$$
$$-Ab + Ba = 0.$$

Solve using Cramer's Rule with coefficient determinant $a^2 + b^2$

$$A = a/(a^2 + b^2)$$
, $B = b/(a^2 + b^2)$ and so
$$\int e^{ax} \cos bx dx = \frac{ae^{ax} \cos bx + be^{ax} \sin bx}{a^2 + b^2}$$

Similarly, using

$$Aa + Bb = 0$$
$$-Ab + Ba = 1,$$

we obtain

$$\int e^{ax} \sin bx dx = \frac{-be^{ax} \cos bx + ae^{ax} \sin bx}{a^2 + b^2}.$$

For those who have had linear algebra:

The functions $\{e^{ax}\cos bx, e^{ax}\sin bx\}$ form a basis for a two dimensional vector space of functions.

On it the derivative map D is a linear map with matrix

$$D = \begin{pmatrix} a & b \\ -b & a \end{pmatrix}$$

That is, the first and second columns are the coefficients of D applied to $e^{ax} \cos bx$ and $e^{ax} \sin bx$, respectively.

The inverse of D is the integral map I with inverse matrix:

$$I = \frac{1}{a^2 + b^2} \cdot \begin{pmatrix} a & -b \\ b & a \end{pmatrix}$$

with the first and second columns the coefficients of I applied to $e^{ax} \cos bx$ and $e^{ax} \sin bx$, respectively.

Higher Order, Homogeneous, Linear Equations with Constant Coefficients, Section 4.2

For n = 3, 4, ... an n^{th} order linear equation with constant coefficients is of the form

$$A_n y^{(n)} + A_{n-1} y^{(n-1)} + \cdots + A_1 y' + A_0 y = r.$$

It is homogeneous when r=0. We will consider just the homogeneous case and the cases with associated roots so that the method of Undetermined Coefficients can be used.

For an n^{th} order equation the general solution will have n arbitrary constants. In the linear case, we look for n independent solutions y_1, \ldots, y_n and get the general solution of the homogeneous equation $y_h = C_1 y_1 + \cdots + C_n y_n$.

As in the second order case, we look for solutions of the form e^{rt} . When we substitute and divide away the common factor of e^{rt} we obtain the n^{th} degree characteristic equation P(r) = 0, with

$$P(r) = A_n r^n + A_{n-1} r^{n-1} + \cdots + A_1 r + A_0.$$

The equation P(r) = 0 has, in general, n roots obtained by factoring. There are two CASES.

Real roots (r=a): The root r=a from the factor r-a gives a solution e^{at} . "Repeated roots" really means repeated factors. If we have $(r-a)^k$ in the characteristic polynomial P(r), that is, k copies of (r-a) then, as in the second order case, the additional solutions are obtained by multiplying by t, to get solutions e^{at} , te^{at} , ..., $t^{k-1}e^{at}$.

Complex conjugate pairs $(r = a \pm b\mathbf{i})$: The conjugate pair $r = a \pm b\mathbf{i}$ comes from a quadratic factor $r^2 - 2ar + (a^2 + b^2)$ gives the two solutions $e^{at}\cos(bt)$ and $e^{at}\sin(bt)$. But now you can have repeated complex roots. If $(r^2 - 2ar + (a^2 + b^2))^k$ occurs in the factoring of P(r) then we have 2k solutions $e^{at}\cos(bt)$, $te^{at}\cos(bt)$, ..., $t^{k-1}e^{at}\cos(bt)$ and $e^{at}\sin(bt)$, $te^{at}\sin(bt)$, ..., $t^{k-1}e^{at}\sin(bt)$.

The hard work here is doing the factoring. So we have to review (or for some of you introduce) some factoring methods.

Example A:
$$y^{(11)} - 2y^{(7)} + y^{(3)} = 0$$
 with $P(r) = r^{11} - 2r^7 + r^3$.

First, pull out the common factor $P(r) = r^3(r^8 - 2r^4 + 1)$.

