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Sec. 7.1: Measurements of Estimator Quality

We continue the study of point estimation: estimating the
true value θ0 for a parametrized family of distributions X with
pdf or pmf f (x ; θ). We consider the choice among different
estimators Y = δ(X) for θ0.

HMC Definition 7.1.1: Y is called a minimum variance
unbiased estimator (MVUE)when among unbiased estimators
it has the minimum variance.

Given the regularity conditions of the previous chapter, an
unbiased estimator which is efficient in the sense of the
Rao-Cramer Theorem is an MVUE. For example, X̄ is an
efficient unbiased estimator for θ when X ∼ N (θ, σ2) with σ2

known, see Exercise 6.2.1. Thus, X̄ is an MVUE. See Example
7.1.1.



We think of δ(X) as a choice or decision about θ upon which
we will act. We imagine that if the true value is θ and we
choose δ different from θ the result will be a cost measured by
a loss function L(θ, δ). The most common loss function is just
the square of the difference L(θ, δ) = (δ − θ)2.

The expected loss is called the risk function:

R(θ, δ) = Eθ(L(θ, δ(X))).



HMC Example 7.1.2: For the family {N (θ, 1)} and a sample

of size n, we consider two estimators for θ, θ1 = θ̂ = X̄ and
θ2 = 0.

Eθ((θ1 − θ)2) = Varθ(θ1) =
1

n
Eθ((θ2 − θ)2) = θ2.

So if θ is in fact very close to 0, the guess θ2 has a smaller
risk. This illustrates that we usually cannot find a choice
which minimizes R(θ, δ) uniformly for all θ.



What is often then used as δ varies over some class D of
decision functions is a minimax decision function which
minimizes the worst possible risk. That is,

max
θ

R(θ, δ0) ≤ max
θ

R(θ, δ) for all δ ∈ D.

This is a very conservative decision rule as it is minimizing the
worst case, which may be quite rare.



Sec. 7.2: Sufficient Statistics

In using a sample X = X1, . . . ,Xn to estimate θ, it is useful to
extract some statistic Y = u(X) which condenses the
information we need to estimate θ allowing us to discard the
rest. Y is a sufficient statistic when, given its value, the
remaining information in X provides no additional help in
estimating θ. This is because the conditional distribution of X
given Y is the same for all θ.



HMC Example 7.2.1: Let X = X1, . . . ,Xn be an iid sequence
of Bern(θ) rvs with f (x , θ) = θx(1− θ)1−x for x = 0, 1.

f (θ, x) = θ
∑

xi (1− θ)n−
∑

xi .

We see that the number of successes
∑

xi provides all the
information we can use to estimate θ. The additional
information of which successes occurred when provides no
additional useful information. S =

∑
Xi is a Bin(n, θ) rv and

so P(S = k) =
(
n
k

)
θk(1− θ)n−k . Hence

P(X = x|S = k) =

{
0 if

∑
xi 6= k ,

1/
(
n
k

)
if
∑

xi = k .
.

The conditional distribution is a discrete uniform distribution
with all rearrangements equally likely.



HMC Definition 7.2.1: Y = u(X) = u(X1, . . . ,Xn) is a
sufficient statistic when the conditional distribution

f (x1; θ) . . . f (x1; θ)

fY (u(x1, . . . , xn); θ)
= H(x1, . . . , xn)

does not depend on θ.

The definition required that we find the distribution of Y , i.e.
fY (y ; θ). Luckily we can avoid that.



HMC Theorem 7.2.1 (Neyman Factorization Theorem):
Y = u(X1, . . . ,Xn) is a sufficient statistic if and only if there
exist nonnegative functions k1 and k2 such that

L(θ; x) = f (x1; θ) . . . f (xn; θ) = k1(u(x1, . . . , xn), θ)·k2(x1, . . . , xn)

and k2(x1, . . . , xn) does not depend on θ.

