Math 39100 K (10224)
 - Homework Solutions - Post 02

Ethan Akin
Email: eakin@ccny.cuny.edu

Fall, 2022

Chapter 3, Section 3.3-BD 10; BDM 7: $y^{\prime \prime}+2 y^{\prime}+2 y=0$ with characteristic equation $r^{2}+2 r+2=0$.

Chapter 3, Section 3.3 - BD 10; BDM $7: y^{\prime \prime}+2 y^{\prime}+2 y=0$ with characteristic equation $r^{2}+2 r+2=0$. Roots: $r=[-2 \pm \sqrt{4-8}] / 2=-1 \pm \mathbf{i}$.

Chapter 3, Section 3.3-BD 10; BDM 7: $y^{\prime \prime}+2 y^{\prime}+2 y=0$ with characteristic equation $r^{2}+2 r+2=0$. Roots: $r=[-2 \pm \sqrt{4-8}] / 2=-1 \pm \mathbf{i}$.

$$
y=C_{1} e^{-t} \cos t+C_{2} e^{-t} \cos t
$$

Chapter 3, Section 3.3-BD 10; BDM 7: $y^{\prime \prime}+2 y^{\prime}+2 y=0$ with characteristic equation $r^{2}+2 r+2=0$. Roots:
$r=[-2 \pm \sqrt{4-8}] / 2=-1 \pm \mathbf{i}$.

$$
y=C_{1} e^{-t} \cos t+C_{2} e^{-t} \cos t
$$

Contrast with $y^{\prime \prime}+2 y^{\prime}-2 y=0$ with characteristic equation $r^{2}+2 r+2=0$.

Chapter 3, Section 3.3-BD 10; BDM 7: $y^{\prime \prime}+2 y^{\prime}+2 y=0$ with characteristic equation $r^{2}+2 r+2=0$. Roots:
$r=[-2 \pm \sqrt{4-8}] / 2=-1 \pm \mathbf{i}$.

$$
y=C_{1} e^{-t} \cos t+C_{2} e^{-t} \cos t
$$

Contrast with $y^{\prime \prime}+2 y^{\prime}-2 y=0$ with characteristic equation $r^{2}+2 r+2=0$. Roots: $r=[-2 \pm \sqrt{4+8}] / 2=-1 \pm \sqrt{3}$.

Chapter 3, Section 3.3-BD 10; BDM 7: $y^{\prime \prime}+2 y^{\prime}+2 y=0$ with characteristic equation $r^{2}+2 r+2=0$. Roots:
$r=[-2 \pm \sqrt{4-8}] / 2=-1 \pm \mathbf{i}$.

$$
y=C_{1} e^{-t} \cos t+C_{2} e^{-t} \cos t
$$

Contrast with $y^{\prime \prime}+2 y^{\prime}-2 y=0$ with characteristic equation $r^{2}+2 r+2=0$. Roots: $r=[-2 \pm \sqrt{4+8}] / 2=-1 \pm \sqrt{3}$.

$$
y=C_{1} e^{(-1+\sqrt{3}) t}+C_{2} e^{(-1-\sqrt{3}) t}
$$

BD 17; BDM $12: y^{\prime \prime}+4 y=0$ with characteristic equation $r^{2}+4=0$.

BD 17; BDM $12: y^{\prime \prime}+4 y=0$ with characteristic equation $r^{2}+4=0$. Roots: $r= \pm 2 \mathbf{i}$.

BD 17; BDM $12: y^{\prime \prime}+4 y=0$ with characteristic equation $r^{2}+4=0$. Roots: $r= \pm 2 \mathbf{i}$.

$$
\begin{aligned}
y & =C_{1} \cos (2 t)+C_{2} \sin (2 t) \\
y^{\prime} & =-2 C_{1} \sin (2 t)+2 C_{2} \cos (2 t)
\end{aligned}
$$

BD 17; BDM $12: y^{\prime \prime}+4 y=0$ with characteristic equation $r^{2}+4=0$. Roots: $r= \pm 2 \mathbf{i}$.

$$
\begin{aligned}
y & =C_{1} \cos (2 t)+C_{2} \sin (2 t) \\
y^{\prime} & =-2 C_{1} \sin (2 t)+2 C_{2} \cos (2 t)
\end{aligned}
$$

$y(0)=0$ and $y^{\prime}(0)=1$. So $0=C_{1}(1)+C_{2}(0)$ and $1=-2 C_{1}(0)+2 C_{2}(1) .$.

