Math 39100 K (10224) - Homework Solutions - Post 02

Ethan Akin Email: eakin@ccny.cuny.edu

Fall, 2022

Chapter 3, Section 3.3 - BD 10; BDM 7 : y'' + 2y' + 2y = 0 with characteristic equation $r^2 + 2r + 2 = 0$.

$$y = C_1 e^{-t} \cos t + C_2 e^{-t} \cos t.$$

$$y = C_1 e^{-t} \cos t + C_2 e^{-t} \cos t.$$

Contrast with y'' + 2y' - 2y = 0 with characteristic equation $r^2 + 2r + 2 = 0$.

$$y = C_1 e^{-t} \cos t + C_2 e^{-t} \cos t.$$

Contrast with y'' + 2y' - 2y = 0 with characteristic equation $r^2 + 2r + 2 = 0$. Roots: $r = [-2 \pm \sqrt{4+8}]/2 = -1 \pm \sqrt{3}$.

$$y = C_1 e^{-t} \cos t + C_2 e^{-t} \cos t.$$

Contrast with y'' + 2y' - 2y = 0 with characteristic equation $r^2 + 2r + 2 = 0$. Roots: $r = [-2 \pm \sqrt{4+8}]/2 = -1 \pm \sqrt{3}$.

$$y = C_1 e^{(-1+\sqrt{3})t} + C_2 e^{(-1-\sqrt{3})t}$$

BD 17; BDM 12 : y'' + 4y = 0 with characteristic equation $r^2 + 4 = 0$.

$$y = C_1 \cos(2t) + C_2 \sin(2t),$$

 $y' = -2C_1 \sin(2t) + 2C_2 \cos(2t).$

$$y = C_1 \cos(2t) + C_2 \sin(2t),$$

 $y' = -2C_1 \sin(2t) + 2C_2 \cos(2t).$

$$y(0) = 0$$
 and $y'(0) = 1$. So $0 = C_1(1) + C_2(0)$ and $1 = -2C_1(0) + 2C_2(1)$..

$$y = C_1 \cos(2t) + C_2 \sin(2t),$$

 $y' = -2C_1 \sin(2t) + 2C_2 \cos(2t).$

$$y(0)=0$$
 and $y'(0)=1$. So $0=C_1(1)+C_2(0)$ and $1=-2C_1(0)+2C_2(1)$.. $C_1=0,\,C_2=\frac{1}{2}$ and so

$$y = C_1 \cos(2t) + C_2 \sin(2t),$$

 $y' = -2C_1 \sin(2t) + 2C_2 \cos(2t).$

$$y(0)=0$$
 and $y'(0)=1$. So $0=C_1(1)+C_2(0)$ and $1=-2C_1(0)+2C_2(1)$.. $C_1=0,\,C_2=\frac{1}{2}$ and so

$$y=\sin(2t)/2$$

.

Example 3.4/25: $t^2y'' + 3ty' + y = 0, t > 1$ with $y_1(t) = t^{-1}$.

$$1 \times y_2 = ut^{-1}
3t \times y_2' = -ut^{-2} + u't^{-1}
t^2 \times y_2'' = 2ut^{-3} - 2u't^{-2} + u''t^{-1}
0 = 0 + u' + u''t$$

Let v = u' and v' = u''. $t\frac{dv}{dt} = -v$.

$$\ln v = -\ln t$$
, and so $\frac{du}{dt} = v = t^{-1}$.

Hence, $u = \int t^{-1} dt = \ln t$.

$$y_2 = ut^{-1} = t^{-1} \ln t$$
.

Example $3.5/9: 2y'' + 3y' + y = t^2 + 3\sin t$.