Next notice that $r^8 - 2r^4 + 1$ is quadratic in r^4 and factors to $(r^4 - 1)^2$. Now use the *difference of two squares* $r^4 - 1 = (r^2 + 1)(r^2 - 1) = (r^2 + 1)(r + 1)(r - 1)$. So

$$P(r) = r^3(r^2+1)^2(r+1)^2(r-1)^2$$
 with eleven roots $0, 0, 0, \pm \mathbf{i}, \pm \mathbf{i}, -1, -1, +1, +1$.

$$y_h = C_1 + C_2 t + C_3 t^2 + C_4 \cos(t) + C_5 t \cos(t) + C_6 \sin(t) + C_7 t \sin(t) + C_8 e^{-t} + C_9 t e^{-t} + C_{10} e^{t} + C_{11} t e^{t}.$$

Example B: $y^{(5)} - 3y^{(3)} - 8y'' + 24y = 0$ with

$$P(r) = r^5 - 3r^3 - 8r^2 + 24 = (r^2 - 3)r^3 - (r^2 - 3)8 = (r^2 - 3)(r^3 - 8).$$

This is factoring by grouping. The roots of $r^2 - 3 = 0$ are $\pm \sqrt{3}$. For the cubic we need the difference of two cubes

$$r^3 - a^3 = (r - a)(r^2 + ar + a^2),$$

 $r^3 + a^3 = r^3 - (-a)^3 = (r + a)(r^2 - ar + a^2).$

So $P(r) = (r - \sqrt{3})(r + \sqrt{3})(r - 2)(r^2 + 2r + 4)$ with roots $\sqrt{3}, -\sqrt{3}, 2, -1 \pm \sqrt{3}$ and the solution is

$$y_h = C_1 e^{\sqrt{3}t} + C_2 e^{-\sqrt{3}t} + C_3 e^{2t} + C_4 e^{-t} \cos(\sqrt{3}t) + C_5 e^{-t} \sin(\sqrt{3}t).$$

DeMoivre's Theorem

Remember that if we start with a complex number z in rectangular form $z=x+\mathbf{i}y$ and convert to polar coordinates with $x=r\cos(\theta), y=r\sin(\theta)$. The length r is called the *magnitude* and the angle τ is called the *argument* of the complex number. So we have

$$z = x + iy = r(\cos(\theta) + i\sin(\theta)) = re^{i\theta}$$
.

If $z=re^{i\theta}$ and $w=ae^{i\phi}$ then, by using properties of the exponential, we see that $zw=rae^{i(\theta+\phi)}$. That is, the magnitudes multiply and the arguments add. In particular, for $n=1,2,3\ldots$, we see that $z^n=r^ne^{in\theta}$.

DeMoivre's Theorem describes the solutions of the equation $z^n = a$ which has n distinct solutions when a is nonzero. We describe these solutions when a is a nonzero real number.

Notice that $re^{i\theta}=re^{i(\theta+2\pi)}$. When we raise this equation to the power n the angles are replaced by $n\tau$ and $n\tau+n2\pi$ and so they differ by a multiple of π . But when we divide by n we get different angles. So if a>0, then $a=ae^{i0}$ and $-a=ae^{i\pi}$.

$$z^{n} = a \implies z = a^{1/n} \cdot \{e^{i0}, e^{i2\pi/n}, e^{i4\pi/n}, ..., e^{i(n-1)2\pi/n}\}$$
$$z^{n} = -a \implies z = a^{1/n} \cdot \{e^{i\pi/n}, e^{i(\pi+2\pi)/n}, e^{i(\pi+4\pi)/n}, ..., e^{i(\pi+(n-1)2\pi)/n}\}$$

For $z^n=a$ we start at angle 0 and go around the circle of radius $a^{1/n}$ with n equal steps of $2\pi/n$ radians for each step. For $z^n=-a$ we again go around the circle with n equal steps but this time starting a half step up at angle π/n .

Example C: $y^{(6)} - 64y = 0$, with $P(r) = r^6 - 2^6$. By DeMoivre's Theorem the roots are $2\{1, e^{i\pi/3}, e^{i2\pi/3}, -1, e^{i4\pi/3}, e^{i5\pi/3}\}$.

 $2e^{\mathbf{i}\pi/3}, 2e^{\mathbf{i}5\pi/3}$ is the conjugate pair $1\pm\mathbf{i}\sqrt{3}$ and $2e^{\mathbf{i}2\pi/3}, 2e^{\mathbf{i}4\pi/3}$ is the conjugate pair $-1\pm\mathbf{i}\sqrt{3}$.

So the roots of P(r) = 0 are $2, -2, 1 \pm i\sqrt{3}, -1 \pm i\sqrt{3}$.