Proof: If Y is a sufficient statistic we can use H for k2 and fY
for k1.



For the reverse direction we will just do the proof in the
discrete case. For t a value of u(x1, . . . , xn)

fY (t; θ) =
∑

x

f (x1; θ) . . . f (xn; θ) = k1(t, θ) ·
∑

x

k2(x),

where we sum over the set of n−tuples x such that u(x) = t.

So for such an n−tuple

f (x1; θ) . . . f (xn; θ)/fY (t; θ) = k2(x1, . . . , xn)/
∑

x

k2(x),

which does not depend on θ. So Y is a sufficient statistic.



Example 7.2.2: The family is Γ(2, θ)

L(θ) =

∏
i xi

Γ(2)n
· 1

θ2n
exp[−1

θ

∑
i

xi ].

So
∑

i Xi or, equivalently, X̄ is a sufficient statistic.

Example 7.2.3, 7.2.6: The family is f (θ, x) = e−(x−θ) for
θ < x or,equivalently, = e−(x−θ)I(θ,∞)(x), where I(θ,∞) is the
indicator function.

L(θ) = exp(−
∑
i

xi) · exp(nθ)I(θ,∞)(min
i

xi).

The first factor does not depend on θ and so it is minn
i=1 Xi

which is the sufficient statistic.



Example 7.2.4: Back in Example 6.3.2, we considered the
family {N (θ, σ2)} with σ2 known, From the formulae there it
follows that X̄ is a sufficient statistic.

Example 7.2.5: The family is θxθ−1 for 0 < x < 1, 0 < θ.

L(θ) = θn(
∏
i

xi)
θ−1 · 1.

So
∏n

i=1 Xi is a sufficient statistic, as is its log.



Sec. 7.3: Sufficient Statistic Properties

We need to recall some facts about conditional expectation
when X and Y are rv’s.

The conditional expectation E (Y |X = x) is a function of the
values of X , i.e. for x in the support of X . Composing with X
itself we obtain the rv E (Y |X ) which is a function of X ,
namely E (Y |X = x) applied to X .

We defined the conditional variance

Var(Y |X ) = E ((Y −E (Y |X ))2|X ) = E (Y 2|X )−E (Y |X )2.

We showed that

E (Y ) = E [E (Y |X )],

Var(Y ) = E [Var(Y |X )] + Var [E (Y |X )] ≥ Var [E (Y |X )].



Y = u(X) is a sufficient statistic when the conditional
distribution of X given Y does not depend of θ.

This mean that for any function g(X) the conditional
expectation

Eθ(g(X1, . . . ,Xn)|Y ) does not depend on θ.

That is, we can compute this conditional expectation without
knowing the true value of θ. So if Z = g(X1, ...,Xn) is any
statistic and Y = u(X1, . . . ,Xn) is a sufficient statistic, then
Eθ(Z |Y ) is also a statistic, computable from the sample data
X1, . . . ,Xn. So we will then write E (Z |Y ) for it, omitting the
redundant θ subscript.



HMC Theorem 7.3.1 (Rao-Blackwell Theorem): If
Y = u(X1, . . . ,Xn) is a sufficient statistic and
Z = g(X1, ...,Xn) is an unbiased estimator for θ, then
Z1 = E (Z |Y ) is an unbiased estimator with variance less than
or equal to that of Z .

Proof: Eθ(Z1) = Eθ(E (Z |Y )) = Eθ(Z ) = θ.

Varθ(Z1) = Varθ(E (Z |Y )) ≤ Varθ(Z ).



HMC Theorem 7.3.2: If Y = u(X1, . . . ,Xn) is a sufficient

statistic and if L(θ; X) has a unique maximizer θ̂(X), then θ̂ is
a function of Y .

Proof: L(θ; x) = fY (y ; θ) · H(x). Since H does not depend on
θ, the location of the unique maximizer for L is the location of
the unique maximizer for fY (y ; θ). That is, θ̂ can be obtained
from fY (y ; θ) and so is a function of y = u(x).