- 1. Homogeneous Equation 2y'' + 3y' + y = 0 has characteristic equation $2r^2 + 3r + 1 = (2r + 1)(r + 1) = 0$. So $y_h = C_1 e^{-t/2} + C_2 e^{-t}$.
- 2. t^2 has associated root 0 and 3 sin t has associated root the conjugate pair $\pm \mathbf{i}$. So our first guess for the test solution is $Y = At^2 + Bt + C + D\cos t + E\sin t$. Since none of the associated roots is a root of the characteristic equation, this is what we use for Y_p .
- 3. Substitute in the equation.

$$1 \times Y_p = At^2 + Bt + C + D\cos t + E\sin t,$$

$$3 \times Y_p' = 6At + 3B + 3E\cos t - 3D\sin t,$$

$$2 \times Y_p'' = +4A - 2D\cos t - 2E\sin t.$$

So
$$t^2 + 3\sin t = At^2 + (B + 6A)t + (C + 3B + 4A) + (-D + 3E)\cos t + (-E - 3D)\sin t$$
.

$$A = 1$$
.

$$B + 6A = 0$$
, and so $B = -6$.
 $C + 3B + 4A = 0$, and so $C = 14$.

$$-D + 3E = 0$$
 and so $D = 3E$.

$$-E - 3D = 3$$
 and so $-10E = 3$.

Thus,
$$E = -3/10$$
, $D = -9/10$.

$$y_g = C_1 e^{-t/2} + C_2 e^{-t} + t^2 - 6t + 14 - (9/10) \cos t - (3/10) \sin t$$
.

Example 3.5/17:

$$y'' - 2y' + y = te^t + 4$$
, $y(0) = 1$, $y'(0) = 1$.

- 1. Homogeneous Equation y'' 2y' + y = 0 has characteristic equation $r^2 2r + 1 = (r 1)^2 = 0$. So $y_h = C_1 e^t + C_2 t e^t$.
- 2. te^t has associated root 1 and 4 has associated root 0. So our first guess for the test solution is $Y = Ate^t + Be^t + C$. Since 1 is a root for the homogeneous, we must multiply the block $Ate^t + Be^t$ first by t and then by another t since 1 is a repeated root. So $Y_p = At^3e^t + Bt^2e^t + C$.
- 3. Substitute in the equation. Leave columns for the te^t and e^t terms.

$$1 \times Y_{p} = At^{3}e^{t} + Bt^{2}e^{t} + + C,$$

$$-2 \times Y'_{p} = -2At^{3}e^{t} + (-6A - 2B)t^{2}e^{t} - 4Bte^{t} ,$$

$$1 \times Y''_{p} = At^{3}e^{t} + (6A + B)t^{2}e^{t} + (6A + 4B)te^{t} + 2Be^{t}.$$

So $te^t + 4 = 0 + 0 + 6Ate^t + 2Be^t + C$, Notice that the first two columns on the right add up to 0.

$$A = 1/6, B = 0, C = 4$$
, So that

$$y_g = C_1 e^t + C_2 t e^t + (1/6) t^3 e^t + 4,$$

$$y_g' = (C_1 + C_2) e^t + C_2 t e^t + (1/2) t^2 e^t + (1/6) t^3 e^t.$$

$$1 = y(0) = C_1 + 4, \qquad 1 = y'(0) = C_1 + C_2.$$

$$C_1 = -3, \quad C_2 = 4.$$

$$y = -3e^t + 4te^t + (1/6)t^3e^t + 4.$$

For 19-23, just solve the homogeneous equation and get the test function Y(t). Don't try to solve for the coefficients. Example $3.5/21: y'' + 3y' = 2t^4 + t^2e^{-3t} + \sin 3t$. The characteristic equation of the homogeneous equation is $r^2 + 3r = 0$ with roots r = 0, -3. So $y_h = C_1 + C_2e^{-3t}$.

For $2t^4$ the associated root is 0 For t^2e^{-3t} the associated root is -3For $\sin 3t$ the associated root(s) are $\pm 3i$. First version of test function is $\bar{Y}(t) =$

$$(At^4+Bt^3+Ct^2+Dt+E)+(Ft^2+Gt+H)e^{-3t}+(I\cos 3t+J\sin 3t).$$

Because 0 and -3 are roots from the homogeneous equation, each of those blocks must be multiplied by t to get Y(t) =

$$t(At^4+Bt^3+Ct^2+Dt+E)+t(Ft^2+Gt+H)e^{-3t}+(I\cos 3t+J\sin 3t).$$

Example 3.5/22 : $y'' + y = t(1 + \sin t) = t + t \sin t$. Characteristic equation is $r^2 + 1 = 0$ with roots $r = \pm \mathbf{i}$. $y_h = C_1 \cos t + C_2 \sin t$.