BD 17; BDM $12: y^{\prime \prime}+4 y=0$ with characteristic equation $r^{2}+4=0$. Roots: $r= \pm 2 \mathbf{i}$.

$$
\begin{aligned}
y & =C_{1} \cos (2 t)+C_{2} \sin (2 t) \\
y^{\prime} & =-2 C_{1} \sin (2 t)+2 C_{2} \cos (2 t)
\end{aligned}
$$

$y(0)=0$ and $y^{\prime}(0)=1$. So $0=C_{1}(1)+C_{2}(0)$ and
$1=-2 C_{1}(0)+2 C_{2}(1)$.
$C_{1}=0, C_{2}=\frac{1}{2}$ and so

BD 17; BDM $12: y^{\prime \prime}+4 y=0$ with characteristic equation $r^{2}+4=0$. Roots: $r= \pm 2 \mathbf{i}$.

$$
\begin{aligned}
y & =C_{1} \cos (2 t)+C_{2} \sin (2 t) \\
y^{\prime} & =-2 C_{1} \sin (2 t)+2 C_{2} \cos (2 t)
\end{aligned}
$$

$$
\begin{aligned}
& y(0)=0 \text { and } y^{\prime}(0)=1 . \text { So } 0=C_{1}(1)+C_{2}(0) \text { and } \\
& 1=-2 C_{1}(0)+2 C_{2}(1) . . \\
& C_{1}=0, C_{2}=\frac{1}{2} \text { and so }
\end{aligned}
$$

$$
y=\sin (2 t) / 2
$$

Example 3.4/25: $t^{2} y^{\prime \prime}+3 t y^{\prime}+y=0, t>1$ with $y_{1}(t)=t^{-1}$.

$$
\begin{aligned}
& 1 \times y_{2}=u t^{-1} \\
& 3 t \times y_{2}^{\prime}=-u t^{-2}+u^{\prime} t^{-1} \\
& t^{2} \times y_{2}^{\prime \prime}=2 u t^{-3}-2 u^{\prime} t^{-2}+ \\
& u^{\prime \prime} t^{-1} \\
& 0=0
\end{aligned}
$$

Let $v=u^{\prime}$ and $v^{\prime}=u^{\prime \prime} . t \frac{d v}{d t}=-v$.

$$
\ln v=-\ln t, \quad \text { and so } \quad \frac{d u}{d t}=v=t^{-1}
$$

Hence, $u=\int t^{-1} d t=\ln t$.

$$
y_{2}=u t^{-1}=t^{-1} \ln t
$$

Example 3.5/9: $2 y^{\prime \prime}+3 y^{\prime}+y=t^{2}+3 \sin t$.

1. Homogeneous Equation $2 y^{\prime \prime}+3 y^{\prime}+y=0$ has characteristic equation $2 r^{2}+3 r+1=(2 r+1)(r+1)=0$. So $y_{h}=C_{1} e^{-t / 2}+C_{2} e^{-t}$.
2. t^{2} has associated root 0 and $3 \sin t$ has associated root the conjugate pair $\pm \mathbf{i}$. So our first guess for the test solution is $Y=A t^{2}+B t+C+D \cos t+E \sin t$. Since none of the associated roots is a root of the characteristic equation, this is what we use for Y_{p}.
3. Substitute in the equation.

$$
\begin{aligned}
& 1 \times Y_{p}=A t^{2}+B t \quad+C \quad+D \cos t \quad+E \sin t \\
& 3 \times Y_{p}^{\prime}= \\
& 2 \times Y_{p}^{\prime \prime}=
\end{aligned} \quad 6 A t+3 B+3 E \cos t \quad-3 D \sin t,
$$

So $t^{2}+3 \sin t=A t^{2}+(B+6 A) t+(C+3 B+4 A)$
$+(-D+3 E) \cos t+(-E-3 D) \sin t$.
$A=1$.
$B+6 A=0$, and so $B=-6$.
$C+3 B+4 A=0$, and so $C=14$.
$-D+3 E=0$ and so $D=3 E$.
$-E-3 D=3$ and so $-10 E=3$.
Thus, $E=-3 / 10, \quad D=-9 / 10$.
$y_{g}=C_{1} e^{-t / 2}+C_{2} e^{-t}+t^{2}-6 t+14-(9 / 10) \cos t-(3 / 10) \sin t$.

Example 3.5/17:
$y^{\prime \prime}-2 y^{\prime}+y=t e^{t}+4, \quad y(0)=1, y^{\prime}(0)=1$.