In this case, one can also factor using the difference of two squares and difference of two cubes:

$$r^6 - 64 = (r^3 - 8)(r^3 + 8) =$$

 $(r - 2)(r^2 + 2r + 4)(r + 2)(r^2 - 2r + 4),$

$$y_h = C_1 e^{2t} + C_2 e^{-2t} + C_3 e^t \cos(\sqrt{3}t) + C_4 e^t \sin(\sqrt{3}t) + C_5 e^{-t} \cos(\sqrt{3}t) + C_6 e^{-t} \sin(\sqrt{3}t)$$

Example D:
$$y^{(6)} + 81y'' = 0$$
 with $P(r) = r^6 + 81r^2 = r^2(r^4 + 81)$.

By DeMoivre's Theorem the roots of $r^4 + 3^4 = 0$ are

$$3\{e^{i\pi/4}, e^{i3\pi/4}, e^{i5\pi/4}, e^{i7\pi/4}\}.$$

 $3e^{\mathbf{i}\pi/4}, 3e^{\mathbf{i}7\pi/4}$ is the conjugate pair $\frac{3\sqrt{2}}{2} \pm \mathbf{i}\frac{3\sqrt{2}}{2}$. $3e^{\mathbf{i}3\pi/4}, 3e^{\mathbf{i}5\pi/4}$ is the conjugate pair $\frac{-3\sqrt{2}}{2} \pm \mathbf{i}\frac{3\sqrt{2}}{2}$. So

$$\begin{aligned} y_h &= C_1 + C_2 t + \\ &C_3 e^{\frac{3\sqrt{2}t}{2}} \cos(\frac{3\sqrt{2}t}{2}) + C_4 e^{\frac{3\sqrt{2}t}{2}} \sin(\frac{3\sqrt{2}t}{2}) \\ &+ C_5 e^{-\frac{3\sqrt{2}t}{2}} \cos(\frac{3\sqrt{2}t}{2}) + C_6 e^{-\frac{3\sqrt{2}t}{2}} \sin(\frac{3\sqrt{2}t}{2}). \end{aligned}$$

Undetermined Coefficients for Higher Order Equations, Section 4.3

Example E:

$$y^{(11)} + 32y^{(7)} + 256y^{(3)} =$$

$$3t^2 - 7te^{\sqrt{2}t} + e^{-\sqrt{2}t}\sin(\sqrt{2}t) + t^2e^{\sqrt{2}t}\cos(\sqrt{2}t).$$

$$P(r) = r^{11} + 32r^7 + 256r^3 = r^3(r^4 + 16)^2$$
with roots
$$0, 0, 0, \sqrt{2} \pm \sqrt{2}\mathbf{i}, \sqrt{2} \pm \sqrt{2}\mathbf{i}, -\sqrt{2} \pm \sqrt{2}\mathbf{i}, -\sqrt{2} \pm \sqrt{2}\mathbf{i}.$$

$$\begin{aligned} y_h &= C_1 + C_2 t + C_3 t^2 \\ C_4 e^{\sqrt{2}t} \cos(\sqrt{2}t) + C_5 e^{\sqrt{2}t} \sin(\sqrt{2}t) + \\ C_6 t e^{\sqrt{2}t} \cos(\sqrt{2}t) + C_7 t e^{\sqrt{2}t} \sin(\sqrt{2}t) \\ C_8 e^{-\sqrt{2}t} \cos(\sqrt{2}t) + C_9 e^{-\sqrt{2}t} \sin(\sqrt{2}t) + \\ C_{10} t e^{-\sqrt{2}t} \cos(\sqrt{2}t) + C_{11} t e^{\sqrt{2}t} \sin(\sqrt{2}t). \end{aligned}$$

The associated roots for the four terms of the forcing function are $0, \sqrt{2}, -\sqrt{2} \pm \sqrt{2} \mathbf{i}, \sqrt{2} \pm \sqrt{2} \mathbf{i}$.

The first version of the test function is

$$Y_{p}^{1} = [At^{2} + Bt + C] + [(Dt + E)e^{\sqrt{2}t}] + [Fe^{-\sqrt{2}t}\cos(\sqrt{2}t) + Ge^{-\sqrt{2}t}\sin(\sqrt{2}t)] + [(Ht^{2} + It + J)e^{\sqrt{2}t}\cos(\sqrt{2}t) + (Kt^{2} + Lt + M)e^{\sqrt{2}t}\sin(\sqrt{2}t)].$$