For t the associated root is 0. For $t \sin t$ the associated root is $\pm i$. First version of test function is

$$\overline{Y}(t) = (At+B) + ((Ct+D)\cos t + (Et+F)\sin t).$$

Because $\pm \mathbf{i}$ are roots from the homogeneous equation, the corresponding block must be multiplied by t to get

$$Y(t) = (At + B) + t((Ct + D)\cos t + (Et + F)\sin t).$$

Example 3.5/25 : $y'' - 4y' + 4y = 2t^2 + 4te^{2t} + t \sin 2t$. Characteristic equation is $r^2 - 4r + 4 = (r - 2)^2 = 0$ with roots r = 2, 2. $y_h = C_1e^{2t} + C_2te^{2t}$.

For $2t^2$ the associated root is 0.

For $4te^{2t}$ the associated root is 2.

For $t \sin 2t$ the associated root is $\pm 2i$.

First version of test function is $\bar{Y}(t) =$

$$(At^2+Bt+C)+(Dt+E)e^{2t}+((Ft+G)\cos 2t+(Ht+I)\sin 2t).$$

Because 2 is a twice repeated root of the homogeneous equation, the corresponding block must multiplied by t^2 . The test function Y(t) =

$$(At^2+Bt+C)+t^2(Dt+E)e^{2t}+((Ft+G)\cos 2t+(Ht+I)\sin 2t).$$

Example 4.2/11 : y''' - y'' - y' + y = 0. Characteristic equation is $r^3 - r^2 - r + 1 = 0$. Factor by grouping: $r^3 - r^2 - r + 1 = r^2(r-1) - (r-1) = (r^2 - 1)(r-1) =$ (r+1)(r-1)(r-1) with roots -1, 1, 1.

$$y_g = C_1 e^{-t} + C_2 e^t + C_3 t e^t.$$

Example 4.2/13: 2y''' - 4y'' - 2y' + 4y = 0. Divide the characteristic equation by 2 and factor by grouping to get $r^3 - 2r^2 - r + 2 = (r^2 - 1)(r - 2)$ with roots 1, -1, 2.

Example 4.2/15 : $y^{(6)} + y = 0$. The characteristic equation

 $r^6 = -1$ requires DeMoivre's Theorem. The modulus is $1^{1/6} = 1$. Each step is 60° , beginning with half-step 30° . The six roots are $(\cos 30) \pm i(\sin 30) = (\sqrt{3}/2) \pm i(1/2), (\cos 90) \pm i(\sin 90) = \pm i,$

$$(\cos 30) \pm \mathbf{i}(\sin 30) = (\sqrt{3}/2) \pm \mathbf{i}(1/2), (\cos 90) \pm \mathbf{i}(\sin 90) = \pm \mathbf{i}(\cos 150) \pm \mathbf{i}(\sin 150) = (-\cos 30) \pm \mathbf{i}(\sin 30) = (-\sqrt{3}/2) \pm \mathbf{i}(1/2)$$

$$y_g = C_1 e^{t\sqrt{3}/2} \cos(t/2) + C_2 e^{t\sqrt{3}/2} \sin(t/2) + C_3 \cos(t) + C_4 \sin(t)$$

Example 4.2/21: $y^{(8)} + 8y^{(4)} + 16y = 0$. The characteristic equation is $r^8 + 8r^4 + 16 = (r^4 + 4)^2 = 0$. $r^4 = -4$ requires DeMoivre's Theorem. The modulus is $4^{1/4} = \sqrt{2}$. Each step is 90° , beginning with half-step 45° . The four roots are

$$\sqrt{2}((\cos 45) \pm \mathbf{i}(\sin 45)) = 1 \pm \mathbf{i},$$

$$\sqrt{2}((\cos 135) \pm \mathbf{i}(\sin 135)) = \sqrt{2}(-(\cos 45) \pm \mathbf{i}(\sin 45)) = -1 \pm \mathbf{i}.$$