1. Homogeneous Equation $y^{\prime \prime}-2 y^{\prime}+y=0$ has characteristic equation $r^{2}-2 r+1=(r-1)^{2}=0$. So $y_{h}=C_{1} e^{t}+C_{2} t e^{t}$.
2. te ${ }^{t}$ has associated root 1 and 4 has associated root 0 . So our first guess for the test solution is $Y=A t e^{t}+B e^{t}+C$.
Since 1 is a root for the homogeneous, we must multiply the block Ate ${ }^{t}+B e^{t}$ first by t and then by another t since 1 is a repeated root. So $Y_{p}=A t^{3} e^{t}+B t^{2} e^{t}+C$.
3. Substitute in the equation. Leave columns for the $t e^{t}$ and e^{t} terms.

$$
\begin{aligned}
1 \times Y_{p} & =A t^{3} e^{t}+B t^{2} e^{t}+C \\
-2 \times Y_{p}^{\prime} & =-2 A t^{3} e^{t}+(-6 A-2 B) t^{2} e^{t} \quad-4 B t e^{t} \\
1 \times Y_{p}^{\prime \prime} & =A t^{3} e^{t}+(6 A+B) t^{2} e^{t}+(6 A+4 B) t e^{t}+2 B e^{t}
\end{aligned}
$$

So $t e^{t}+4=0+0+6 A t e^{t}+2 B e^{t}+C$, Notice that the first two columns on the right add up to 0 .
$A=1 / 6, B=0, C=4$, So that

$$
\begin{aligned}
& \quad y_{g}=C_{1} e^{t}+C_{2} t e^{t}+(1 / 6) t^{3} e^{t}+4, \\
& y_{g}^{\prime}=\left(C_{1}+C_{2}\right) e^{t}+C_{2} t e^{t}+(1 / 2) t^{2} e^{t}+(1 / 6) t^{3} e^{t} . \\
& 1=y(0)=C_{1}+4, \quad 1=y^{\prime}(0)=C_{1}+C_{2} . \\
& C_{1}=-3, \quad C_{2}=4 . \\
& y=-3 e^{t}+4 t e^{t}+(1 / 6) t^{3} e^{t}+4 .
\end{aligned}
$$

For 19-23, just solve the homogeneous equation and get the test function $Y(t)$. Don't try to solve for the coefficients.
Example 3.5/21: $y^{\prime \prime}+3 y^{\prime}=2 t^{4}+t^{2} e^{-3 t}+\sin 3 t$. The characteristic equation of the homogeneous equation is $r^{2}+3 r=0$ with roots $r=0,-3$. So $y_{h}=C_{1}+C_{2} e^{-3 t}$.
For $2 t^{4}$ the associated root is 0
For $t^{2} e^{-3 t}$ the associated root is -3
For $\sin 3 t$ the associated root(s) are $\pm 3 \mathbf{i}$.
First version of test function is $\bar{Y}(t)=$
$\left(A t^{4}+B t^{3}+C t^{2}+D t+E\right)+\left(F t^{2}+G t+H\right) e^{-3 t}+(I \cos 3 t+J \sin 3 t)$.
Because 0 and -3 are roots from the homogeneous equation, each of those blocks must be multiplied by t to get $\quad Y(t)=$
$t\left(A t^{4}+B t^{3}+C t^{2}+D t+E\right)+t\left(F t^{2}+G t+H\right) e^{-3 t}+(I \cos 3 t+J \sin 3 t)$.

Example 3.5/22: $y^{\prime \prime}+y=t(1+\sin t)=t+t \sin t$. Characteristic equation is $r^{2}+1=0$ with roots $r= \pm \mathbf{i}$. $y_{h}=C_{1} \cos t+C_{2} \sin t$.

For t the associated root is 0 .
For $t \sin t$ the associated root is $\pm \mathbf{i}$.
First version of test function is

$$
\bar{Y}(t)=(A t+B)+((C t+D) \cos t+(E t+F) \sin t)
$$

Because $\pm \mathbf{i}$ are roots from the homogeneous equation, the corresponding block must be multiplied by t to get

$$
Y(t)=(A t+B)+t((C t+D) \cos t+(E t+F) \sin t)
$$

Example 3.5/25: $y^{\prime \prime}-4 y^{\prime}+4 y=2 t^{2}+4 t e^{2 t}+t \sin 2 t$. Characteristic equation is $r^{2}-4 r+4=(r-2)^{2}=0$ with roots $r=2$, 2. $y_{h}=C_{1} e^{2 t}+C_{2} t e^{2 t}$.

For $2 t^{2}$ the associated root is 0 .
For $4 t e^{2 t}$ the associated root is 2 .
For $t \sin 2 t$ the associated root is $\pm 2 \mathbf{i}$.
First version of test function is $\bar{Y}(t)=$

$$
\left(A t^{2}+B t+C\right)+(D t+E) e^{2 t}+((F t+G) \cos 2 t+(H t+I) \sin 2 t)
$$

Because 2 is a twice repeated root of the homogeneous equation, the corresponding block must multiplied by t^{2}. The test function $\quad Y(t)=$
$\left(A t^{2}+B t+C\right)+t^{2}(D t+E) e^{2 t}+((F t+G) \cos 2 t+(H t+I) \sin 2 t)$.