From the interference with the roots of the homogeneous equation, we must use as the correct test function:

$$Y_{p} = t^{3}[At^{2} + Bt + C] + [(Dt + E)e^{\sqrt{2}t}] + t^{2}[Fe^{-\sqrt{2}t}\cos(\sqrt{2}t) + Ge^{-\sqrt{2}t}\sin(\sqrt{2}t)] + t^{2}[(Ht^{2} + It + J)e^{\sqrt{2}t}\cos(\sqrt{2}t) + (Kt^{2} + Lt + M)e^{\sqrt{2}t}\sin(\sqrt{2}t)].$$

Variation of Parameters, Section 3.6

For a general second order linear equation $\mathcal{L}(y) = y'' + py' + qy = r$, suppose we have two independent solutions y_1, y_2 for the homogeneous equation $\mathcal{L}(y) = 0$. So the general solution of the homogeneous equation is $y_h = C_1 y_1 + C_2 y_2$.

We need a particular solution for the equation with forcing term r. We look for $y_p = u_1y_1 + u_2y_2$ with u_1, u_2 nonconstant functions to be determined.

We impose two conditions. First, we want y_p to be a solution of $\mathcal{L}(y) = r$.

Second, when we take the derivative $y_p'=u_1y_1'+u_2y_2'+u_1'y_1+u_2'y_2$. Our second condition is $u_1'y_1+u_2'y_2=0$.

So when we substitute we have

$$q \times y_{p} = u_{1}y_{1} + u_{2}y_{2}$$

$$p \times y'_{p} = u_{1}y'_{1} + u_{2}y'_{2}$$

$$1 \times y''_{p} = u_{1}y''_{1} + u_{2}y''_{2} + u'_{1}y'_{1} + u'_{2}y'_{2}$$

$$r = 0 + 0 + u'_{1}y'_{1} + u'_{2}y'_{2}.$$

So u'_1, u'_2 are determined by two linear equations

$$u'_1y_1 + u'_2y_2 = 0$$

 $u'_1y'_1 + u'_2y'_2 = r$.

Notice that the determinant of coefficients is the Wronskian and so is nonzero.

Example 3.6/ BD6; BDM5 : $y'' + 9y = 9 \sec^2(3t)$. The roots of the homogeneous are $\pm 3i$ and so $y_1 = \cos(3t)$, $y_2 = \sin(3t)$. We look for $y_p = u_1 \cos(3t) + u_2 \sin(3t)$. We have the linear equations:

$$u'_1(\cos(3t)) + u'_2(\sin(3t)) = 0$$

 $u'_1(-3\sin(3t)) + u'_2(3\cos(3t)) = 9\sec^2(3t).$

The Wronskian is $3(\cos^2(3t) + \sin^2(3t)) = 3$ and so by Cramer's Rule

 $-1 + (\ln|\sec(3t) + \tan(3t)|)\sin(3t)$.

$$u'_1 = -3\sin(3t)\sec^2(3t) = -3\sec(3t)\tan(3t) \Rightarrow u_1 = -\sec(3t)$$

 $u'_2 = 3\cos(3t)\sec^2(3t) = 3\sec(3t) \Rightarrow u_2 = \ln|\sec(3t) + \tan(3t)|$
 $y_p = -\sec(3t)\cos(3t) + (\ln|\sec(3t) + \tan(3t)|)\sin(3t) =$

Example 3.6/ BD7; BDM6 : $y'' + 4y' + 4y = t^{-2}e^{-2t}$. The characteristic equation is $r^2 + 4r + 4 = (r+2)^2 = 0$ and so $y_h = C_1e^{-2t} + C_2te^{-2t}$. We look for $y_p = u_1e^{-2t} + u_2te^{-2t}$. We have the linear equations:

$$u_1'e^{-2t} + u_2'te^{-2t} = 0$$

 $u_1'(-2e^{-2t}) + u_2'(-2te^{-2t} + e^{-2t}) = t^{-2}e^{-2t}.$

The Wronskian is e^{-4t} and so

$$u_1' = -t^{-1}e^{-4t}/e^{-4t} = -t^{-1} \Rightarrow u_1 = -\ln(t)$$
 $u_2' = t^{-2}e^{-4t}/e^{-4t} = t^{-2} \Rightarrow u_2 = -t^{-1}.$
 $y_g = C_1e^{-2t} + C_2te^{-2t} - \ln(t)e^{-2t} - t^{-1}te^{-2t}$ or
 $y_g = C_1e^{-2t} + C_2te^{-2t} - \ln(t)e^{-2t}.$

Example 3.6/ BD16: $(1-t)y'' + ty' - y = 2(t-1)^2e^{-t}$ with $y_1 = e^t$, $y_2 = t$. Check that y_1 and y_2 are solutions of the homogeneous equation.