Each pair of complex roots is repeated.

$$y_g = C_1 e^t \cos t + C_2 e^t \sin t + C_3 t e^t \cos t + C_4 t e^t \sin t + C_5 e^{-t} \cos t + C_6 e^{-t} \sin t + C_7 t e^{-t} \cos t + C_8 t e^{-t} \sin t$$

Example 4.3/13: $y''' - 2y'' + y' = t^3 + 2e^t$. The characteristic equation for the homogeneous equation is $r^3 - 2r^2 + r = r(r-1)^2 = 0$ with roots 0, 1, 1.

$$y_h = C_1 + C_2 e^t + C_3 t e^t.$$

For t^3 the associated root is 0. For $2e^t$ the associated root is 1. The first guess for the test function Y_p^1 is thus

$$Y_p^1 = (At^3 + Bt^2 + Ct + D) + (Ee^t).$$

Because 0 is a root for the homogeneous equation, we must multiply the first block by t.

Because 1 is a repeated root for the homogeneous equation, we must multiply the second block by t^2 .

$$Y_p = t(At^3 + Bt^2 + Ct + D) + t^2(Ee^t).$$

Example 4.3/15: $y^{(4)} - 2y'' + y = e^t + \sin t$. The characteristic equation for the homogeneous equation is $r^4 - 2r^2 + 1 = (r^2 - 1)^2 = 0$ with roots 1, 1, -1, -1.

$$y_h = C_1 e^t + C_2 t e^t + C_3 e^{-t} + C_4 t e^{-t}.$$

For e^t the associated root is 1. For $\sin t$ the associated root is the complex pair $\pm \mathbf{i}$. The first guess for the test function Y_p^1 is thus

$$Y_p^1 = (Ae^t) + (B\cos(t) + C\sin(t)).$$

Because 1 is a repeated root for the homogeneous equation, we must multiply the first block by t^2 .

$$Y_p = t^2(Ae^t) + (B\cos(t) + C\sin(t)).$$

Example 4.3/16 : $y^{(4)} + 4y'' = \sin 2t + te^t + 4$. The characteristic equation for the homogeneous equation is $r^4 + 4r^2 = r^2(r^2 + 4)$ with roots $0, 0, \pm 2\mathbf{i}$. $v_b = C_1 + C_2t + C_3\cos(2t) + C_4\sin(2t)$.

For $\sin 2t$ the associated root is the complex pair $\pm 2i$. For te^t the associated root is 1.

For 4 the associated root is 0.

The first guess for the test function Y_p^1 is thus

$$Y_p^1 = (A\cos(2t) + B\sin(2t)) + (Ct + D)e^t + (F).$$

Because $\pm i$ are roots for the homogeneous equation, we must multiply the first block by t.

Because 0 is a repeated root for the homogeneous equation, we must multiply the third block by t^2 .

$$Y_p = t(A\cos(2t) + B\sin(2t)) + (Ct + D)e^t + t^2(F).$$

Example 4.3/18: $y^{(4)} + 2y''' + 2y'' = 3e^t + 2te^{-t} + e^{-t} \sin t$. The characteristic equation for the homogeneous equation is $r^4 + 2r^3 + 2r^2 = r^2(r^2 + 2r + 2) = 0$. For the quadratic we use the Quadratic Formula, to get roots $0, 0, -1 \pm \mathbf{i}$.

$$y_h = C_1 + C_2 t + C_3 e^{-t} \cos(t) + C_4 e^{-t} \sin(t).$$

For $3e^t$ the associated root is 1.

For $2te^{-t}$ the associated root is -1.

For $e^{-t} \sin t$ the associated root is $-1 \pm i$.