Example 4.2/11: $y^{\prime \prime \prime}-y^{\prime \prime}-y^{\prime}+y=0$. Characteristic equation is $r^{3}-r^{2}-r+1=0$. Factor by grouping:
$r^{3}-r^{2}-r+1=r^{2}(r-1)-(r-1)=\left(r^{2}-1\right)(r-1)=$ $(r+1)(r-1)(r-1)$ with roots $-1,1,1$.

$$
y_{g}=C_{1} e^{-t}+C_{2} e^{t}+C_{3} t e^{t}
$$

Example 4.2/13: $2 y^{\prime \prime \prime}-4 y^{\prime \prime}-2 y^{\prime}+4 y=0$. Divide the characteristic equation by 2 and factor by grouping to get $r^{3}-2 r^{2}-r+2=\left(r^{2}-1\right)(r-2)$ with roots $1,-1,2$.
Example 4.2/15: $y^{(6)}+y=0$. The characteristic equation $r^{6}=-1$ requires DeMoivre's Theorem. The modulus is $1^{1 / 6}=1$. Each step is 60°, beginning with half-step 30°. The six roots are

$$
\begin{aligned}
(\cos 30) \pm \mathbf{i}(\sin 30)= & (\sqrt{3} / 2) \pm \mathbf{i}(1 / 2),(\cos 90) \pm \mathbf{i}(\sin 90)= \pm \mathbf{i}, \\
(\cos 150) \pm \mathbf{i}(\sin 150)= & (-\cos 30) \pm \mathbf{i}(\sin 30)=(-\sqrt{3} / 2) \pm \mathbf{i}(1 / 2) . \\
y_{g}=C_{1} e^{t \sqrt{3} / 2} \cos (t / 2) & +C_{2} e^{t \sqrt{3} / 2} \sin (t / 2)+C_{3} \cos (t)+C_{4} \sin (t) \\
& +C_{5} e^{-t \sqrt{3} / 2} \cos (t / 2)+C_{6} e^{-t \sqrt{3} / 2} \sin (t / 2) .
\end{aligned}
$$

Example 4.2/21: $y^{(8)}+8 y^{(4)}+16 y=0$. The characteristic equation is $r^{8}+8 r^{4}+16=\left(r^{4}+4\right)^{2}=0 . r^{4}=-4$ requires DeMoivre's Theorem. The modulus is $4^{1 / 4}=\sqrt{2}$. Each step is 90°, beginning with half-step 45°. The four roots are

$$
\sqrt{2}((\cos 45) \pm \mathbf{i}(\sin 45))=1 \pm \mathbf{i}
$$

$\sqrt{2}((\cos 135) \pm \mathbf{i}(\sin 135))=\sqrt{2}(-(\cos 45) \pm \mathbf{i}(\sin 45))=-1 \pm \mathbf{i}$.
Each pair of complex roots is repeated.

$$
\begin{array}{r}
y_{g}=C_{1} e^{t} \cos t+C_{2} e^{t} \sin t+C_{3} t e^{t} \cos t+C_{4} t e^{t} \sin t+ \\
C_{5} e^{-t} \cos t+C_{6} e^{-t} \sin t+C_{7} t e^{-t} \cos t+C_{8} t e^{-t} \sin t
\end{array}
$$

Example 4.3/13: $y^{\prime \prime \prime}-2 y^{\prime \prime}+y^{\prime}=t^{3}+2 e^{t}$. The characteristic equation for the homogeneous equation is $r^{3}-2 r^{2}+r=r(r-1)^{2}=0$ with roots $0,1,1$.

$$
y_{h}=C_{1}+C_{2} e^{t}+C_{3} t e^{t}
$$

For t^{3} the associated root is 0 .
For $2 e^{t}$ the associated root is 1 .
The first guess for the test function Y_{p}^{1} is thus

$$
Y_{p}^{1}=\left(A t^{3}+B t^{2}+C t+D\right)+\left(E e^{t}\right)
$$

Because 0 is a root for the homogeneous equation, we must multiply the first block by t.
Because 1 is a repeated root for the homogeneous equation, we must multiply the second block by t^{2}.

$$
Y_{p}=t\left(A t^{3}+B t^{2}+C t+D\right)+t^{2}\left(E e^{t}\right)
$$

Example 4.3/15: $y^{(4)}-2 y^{\prime \prime}+y=e^{t}+\sin t$. The characteristic equation for the homogeneous equation is $r^{4}-2 r^{2}+1=\left(r^{2}-1\right)^{2}=0$ with roots $1,1,-1,-1$.