Divide by (1-t) to get $r=-2(t-1)e^{-t}$ and so $u_1'e^t+u_2't = 0$ $u_1'e^t+u_2' = -2(t-1)e^{-t}$.

The Wronskian is $(1-t)e^t$ and so

$$u'_1 = 2(t-1)te^{-t}/(1-t)e^t = -2te^{-2t} \implies u_1 = te^{-2t} + \frac{1}{2}e^{-2t}$$
 $u'_2 = -2(t-1)/(1-t)e^t = 2e^{-t} \implies u_2 = -2e^{-t}.$
 $y_p = (t+\frac{1}{2})e^{-t} - 2te^{-t} = (\frac{1}{2}-t)e^{-t}.$

Spring Problems, Sections 3.7, 3.8

The restoring force of a spring is in the opposite direction to its displacement y from equilibrium. In the case of a linear spring, which is all we is consider, it is proportional to the displacement and so is -ky with k a positive constant called the spring constant.

If there is friction - imagine the spring moving through a liquid like molasses - then the friction force is in the opposite direction to its velocity $v = \frac{dy}{dt} = y'$. We will assume it is proportional to the velocity and so is -cv where c is a positive constant (or zero if there is no friction).

Finally, there may be an external force, called the *forcing term*, r(t) which may not be a constant. It is usually assume periodic.

Thus, the total force is -ky-cy'+r(t). Newton's Third Law says that the total force is proportional to the the acceleration $a=\frac{d^2y}{dt^2}=y''$ and the proportionality constant is the mass m. That is, F=ma. So the differential equation for the spring is:

$$my'' + cy' + ky = 0.$$

The weight w of an object is the force due to gravity. The acceleration due to gravity is a constant (near the surface of the earth) denoted -g. (Why the minus sign?) In English units $g=32ft/sec^2$. Thus, weight and mass are related by w=mg.

When a weight is attached to a hanging spring it stretches it a distance denoted ΔL . The equilibrium position is when the spring force exactly balances the weight. That is, $w=k\Delta L$. So the equations which relate the constants in these problems are

$$w = mg$$
, $w = k\Delta L$.

Suppose there is no friction and no external force so that my''+ky=0. This is a second order, linear, homogeneous equation with constant coefficients. The characteristic equation is $mr^2+k=0$ with roots $\pm\omega \mathbf{i}$ where $\omega=\sqrt{k/m}=\sqrt{g/\Delta L}$, the natural frequency of the spring. Thus, the general solution is

$$y = C_1 \cos(\omega t) + C_2 \sin(\omega t),$$

with the constants $C_1 = y(0)$, the initial position, and $\omega C_2 = y'(0)$, the initial velocity.

Regarding the pair (C_1, C_2) as a point in the plane we can write it as $(A\cos(\phi), A\sin(\phi))$, with $A^2 = C_1^2 + C_2^2$. Remember that $\cos(a \pm b) = \cos(a)\cos(b) \mp \sin(a)\sin(b)$ and so

$$y = A\cos(\omega t)\cos(\phi) + A\sin(\omega t)\sin(\phi) = A\cos(\omega t - \phi).$$

If there is damping, and so c>0, then the characteristic equation is $r^2+2(c/2m)r+(k/m)=0$ If the damping is small, with $(c/2m)<\sqrt{k/m}$ then the roots are a complex conjugate pair $-(c/2m)\pm\sqrt{(k/m)-(c/2m)^2}\mathbf{i}$ and the solution is

$$y = e^{-(c/2m)t} [C_1 \cos(\sqrt{(k/m) - (c/2m)^2} t) + C_2 \sin(\sqrt{(k/m) - (c/2m)^2} t)].$$

If the damping is large, with $(c/2m) > \sqrt{k/m}$ then the roots are real with

$$y = C_1 e^{[-(c/2m) + \sqrt{(c/2m)^2 - (k/m)}]} + C_2 e^{[-(c/2m) - \sqrt{(c/2m)^2 - (k/m)}]}$$
.

Finally, if $(c/2m) = \sqrt{k/m}$ then -(c/2m) is a repeated root and so $y = e^{-(c/2m)t}[C_1 + C_2t]$. In any case, the solution decays exponentially.

In the undamped case, suppose there is periodic forcing: $y'' + \omega_0^2 y = \cos(\omega t)$.