The first guess for the test function Y_p^1 is thus

$$Y_p^1 = (Ae^t) + (Bt + C)e^{-t} + (De^{-t}\cos(t) + Ee^{-t}\sin(2t)).$$

Because $-1 \pm \mathbf{i}$ are roots for the homogeneous equation, we must multiply the third block by t.

$$Y_p = (Ae^t) + (Bt + C)e^{-t} + t(De^{-t}\cos(t) + Ee^{-t}\sin(2t)).$$

Example 3.6/3 : $y'' + 2y' + y = 3e^{-t}$. The roots of the characteristic equation for the homogeneous equation $r^2 + 2r + 1 = (r+1)^2 = 0$ are -1, -1 and so $y_h = C_1 e^{-t} + C_2 t e^{-t}$.

Undetermined Coefficients:

The associated root for $3e^{-t}$ is -1. Our first guess for test function $Y_p^1 = Ae^{-t}$.

Because -1 is a root repeated twice, we must multiply by t^2 . So $Y_p = At^2e^{-t}$.

$$1 \times Y_p = At^2 e^{-t},$$

 $2 \times Y_p' = -2At^2 e^{-t} + 4Ate^{-t},$
 $1 \times Y_p'' = At^2 e^{-t} - 4Ate^{-t} + 2Ae^{-t}.$

So
$$3e^{-t} = 2Ae^{-t}$$
. So $A = 3/2$ and $y_g = C_1e^{-t} + C_2te^{-t} + (3/2)t^2e^{-t}$.

Variation of Parameters:

We look for $y_p = u_1 e^{-t} + u_2 t e^{-t}$. We have the linear equations:

$$u'_1(e^{-t}) + u'_2(te^{-t}) = 0$$

 $u'_1(-e^{-t}) + u'_2(e^{-t} - te^{-t}) = 3e^{-t}.$

Wronskian is
$$e^{-2t}$$
 so $u'_1 = \begin{vmatrix} 0 & te^{-t} \\ 3e^{-t} & (e^{-t} - te^{-t}) \end{vmatrix} / e^{-2t},$ $u'_2 = \begin{vmatrix} e^{-t} & 0 \\ -e^{-t} & (3e^{-t}) \end{vmatrix} / e^{-2t}.$ $u'_1 = -3t, u'_2 = 3.$ $u_1 = -(3/2)t^2, u_2 = 3t.$ $Y_p = -(3/2)t^2e^{-t} + (3t)te^{-t} = (3/2)t^2e^{-t}.$

Example 3.6/5 : $y'' + y = \tan(t)$. The roots of the characteristic equation for the homogeneous equation $r^2 + 1 = 0$ are $\pm \mathbf{i}$ and so $y_h = C_1 \cos(t) + C_2 \sin(t)$.

We look for $y_p = u_1 \cos(t) + u_2 \sin(t)$. We have the linear equations:

$$u'_1(\cos(t)) + u'_2(\sin(t)) = 0$$

 $u'_1(-\sin(t)) + u'_2(\cos(t)) = \tan(t).$

Wronskian is 1.

$$u_1' = -\sin(t)\tan(t) = -\sin^2(t)/\cos(t) = (\cos^2(t) - 1)/\cos(t) = \cos(t) - \sec(t),$$
 $u_2' = \cos(t)\tan(t) = \sin(t).$
 $u_1 = \sin(t) - \ln|\sec(t) + \tan(t)|, u_2 = -\cos(t),$
 $y_p = -\sin(t)\ln|\sec(t) + \tan(t)|.$

Example 3.6/10 : $y'' - 2y' + y = e^t/(1 + t^2)$. The roots of the characteristic equation for the homogeneous equation $r^2 - 2r + 1 = 0$ are 1,1 and so $y_h = C_1 e^t + C_2 t e^t$. $y_p = u_1 e^t + u_2 t e^t$

$$u'_1(e^t) + u'_2(te^t) = 0$$

 $u'_1(e^t) + u'_2(e^t + te^t) = e^t/(1 + t^2).$

Wronskian is e^{2t} .

$$u_1' = -t/(1+t^2), u_2' = 1/(1+t^2).$$

 $u_1 = -\frac{1}{2}\ln(1+t^2), u_2 = \arctan(t).$

$$y_p = -\frac{1}{2}e^t \ln(1+t^2) + te^t \arctan(t).$$

Example 3.6/14 : $t^2y'' - t(t+2)y + (t+2)y = 2t^3$. Divide by t^2 to get $y'' - t^{-1}(t+2)y + t^{-2}(t+2)y = 2t$. Given $y_1 = t$, $Y_2 = te^t$. (Check that these are solutions).