$$
y_{h}=C_{1} e^{t}+C_{2} t e^{t}+C_{3} e^{-t}+C_{4} t e^{-t} .
$$

For e^{t} the associated root is 1 .
For $\sin t$ the associated root is the complex pair $\pm \mathbf{i}$.
The first guess for the test function Y_{p}^{1} is thus

$$
Y_{p}^{1}=\left(A e^{t}\right)+(B \cos (t)+C \sin (t))
$$

Because 1 is a repeated root for the homogeneous equation, we must multiply the first block by t^{2}.

$$
Y_{p}=t^{2}\left(A e^{t}\right)+(B \cos (t)+C \sin (t))
$$

Example 4.3/16: $y^{(4)}+4 y^{\prime \prime}=\sin 2 t+t e^{t}+4$. The characteristic equation for the homogeneous equation is $r^{4}+4 r^{2}=r^{2}\left(r^{2}+4\right)$ with roots $0,0, \pm 2 \mathbf{i}$.

$$
y_{h}=C_{1}+C_{2} t+C_{3} \cos (2 t)+C_{4} \sin (2 t)
$$

For $\sin 2 t$ the associated root is the complex pair $\pm 2 \mathbf{i}$.
For $t e^{t}$ the associated root is 1 .
For 4 the associated root is 0 .
The first guess for the test function Y_{p}^{1} is thus

$$
Y_{p}^{1}=(A \cos (2 t)+B \sin (2 t))+(C t+D) e^{t}+(F)
$$

Because $\pm i$ are roots for the homogeneous equation, we must multiply the first block by t.
Because 0 is a repeated root for the homogeneous equation, we must multiply the third block by t^{2}.

$$
Y_{p}=t(A \cos (2 t)+B \sin (2 t))+(C t+D) e^{t}+t^{2}(F)
$$

Example 4.3/18: $y^{(4)}+2 y^{\prime \prime \prime}+2 y^{\prime \prime}=3 e^{t}+2 t e^{-t}+e^{-t} \sin t$. The characteristic equation for the homogeneous equation is $r^{4}+2 r^{3}+2 r^{2}=r^{2}\left(r^{2}+2 r+2\right)=0$. For the quadratic we use the Quadratic Formula, to get roots $0,0,-1 \pm \mathbf{i}$.

$$
y_{h}=C_{1}+C_{2} t+C_{3} e^{-t} \cos (t)+C_{4} e^{-t} \sin (t)
$$

For $3 e^{t}$ the associated root is 1 .
For $2 t e^{-t}$ the associated root is -1 .
For $e^{-t} \sin t$ the associated root is $-1 \pm \mathbf{i}$.
The first guess for the test function Y_{p}^{1} is thus
$Y_{p}^{1}=\left(A e^{t}\right)+(B t+C) e^{-t}+\left(D e^{-t} \cos (t)+E e^{-t} \sin (2 t)\right)$.
Because $-1 \pm \mathbf{i}$ are roots for the homogeneous equation, we must multiply the third block by t.

$$
Y_{p}=\left(A e^{t}\right)+(B t+C) e^{-t}+t\left(D e^{-t} \cos (t)+E e^{-t} \sin (2 t)\right)
$$

Example 3.6/3: $y^{\prime \prime}+2 y^{\prime}+y=3 e^{-t}$. The roots of the characteristic equation for the homogeneous equation $r^{2}+2 r+1=(r+1)^{2}=0$ are $-1,-1$ and so $y_{h}=C_{1} e^{-t}+C_{2} t e^{-t}$.

Undetermined Coefficients:

The associated root for $3 e^{-t}$ is -1 . Our first guess for test function $Y_{p}^{1}=A e^{-t}$.
Because -1 is a root repeated twice, we must multiply by t^{2}. So $Y_{p}=A t^{2} e^{-t}$.

$$
\begin{aligned}
& 1 \times Y_{p}=A t^{2} e^{-t} \\
& 2 \times Y_{p}^{\prime}=-2 A t^{2} e^{-t}+4 A t e^{-t} \\
& 1 \times Y_{p}^{\prime \prime}=A t^{2} e^{-t}-4 A t e^{-t}+2 A e^{-t}
\end{aligned}
$$

So $3 e^{-t}=2 A e^{-t}$. So $A=3 / 2$ and
$y_{g}=C_{1} e^{-t}+C_{2} t e^{-t}+(3 / 2) t^{2} e^{-t}$.