The roots of the characteristic equation $r^2 + \omega_0^2 = 0$ are $\pm \omega_0 \mathbf{i}$. ω_0 is the *natural frequency* of the spring.

The associated roots for the forcing term are $\pm \omega \mathbf{i}$.

If $\omega \neq \omega_0$ then the test function $Y_p = A\cos(\omega t) + B\sin(\omega t)$.

If $\omega = \omega_0$ then the test function $Y_p = At \cos(\omega t) + Bt \sin(\omega t)$. Forcing at the natural frequency of the spring is called *resonance*.

Example 3.8/ BD11; BDM7 : A spring is stretched 6in by a mass that weighs 4lb. The mass is attached to a dashpot with a damping constant of $0.25lb \cdot sec/ft$ and is acted upon by an external force of $4\cos(2t)lb$.

- Determine the general solution and the steady state response of the system.
- ▶ If the given mass is replaced by one of mass m, determine m so that the amplitude of the steady state response is a maximum.

$$\Delta L = \frac{1}{2}, w = 4, c = \frac{1}{4}, g = 32$$
, and so $k = w/\Delta L = 8, m = w/g = \frac{1}{8}$. So

$$\frac{1}{8}y'' + \frac{1}{4}y' + 8y = 4\cos(2t), \quad \text{or} \quad y'' + 2y' + 64y = 32\cos(2t).$$
$$y_h = e^{-t}[C_1\cos(\sqrt{63}\ t) + C_2\sin(\sqrt{63}\ t)]$$

The particular solution $y_p = A\cos(2t) + B\sin(2t)$ is the steady-state solution.

Substitute into the equation $y'' + 2y' + 64y = 32\cos(2t)$

$$64 \times [y_{p} = A\cos(2t) + B\sin(2t)]$$

$$2 \times [y'_{p} = 2B\cos(2t) - 2A\sin(2t)]$$

$$\frac{1 \times [y''_{p} = -4A\cos(2t) - 4B\sin(2t)]}{32\cos 2t = (60A + 4B)\cos(2t) + (-4A + 60B)\sin(2t)}$$

$$\frac{15A + B = 8}{-A + 15B = 0} \Rightarrow (A, B) = \frac{4}{113}(15, 1).$$

The amplitude is $\sqrt{A^2 + B^2} = \frac{4\sqrt{226}}{113}$.

If the mass m is substituted then the equation is $my'' + \frac{1}{4}y' + 8y = 4\cos(2t)$. As there is damping the steady-state solution is again $y_p = A\cos(2t) + B\sin(2t)$.

$$8 \times [y_p = A\cos(2t) + B\sin(2t)]$$

$$\frac{1}{4} \times [y'_p = 2Bt\cos(2t) - 2At\sin(2t)]$$

$$\underline{m \times [y''_p = -4A\cos(2t) - 4B\sin(2t)]}$$

$$4\cos 2t = ((-4m+8)A + \frac{1}{2}B)\cos(2t)$$

$$+ (-\frac{1}{2}A + (-4m+8)B)\sin(2t).$$

$$(-8m+16)A + B = 8$$

-A + $(-8m+16)B = 0$

The coefficient determinant is $64(2-m)^2+1$ and so

$$(A,B) = \frac{8}{64(2-m)^2+1}(8(2-m),1).$$

The amplitude is $\frac{8}{\sqrt{64(2-m)^2+1}}$ which has its maximum at m=2.

Series Solutions Centered at an Ordinary Point

We are going to look at second order, linear, homogeneous equations of the form P(x)y'' + Q(x)y' + R(x)y = 0 with the coefficients P, Q, R polynomials in x. The center x = a is an ordinary point when P(a) is not zero so that Q/P and R/P are defined at x = a.

We will look for a series solution centered at x = 0. Thus,

$$y = \sum a_n x^n.$$

$$y' = \sum n a_n x^{n-1}.$$

$$y'' = \sum n(n-1)a_n x^{n-2}.$$

We use three steps

Step 1: Write a separate series for each term of the polynomials P, Q and R.

Step 2: Shift indices so that each series is represented as powers of x^k .

Step 3: Collect terms to obtain the *recursion formula* for the a_k 's with $a_0 = y(0)$ and $a_1 = y'(0)$ the arbitrary constants.