$$y_p = u_1 t + u_2 t e^t.$$

$$u'_1(t) + u'_2(te^t) = 0$$

 $u'_1(1) + u'_2(e^t + te^t) = 2t.$

Wronskian is t^2e^t .

$$u_1' = -2t^2e^t/t^2e^t = -2, u_2' = 2t^2/t^2e^t = 2e^-t.$$

 $u_1 = -2t, u_2 = -2e^{-t}.$

$$y_p = -2t^2 - 2t.$$

Example 3.7/6: Units are centimeters, grams and seconds.

So $g = 980 cm/s^2$. m = 100 gr, $\Delta L = 5 cm$,

From equilibrium, so $y_0 = 0$.

Downward velocity of 10cm/s, so $y'_0 = -10$.

 $w = mg = 98000 \text{ (dynes)}. w = k\Delta L$, so

k = 98000/5 = 19600.

No damping, so c = 0. No external force.

$$100y'' + 19600y = 0$$
, or $y'' + 196y = 0$,

Characteristic equation: $r^2 + 196 = 0$ with roots $r = \pm 14i$. So

$$y = C_1 \cos 14t + C_2 \sin 14t$$

$$y' = 14C_2 \cos 14t - 14C_1 \sin 14t.$$

$$0 = y(0) = C_1$$
, $-10 = y'(0) = 14C_2$.
So the solution is $y = -(5/7) \sin 14t$.

Example 3.7/7: Units are feet, pounds and seconds.

So
$$g = 32ft/s^2$$
. $w = 3lb$, $\Delta L = 3/12 = 1/4ft$,

Lifted up, so $y_0 = 1/12ft$.

Downward velocity of 2ft/s, so $y_0' = -2$. 3w = mg = 32m, so m = 3/32 (slugs). $w = k\Delta L$, so $k = 3 \div (1/4) = 12$.

No damping, so c = 0. No external force.

$$3y'' + 12y = 0$$
, or $y'' + 4y = 0$,

Characteristic equation: $r^2 + 4 = 0$ with roots $r = \pm 2i$. So

$$y = C_1 \cos 2t + C_2 \sin 2t$$

 $y' = 2C_2 \cos 2t - 2C_1 \sin 2t$.

$$-2 = y(0) = C_1, \quad -2 = y'(0) = 2C_2.$$

So the solution is $y = -2\cos 2t + 1\sin 2t$.

$$A = \sqrt{5}, \phi = 150^{\circ} = 5\pi/6$$
 rad

 $y = \sqrt{5}\cos(2t - 5\pi/6)$. [This part I won't ask.]

Example 3.7/9 : Units are centimeters, grams and seconds with $g = 980cm/s^2$.

m = 20gr, $\Delta L = 5cm$, c = 400

Down 2cm, so $y_0 = -2$. Released, so so $y'_0 = 0$.

 $w = mg = 19600 \text{ (dynes)}.w = k\Delta L$, so k = 19600/5 = 3920.

No external force.

$$20y'' + 400y' + 3920y = 0$$
, or $y'' + 20y' + 196y = 0$,

Characteristic equation: $r^2 + 20r + 196 = 0$ with roots

$$r = \left(-\frac{\sqrt{20}}{2}\right) \pm \frac{\sqrt{384}}{2}\mathbf{i} = -10 \pm 4\sqrt{6}\mathbf{i}.$$

So

$$y = C_1 e^{-10t} \cos(4\sqrt{6}t) + C_2 e^{-10t} \sin(4\sqrt{6}t)$$

$$y' = (-10C_1 + 4\sqrt{6}C_2)e^{-10t} \cos(4\sqrt{6}t) + (-10C_2 - 4\sqrt{6}C_1)e^{-10t} \sin(4\sqrt{6}t).$$

$$-2 = y(0) = C_1$$
, $0 = y'(0) = -10C_1 + 4\sqrt{6}C_2$. So the solution is

$$y = -2e^{-10t}\cos(4\sqrt{6}t) - \frac{5}{\sqrt{6}}e^{-10t}\sin(4\sqrt{6}t).$$

Example 3.8/10: Units are feet, pounds and seconds.

