(1) (12 points each)Compute the general solution of each of the following differential equations:
(a) $\frac{d y}{d x}=\frac{x}{y+x^{2} y}$.

Variables Separable: $\int y d y=\int \frac{x d x}{1+x^{2}}$.
So $y^{2}=\ln \left(1+x^{2}\right)+C$.
(b) $t \frac{d y}{d t}+4 y=\frac{4}{t}$

Linear: Divide by $t . \mu=\exp \left(i n t \frac{4}{t} d t\right)=t^{4}$.
$t^{4} \frac{d y}{d t}+4 t^{3} y=\left[t^{4} y\right]^{\prime}=4 t^{2}$.
So $t^{4} y=\frac{4}{3} t^{3}+C$.
(c) $\quad y^{\prime \prime}-3 y^{\prime}=0 \quad(y$ is a function of $x)$.

Second Order Linear: Characteristic Equation $r^{2}-3 r=0$ with roots $r=0,3$.
$y=C_{1}+C_{2} e^{3 x}$.
(d) $\quad x y d y=\left(x^{2}+y^{2}\right) d x$.

Homogeneous with $\frac{d y}{d x}=\frac{x^{2}+y^{2}}{x y}$. Let $z=y / x$.
$x \frac{d z}{d x}=\frac{1+z^{2}}{z}-z=\frac{1}{z}$.
$\int z d z=\int \frac{d x}{x}$.
$z^{2} / 2=\ln (x)+C$. So $y^{2}=2 x^{2}(\ln (x)+C)$.
(2) (12 points each) Solve the following initial value problems:
(a) $y^{\prime \prime}+t\left(y^{\prime}\right)^{2}=0, \quad$ with $\quad y(0)=2, y^{\prime}(0)=1$.

Let $y^{\prime}=v$ so that $y^{\prime \prime}=\frac{d v}{d t}$.
$\frac{d v}{d t}=-t v^{2} .-v^{-1}=\int v^{-2} d v=\int-t d t=-t^{2} / 2+C_{1}$.
When $t=0, v=1$ and so $C_{1}=-1$.
$\frac{d y}{d t}=v=\frac{2}{2+t^{2}}=\frac{1}{1+(t / \sqrt{2})^{2}}$. So $y=\sqrt{2} \arctan (t / \sqrt{2})+C_{2}$.
When $t=0, y=2$ and so $C_{2}=2 . y=\sqrt{2} \arctan (t / \sqrt{2})+2$.
(b) $\quad(1-y \sin (x y)) d x+(2 y-x \sin (x y)) d y=0 \quad$ with $\quad y(0)=2$.
$\frac{\partial}{\partial y}(1-y \sin (x y))=-\sin (x y)-x y \cos (x y)=\frac{\partial}{\partial x}(2 y-x \sin (x y))$
Exact Equation: $F=\int(1-y \sin (x y)) d x=x+\cos (x y)+H(y)$.
$\frac{\partial F}{\partial y}=-x \sin (x y)+H^{\prime}(y)=2 y-x \sin (x y)$.
$H^{\prime}(y)=2 y$ and so $H(y)=y^{2}$.
$x+\cos (x y)+y^{2}=C$. Since $y(0)=2,0+1+4=C$ and so $C=5$.
(3)(9 points) Assume that y_{1}, y_{2} are solutions of the equation $y^{\prime \prime}+p y^{\prime}+q y=0$ where p and q are functions of t.
(a) Define the Wronskian W of $y_{1}, y_{2} . W=y_{1} y_{2}^{\prime}-y_{2} y_{1}^{\prime}$.
(b) Prove Abel's Theorem. That is, show that the Wronskian satisfies a first order differential equation.
$0=y_{1} y_{2}-y_{2} y_{1}$.
$W=y_{1} y_{2}^{\prime}-y_{2} y_{1}^{\prime}$.
$W^{\prime}=y_{1} y_{2} "-y_{2} y_{1} "$.
Multiply the first row by q, the second row by p, the third row by 1 and add.
Because y_{1} and y_{2} are solutions we obtain:
$0+p W+W^{\prime}=0+0$. That is, $\frac{d W}{d t}+p W=0$.
(4) (10 points)A 200 gallon tank contains 80 gallons of water in which is dissolved 10 pounds of salt. Starting at time $t=0$, a solution with a concentration of 2 pounds per gallon is pumped into the tank at a rate of 5 gallons per minute. At the same time, the well-stirred mixture is pumped out at the rate of 2 gallons per minute.

Set up an initial value problem (differential equation and initial conditions) for the amount $Q(t)$ of salt (in pounds) in the tank at time t until the tank is full. You need not solve the equation.

$$
\begin{aligned}
& \frac{d V}{d t}=5-2 \text { in } \mathrm{gal} / \min \text { with } V_{0}=80 . \text { So } V=80+3 t . \\
& \text { In pounds } / \min \frac{d Q}{d t}=5 \cdot 2-2 \frac{Q}{V} . \\
& \frac{d Q}{d t}=10-\frac{2}{80+3 t} Q \text { with } Q_{0}=10 .
\end{aligned}
$$

(5) (9 points) I borrow $\$ 10,000$ at an interest rate of 1% per year, compounded continuously. I pay off the loan continuously at a rate of $\$ 750$ per year. Set up an initial value problem (differential equation and initial conditions) whose solution is the quantity $S(t)$ of dollars that I owe at time t, until the loan is paid off. You need not solve the equation.

$$
\frac{d P}{d t}=.01 P-750, \text { with } P_{0}=10,000
$$

Remember to show your work. Good luck.