Example: $(2+3x^2)y'' + (x-5x^3)y' + (1-x^2+x^4)y = 0$. So there will be seven series.

$$2y'' = \sum 2n(n-1)a_{n}x^{n-2}[k = n-2] = \sum 2(k+2)(k+1)a_{k+2}x^{k}.$$

$$3x^{2}y'' = \sum 3n(n-1)a_{n}x^{n} [k = n] = \sum 3k(k-1)a_{k}x^{k}.$$

$$xy' = \sum na_{n}x^{n} [k = n] = \sum ka_{k}x^{k}.$$

$$-5x^{3}y' = \sum -5na_{n}x^{n+2}[k = n+2] = \sum -5(k-2)a_{k-2}x^{k}.$$

$$1y = \sum a_{n}x^{n} [k = n] = \sum a_{k}x^{k}.$$

$$-x^{2}y = \sum -a_{n}x^{n+2}[k = n+2] = \sum -a_{k-2}x^{k}.$$

$$x^{4}y = \sum a_{n}x^{n+4} [k = n+4] = \sum a_{k-4}x^{k}.$$

We sum and collect the coefficients of x^k to get the recursion formula.

Recursion Formula:

$$a_{k+2} = \frac{1}{2(k+2)(k+1)} [-3k(k-1)a_k - ka_k + 5(k-2)a_{k-2} - a_k + a_{k-2} - a_{k-4}] = \frac{1}{2(k+2)(k+1)} [(-k(3k-2)-1)a_k + (5k-9)a_{k-2} - a_{k-4}].$$

Substitute:

$$\begin{array}{ll} k=0, & a_2=\frac{1}{4}[-a_0]=-\frac{1}{4}a_0.\\ k=1, & a_3=\frac{1}{12}[-2a_1]=-\frac{1}{6}a_1.\\ k=2, & a_4=\frac{1}{24}[-9a_2+1a_0]=\frac{1}{24}[\frac{13}{4}a_0]=\frac{13}{96}a_0.\\ k=3, & a_5=\frac{1}{40}[-22a_3+6a_1]=\frac{1}{40}[\frac{29}{3}a_1]=\frac{29}{120}a_1.\\ k=4, & a_6=\frac{1}{60}[-41a_4+11a_2-a_0]=\\ & & \frac{1}{60}[-\frac{41\cdot13}{96}a_0-\frac{11}{4}a_0-a_0]=-\frac{893}{5760}a_0. \end{array}$$

Example: $(1-x)y'' + (x-2x^2)y' + (1-x+x^2)y = 0.y(0) = -12$, y'(0) = 12 So there will again be seven series. Step 1: and Step 2:

$$1y'' = \sum 1n(n-1)a_{n}x^{n-2}[k = n-2] = \sum 1(k+2)(k+1)a_{k+2}x$$

$$-xy'' = \sum -n(n-1)a_{n}x^{n-1}[k = n-1] = \sum -(k+1)(k)a_{k+1}x^{k}.$$

$$xy' = \sum na_{n}x^{n}[k = n] = \sum ka_{k}x^{k}.$$

$$-2x^{2}y' = \sum -2na_{n}x^{n+1}[k = n+1] = \sum -2(k-1)a_{k-1}x^{k}.$$

$$1y = \sum a_{n}x^{n}[k = n] = \sum a_{k}x^{k}.$$

$$-xy = \sum -a_{n}x^{n+1}[k = n+1] = \sum -a_{k-1}x^{k}.$$

$$x^{2}y = \sum a_{n}x^{n+2}[k = n+2] = \sum a_{k-2}x^{k}.$$

We sum and collect the coefficients of x^k to get the recursion formula.

Recursion Formula:

$$a_{k+2} = \frac{1}{(k+2)(k+1)}[(k+1)(k)a_{k+1} - ka_k + 2(k-1)a_{k-1} - a_k + a_{k-1} - a_{k-2}] = \frac{1}{(k+2)(k+1)}[((k+1)(k)a_{k+1} - (k+1)a_k + (2k-1)a_{k-1} - a_{k-2}].$$
Substitute: $a_0 = -12, a_1 = 12$
 $k = 0, \quad a_2 = \frac{1}{2}[0 - a_0 + 0 + 0] = 6.$
 $k = 1, \quad a_3 = \frac{1}{6}[2a_2 - 2a_1 + a_0 + 0] = -4.$