Variation of Parameters:

We look for $y_{p}=u_{1} e^{-t}+u_{2} t e^{-t}$. We have the linear equations:

$$
\begin{gathered}
u_{1}^{\prime}\left(e^{-t}\right)+u_{2}^{\prime}\left(t e^{-t}\right)=0 \\
u_{1}^{\prime}\left(-e^{-t}\right)+u_{2}^{\prime}\left(e^{-t}-t e^{-t}\right)=3 e^{-t} .
\end{gathered}
$$

Wronskian is $e^{-2 t}$ so

$$
u_{1}^{\prime}=\left|\begin{array}{cc}
0 & t e^{-t} \\
3 e^{-t} & \left(e^{-t}-t e^{-t}\right)
\end{array}\right| / e^{-2 t},
$$

$$
u_{2}^{\prime}=\left|\begin{array}{cc}
e^{-t} & 0 \\
-e^{-t} & \left(3 e^{-t}\right)
\end{array}\right| / e^{-2 t}
$$

$$
u_{1}^{\prime}=-3 t, u_{2}^{\prime}=3 . u_{1}=-(3 / 2) t^{2}, u_{2}=3 t .
$$

$$
Y_{p}=-(3 / 2) t^{2} e^{-t}+(3 t) t e^{-t}=(3 / 2) t^{2} e^{-t} .
$$

Example 3.6/5: $y^{\prime \prime}+y=\tan (t)$. The roots of the characteristic equation for the homogeneous equation $r^{2}+1=0$ are $\pm \mathbf{i}$ and so $y_{h}=C_{1} \cos (t)+C_{2} \sin (t)$.

We look for $y_{p}=u_{1} \cos (t)+u_{2} \sin (t)$. We have the linear equations:

$$
\begin{aligned}
u_{1}^{\prime}(\cos (t))+u_{2}^{\prime}(\sin (t)) & =0 \\
u_{1}^{\prime}(-\sin (t))+u_{2}^{\prime}(\cos (t)) & =\tan (t)
\end{aligned}
$$

Wronskian is 1.
$u_{1}^{\prime}=-\sin (t) \tan (t)=-\sin ^{2}(t) / \cos (t)=$
$\left(\cos ^{2}(t)-1\right) / \cos (t)=\cos (t)-\sec (t)$,
$u_{2}^{\prime}=\cos (t) \tan (t)=\sin (t)$.
$u_{1}=\sin (t)-\ln |\sec (t)+\tan (t)|, u_{2}=-\cos (t)$,

$$
y_{p}=-\sin (t) \ln |\sec (t)+\tan (t)|
$$

Example 3.6/10: $y^{\prime \prime}-2 y^{\prime}+y=e^{t} /\left(1+t^{2}\right)$. The roots of the characteristic equation for the homogeneous equation $r^{2}-2 r+1=0$ are 1,1 and so $y_{h}=C_{1} e^{t}+C_{2} t e^{t}$.
$y_{p}=u_{1} e^{t}+u_{2} t e^{t}$

$$
\begin{aligned}
& u_{1}^{\prime}\left(e^{t}\right)+u_{2}^{\prime}\left(t e^{t}\right)=0 \\
& u_{1}^{\prime}\left(e^{t}\right)+u_{2}^{\prime}\left(e^{t}+t e^{t}\right)=e^{t} /\left(1+t^{2}\right) .
\end{aligned}
$$

Wronskian is $e^{2 t}$.
$u_{1}^{\prime}=-t /\left(1+t^{2}\right), u_{2}^{\prime}=1 /\left(1+t^{2}\right)$.
$u_{1}=-\frac{1}{2} \ln \left(1+t^{2}\right), u_{2}=\arctan (t)$.

$$
y_{p}=-\frac{1}{2} e^{t} \ln \left(1+t^{2}\right)+t e^{t} \arctan (t) .
$$

Example 3.6/14: $t^{2} y^{\prime \prime}-t(t+2) y+(t+2) y=2 t^{3}$. Divide by t^{2} to get
$y^{\prime \prime}-t^{-1}(t+2) y+t^{-2}(t+2) y=2 t$.
Given $y_{1}=t, Y_{2}=t e^{t}$. (Check that these are solutions).
$y_{p}=u_{1} t+u_{2} t e^{t}$.

$$
\begin{aligned}
& u_{1}^{\prime}(t)+u_{2}^{\prime}\left(t e^{t}\right)=0 \\
& u_{1}^{\prime}(1)+u_{2}^{\prime}\left(e^{t}+t e^{t}\right)=2 t
\end{aligned}
$$

Wronskian is $t^{2} e^{t}$.