$$w = 8lb$$
. So $m = w/g = 8/32 = 1/4$. $\Delta L = 1/2$. So

$$k = w/\Delta L = 16$$
. $c = 0$.

$$y(0) = -1/4, y'(0) = 0.$$

$$(1/4)y'' + 16y = 8\sin(8t)$$
, or $y'' + 64y = 32\sin(8t)$.

The roots of the characteristic equation for the homogeneous equation $r^2+64=0$ are $\pm 8i$. So the forcing occurs at resonance.

$$Y_p = At\cos(8t) + Bt\sin(8t)$$

$$Y'_{p} = -8At\sin(8t) + 8Bt\cos(8t) + A\cos(8t) + B\sin(8t).$$

$$Y_p''' = -64At\cos(8t) - 64At\sin(8t) - 16A\sin(8t) + 16B\cos(8t).$$

$$32\sin(8t) = Y_p'' + 64Y_p = -16A\sin(8t) + 16B\cos(8t)$$
. So

$$A = -2, B = 0.$$

$$y = C_1 \cos(8t) + C_2 \sin(8t) - 2t \cos(8t),$$

$$y' = -8C_1\sin(8t) + 8C_2\cos(8t) - 2\cos(8t) + 16t\sin(8t).$$

At
$$t = 0$$
: $-1/4 = C_1, 0 = 8C_2 - 2$. So

$$y = -(1/4)\cos(8t) + (1/4)\sin(8t) - 2t\cos(8t)$$
.

Example 5.2/9 : $(1+x^2)y'' - 4xy' + 6y = 0$

$$1y'' = \sum 1n(n-1)a_n x^{n-2}[k = n-2] = \sum (k+2)(k+1)a_{k+2} x^k.$$

$$+x^2 y'' = \sum n(n-1)a_n x^n [k = n] = \sum k(k-1)a_k x^k.$$

$$-4xy' = \sum 4na_n x^n [k = n] = \sum -4ka_k x^k.$$

$$6y = \sum 6a_n x^n [k = n] = \sum 6a_k x^k.$$

$$a_{k+2} = \frac{1}{(k+2)(k+1)} [-(k(k-1)+4k-6)a_k] = \frac{-k^2+5k-6}{(k+2)(k+1)} a_k$$
$$= -\frac{(k-2)(k-3)}{(k+2)(k+1)} a_k.$$

 $k = 0 : a_2 = -3a_0,$ $k = 1 : a_3 = -\frac{1}{3}a_1.$ $k = 2 : a_4 = 0,$ $k = 3 : a_5 = 0.$ So $a_k = 0$ for $k \ge 2.$ Example 5.2/12,18: (1-x)y'' + xy' + -y = 0, y(0) = -3, y'(0) = 2.

$$1y'' = \sum 1n(n-1)a_nx^{n-2}[k = n-2] = \sum (k+2)(k+1)a_{k+2}x^k$$

$$-xy'' = \sum -n(n-1)a_nx^{n-1}[k = n-1] = \sum -(k+1)(k)a_{k+1}x^k.$$

$$+xy' = \sum na_nx^n [k = n] = \sum ka_kx^k.$$

$$-y = \sum -a_nx^n [k = n] = \sum -a_kx^k.$$

$$a_{k+2} = \frac{1}{(k+2)(k+1)}[(k+1)ka_{k+1}-(k-1)a_k], \quad a_0 = -3, a_1 = 2.$$

$$k = 0$$
: $a_2 = a_0/2 = -3/2$,
 $k = 1$: $a_3 = a_2/3 = -1/2$.
 $k = 2$: $a_4 = [6a_3 - a_2]/12 = -3/4$,
 $k = 3$: $a_5 = [12a_4 - 2a_3]/20 = -2/5$.