Substitute:
$$a_0 = -12$$
, $a_1 = 12$
 $k = 0$, $a_2 = \frac{1}{2}[0 - a_0 + 0 + 0] = 6$.
 $k = 1$, $a_3 = \frac{1}{6}[2a_2 - 2a_1 + a_0 + 0] = -4$.
 $k = 2$, $a_4 = \frac{1}{12}[6a_3 - 3a_2 + 3a_1 - a_0] = \frac{1}{2}$.
 $k = 3$, $a_5 = \frac{1}{20}[12a_4 - 4a_3 + 5a_2 - a_1] = 2$.
 $k = 4$, $a_6 = \frac{1}{30}[20a_5 - 5a_4 + 7a_3 - a_2] = \frac{7}{60}$
 $y = -12 + 12x + 6x^2 - 4x^3 + \frac{1}{2}x^4 + 2x^5 + \frac{7}{60}x^6 + \dots$

Example: $y'' + [2 + (x-1)^2]y' + (x^2 - 1)y = 0$ centered at x = 1 So we want a solution of the form $y = \sum a_n(x-1)^n$. Let X = x - 1 so that x = X + 1. Then $x^2 - 1 = X^2 + 2X$ and $y = \sum a_n X^n$ with $y'' + [2 + X^2]y' + (X^2 + 2X)y = 0$. Notice that $\frac{dy}{dX} = \frac{dy}{dx}$ because $\frac{dX}{dx} = 1$.

$$y'' = \sum n(n-1)a_{n}X^{n-2}[k = n-2] = \sum (k+2)(k+1)a_{k+2}X^{k}.$$

$$2y' = \sum 2na_{n}X^{n-1} \quad [k = n-1] = \sum 2(k+1)a_{k+1}X^{k}.$$

$$X^{2}y' = \sum na_{n}X^{n+1} \quad [k = n+1] = \sum (k-1)a_{k-1}X^{k}.$$

$$X^{2}y = \sum a_{n}X^{n+2} \quad [k = n+2] = \sum a_{k-2}X^{k}.$$

$$2Xy = \sum 2a_{n}X^{n+1} \quad [k = n+1] = \sum 2a_{k-1}X^{k}.$$

Recursion Formula:

$$a_{k+2} = \frac{1}{(k+2)(k+1)} [-2(k+1)a_{k+1} - (k+1)a_{k-1} - a_{k-2}].$$

From the recursion formula $a_{k+2} = \frac{1}{(k+2)(k+1)} [-2(k+1)a_{k+1} - (k+1)a_{k-1} - a_{k-2}],$ we substitute to get k = 0, $a_2 = \frac{1}{2} [-2a_1 - 0 - 0] = -a_1$.

$$k = 1, \quad a_3 = \frac{1}{6} \left[-4a_2 - 2a_0 - 0 \right] = \frac{2}{3}a_1 - \frac{1}{3}a_0.$$

$$k = 2, \quad a_4 = \frac{1}{12} \left[-6a_3 - 3a_1 - a_0 \right] = -\frac{7}{12}a_1 + \frac{1}{12}a_0$$

$$k = 3, \quad a_5 = \frac{1}{20} \left[-8a_4 - 4a_2 - a_1 \right] = \frac{23}{60}a_1 - \frac{1}{30}a_0.$$

$$k = 4, \quad a_6 = \frac{1}{30} \left[-10a_5 - 5a_3 - a_2 \right] = -\frac{37}{180}a_1 + \frac{1}{15}a_0.$$

$$a_0 = y(1)$$
 and $a_1 = y'(1)$.

If the initial conditions y(1)=18, y'(1)=-24 are given, it is best to substitute immediately. From the recursion formula $a_{k+2}=\frac{1}{(k+2)(k+1)}[-2(k+1)a_{k+1}-(k+1)a_{k-1}-a_{k-2}]$, we substitute to get

$$k = 0,$$
 $a_2 = \frac{1}{2}[48 - 0 - 0] = 24.$
 $k = 1,$ $a_3 = \frac{1}{6}[-96 - 36 - 0] = -22.$
 $k = 2,$ $a_4 = \frac{1}{12}[132 + 72 - 18] = \frac{31}{2}.$
 $k = 3,$ $a_5 = \frac{1}{20}[-124 - 96 + 24] = -\frac{49}{5}.$
 $k = 4,$ $a_6 = \frac{1}{30}[98 + 110 - 24] = \frac{92}{15}.$

So that

$$y = 18 - 24(x - 1) + 24(x - 1)^{2} - 22(x - 1)^{3} + \frac{31}{2}(x - 1)^{4}$$
$$-\frac{49}{5}(x - 1)^{5} + \frac{92}{15}(x - 1)^{6} + \dots$$