$$
\begin{aligned}
& u_{1}^{\prime}=-2 t^{2} e^{t} / t^{2} e^{t}=-2, u_{2}^{\prime}=2 t^{2} / t^{2} e^{t}=2 e^{-} t \\
& u_{1}=-2 t, u_{2}=-2 e^{-t}
\end{aligned}
$$

$$
y_{p}=-2 t^{2}-2 t
$$

Example 3.7/6: Units are centimeters, grams and seconds.
So $g=980 \mathrm{~cm} / \mathrm{s}^{2} . m=100 \mathrm{gr}, \Delta L=5 \mathrm{~cm}$,
From equilibrium, so $y_{0}=0$.
Downward velocity of $10 \mathrm{~cm} / \mathrm{s}$, so $y_{0}^{\prime}=-10$.
$w=m g=98000($ dynes $) . w=k \Delta L$, so
$k=98000 / 5=19600$.
No damping, so $c=0$. No external force.

$$
100 y^{\prime \prime}+19600 y=0, \quad \text { or } \quad y^{\prime \prime}+196 y=0,
$$

Characteristic equation: $r^{2}+196=0$ with roots $r= \pm 14 i$. So

$$
\begin{gathered}
y=C_{1} \cos 14 t+C_{2} \sin 14 t \\
y^{\prime}=14 C_{2} \cos 14 t-14 C_{1} \sin 14 t . \\
0=y(0)=C_{1}, \quad-10=y^{\prime}(0)=14 C_{2} .
\end{gathered}
$$

So the solution is $y=-(5 / 7) \sin 14 t$.

Example 3.7/7: Units are feet, pounds and seconds.
So $g=32 \mathrm{ft} / \mathrm{s}^{2}$. $w=3 \mathrm{lb}, \Delta L=3 / 12=1 / 4 \mathrm{ft}$, Lifted up, so $y_{0}=1 / 12 f t$.
Downward velocity of $2 f t / s$, so $y_{0}^{\prime}=-2$. $3 w=m g=32 m$, so $m=3 / 32$ (slugs). $w=k \Delta L$, so $k=3 \div(1 / 4)=12$.
No damping, so $c=0$. No external force.

$$
3 y^{\prime \prime}+12 y=0, \quad \text { or } \quad y^{\prime \prime}+4 y=0,
$$

Characteristic equation: $r^{2}+4=0$ with roots $r= \pm 2$ i. So

$$
\begin{gathered}
y=C_{1} \cos 2 t+C_{2} \sin 2 t \\
y^{\prime}=2 C_{2} \cos 2 t-2 C_{1} \sin 2 t
\end{gathered}
$$

$$
-2=y(0)=C_{1}, \quad-2=y^{\prime}(0)=2 C_{2}
$$

So the solution is $y=-2 \cos 2 t+1 \sin 2 t$.
$A=\sqrt{5}, \phi=150^{\circ}=5 \pi / 6 \mathrm{rad}$
$y=\sqrt{5} \cos (2 t-5 \pi / 6)$. [This part I won't ask.]

Example 3.7/9 : Units are centimeters, grams and seconds with $g=980 \mathrm{~cm} / \mathrm{s}^{2}$.
$m=20 \mathrm{gr}, \Delta L=5 \mathrm{~cm}, c=400$
Down 2 cm , so $y_{0}=-2$. Released, so so $y_{0}^{\prime}=0$.
$w=m g=19600$ (dynes). $w=k \Delta L$, so $k=19600 / 5=3920$.
No external force.

$$
20 y^{\prime \prime}+400 y^{\prime}+3920 y=0, \quad \text { or } \quad y^{\prime \prime}+20 y^{\prime}+196 y=0
$$

Characteristic equation: $r^{2}+20 r+196=0$ with roots

$$
r=\left(-\frac{\sqrt{20}}{2}\right) \pm \frac{\sqrt{384}}{2} \mathbf{i}=-10 \pm 4 \sqrt{6} \mathbf{i}
$$

So

$$
\begin{aligned}
& \qquad \begin{array}{l}
y=C_{1} e^{-10 t} \cos (4 \sqrt{6} t)+C_{2} e^{-10 t} \sin (4 \sqrt{6} t) \\
y^{\prime}=\left(-10 C_{1}+4 \sqrt{6} C_{2}\right) e^{-10 t} \cos (4 \sqrt{6} t)+ \\
\\
\left(-10 C_{2}-4 \sqrt{6} C_{1}\right) e^{-10 t} \sin (4 \sqrt{6} t) . \\
-2=y(0)=C_{1}, \quad 0=y^{\prime}(0)=-10 C_{1}+4 \sqrt{6} C_{2} .
\end{array} \\
& \text { So the solution is }
\end{aligned}
$$

$$
y=-2 e^{-10 t} \cos (4 \sqrt{6} t)-\frac{5}{\sqrt{6}} e^{-10 t} \sin (4 \sqrt{6} t) .
$$

Example 3.8/10 : Units are feet, pounds and seconds. $w=8 \mathrm{lb}$. So $m=w / g=8 / 32=1 / 4 . \Delta L=1 / 2$. So
$k=w / \Delta L=16 . c=0$.
$y(0)=-1 / 4, y^{\prime}(0)=0$.
$(1 / 4) y^{\prime \prime}+16 y=8 \sin (8 t)$, or $\quad y^{\prime \prime}+64 y=32 \sin (8 t)$.
The roots of the characteristic equation for the homogeneous equation $r^{2}+64=0$ are $\pm 8 \mathbf{i}$. So the forcing occurs at resonance.
$Y_{p}=A t \cos (8 t)+B t \sin (8 t)$
$Y_{p}^{\prime}=-8 A t \sin (8 t)+8 B t \cos (8 t)+A \cos (8 t)+B \sin (8 t)$.
$Y_{p}^{\prime \prime}=-64 A t \cos (8 t)-64 A t \sin (8 t)-16 A \sin (8 t)+16 B \cos (8 t)$.
$32 \sin (8 t)=Y_{p}^{\prime \prime}+64 Y_{p}=-16 A \sin (8 t)+16 B \cos (8 t)$. So
$A=-2, B=0$.
$y=C_{1} \cos (8 t)+C_{2} \sin (8 t)-2 t \cos (8 t)$,
$y^{\prime}=-8 C_{1} \sin (8 t)+8 C_{2} \cos (8 t)-2 \cos (8 t)+16 t \sin (8 t)$.
At $t=0:-1 / 4=C_{1}, 0=8 C_{2}-2$. So

$$
y=-(1 / 4) \cos (8 t)+(1 / 4) \sin (8 t)-2 t \cos (8 t)
$$

Example 5.2/9: $\left(1+x^{2}\right) y^{\prime \prime}-4 x y^{\prime}+6 y=0$

$$
\begin{aligned}
& 1 y^{\prime \prime}=\sum 1 n(n-1) a_{n} x^{n-2}[k=n-2]=\sum(k+2)(k+1) a_{k+2} x^{k} \\
& +x^{2} y^{\prime \prime}=\sum n(n-1) a_{n} x^{n}[k=n]=\sum k(k-1) a_{k} x^{k} . \\
& -4 x y^{\prime} \quad=\sum 4 n a_{n} x^{n} \quad[k=n]=\sum-4 k a_{k} x^{k} . \\
& 6 y \quad=\sum 6 a_{n} x^{n} \quad[k=n]=\sum 6 a_{k} x^{k} . \\
& \begin{array}{c}
a_{k+2}=\frac{1}{(k+2)(k+1)}\left[-(k(k-1)+4 k-6) a_{k}\right]=\frac{-k^{2}+5 k-6}{(k+2)(k+1)} a_{k} \\
=-\frac{(k-2)(k-3)}{(k+2)(k+1)} a_{k} . \\
k=1: a_{3}=-\frac{1}{3} a_{1} . \\
k=0: a_{2}=-3 a_{0}, \quad k=3: a_{5}=0 . \text { So } a_{k}=0 \text { for } k \geq 2 .
\end{array} \\
& k=2: a_{4}=0, \quad k=2
\end{aligned}
$$

Example 5.2/12,18:

$$
(1-x) y^{\prime \prime}+x y^{\prime}+-y=0, y(0)=-3, y^{\prime}(0)=2
$$

$$
\begin{aligned}
& 1 y^{\prime \prime}=\Sigma 1 n(n-1) a_{n} x^{n-2}[k=n-2]=\Sigma(k+2)(k+1) a_{k+2} x^{k} \\
& -x y^{\prime \prime}=\Sigma-n(n-1) a_{n} x^{n-1}[k=n-1]=\Sigma-(k+1)(k) a_{k+1} x^{k} . \\
& \quad+x y^{\prime} \quad \sum n a_{n} x^{n} \quad[k=n]=\Sigma k a_{k} x^{k} . \\
& -y \quad \sum-a_{n} x^{n} \quad[k=n]=\Sigma-a_{k} x^{k} . \\
& a_{k+2}=\frac{1}{(k+2)(k+1)}\left[(k+1) k a_{k+1}-(k-1) a_{k}\right], \quad a_{0}=-3, a_{1}=2 . \\
& k=0: a_{2}=a_{0} / 2=-3 / 2, \\
& k=1: a_{3}=a_{2} / 3=-1 / 2 . \\
& k=2: a_{4}=\left[6 a_{3}-a_{2}\right] / 12=-3 / 4, \\
& k=3: a_{5}=\left[12 a_{4}-2 a_{3}\right] / 20=-2 / 5 .
\end{aligned}
$$