Example 7.3.1: The family has density
{f (x ; θ) = θe−θx x > 0 and so X ∼ Exp(θ) ∼ Gamma(1, 1

θ
).

L(θ; X) = θnexp(−θ
∑
i

Xi)

`(θ) = n ln θ − θY1,

with Y1 =
∑n

i=1 Xi a sufficient statistic and with MLE
Y2 = n

Y1
= 1

X̄
.



Since Y1 ∼ Γ(n, 1
θ
), it follows that for any positive integer k

smaller than n (letting z = θt)

E (Y k
2 ) = E ((

1

X̄
)k) = nk

∫ ∞
0

θn

Γ(n)
t−ktn−1e−θtdt =

θknk

Γ(n)

∫ ∞
0

zn−k−1e−zdt =
θknk(n − k − 1)!

(n − 1)!
.

With k = 1 this is θn
n−1

and so Z = (n−1)Y2

n
is unbiased.

With k = 2 this is θ2n2

(n−1)(n−2)
.

Var(Z ) = (
(n − 1)

n
)2 · θ2n2

(n − 1)(n − 2)
− θ2 =

θ2

(n − 2)
.



With n = 1

`′(θ) = θ−1 − X , −`′′(θ) =
1

θ2

and so I (θ) = 1
θ2 .

The efficiency is 1/Var(Z )nI (θ) = n−2
n

= 1− 2
n
.

The unbiased estimator Z is only asymptotically efficient.
That is, its efficiency is less than 1 but tends to 1 as n tends
to ∞. That Z is nonetheless an MVUE requires additional
argument, using results from the next two sections. It is an
unbiased estimate which is a function of a sufficient statistic
which is complete in the sense of the next section.



Sec. 7.4: Completeness and Uniqueness

With respect to a probability distribution we say that a
phenomenon occurs almost everywhere (or ae) when it holds
except on a set of probability zero. We saw this when we
described convergence ae in Chapter 5. For distributions
described by a parametrized family f (x ; θ) of pmf’s or pdf’s,
we say that something is true ae when the exceptions form a
subset which has probability zero with respect to every f (x ; θ).

HMC Definition 7.4.1: If Y is an rv with distribution from a
family {fY (y ; θ) : θ ∈ Ω}, then the family is called a complete
family when for a real function g , the equation Eθ(g(Y )) = 0
for all θ ∈ Ω only when g(Y ) = 0 ae.

In particular, if Y = u(X1, . . . ,Xn) is a sufficient statistic for a
family f (x ; θ), then we call Y a complete sufficient statistic,
when the induced family of distributions fY (y ; θ) is complete.



As with sufficiency itself, we can test for completeness of a
sufficient statistic without actually computing the induced
family fY (y ; θ) because we can instead use f (X; θ) and observe
a sufficient statistic Y is a complete when for a real function g

Eθ[g(u(X1, . . . ,Xn))] for all θ ∈ Ω =⇒ g ◦ u = 0 ae.

The importance of completeness comes from the following
result. Up to now the only way we could recognize an
unbiased estimator had minimum variance (an MVUE) was
when it was an efficient estimator.

For example, in Example 7.3.1 we showed that the unbiased
estimator obtained from the sufficient statistic has an
efficiency of 1− 1

n
. This is only asymptotic efficiency.

However, HMC asserted that it was an MVUE. This does in
fact follow from the next theorem.



HMC Theorem 7.4.1 (Lehman and Scheffé Theorem)
Assume that Y = u(X1, . . . ,Xn) is a complete sufficient
statistic for a family f (x ; θ). Up to equality ae, there is at
most one unbiased estimator for θ which is a function of Y . If
it exists it is the unique MVUE for θ.

Proof: If φ(Y ) and ψ(Y ) are unbiased estimators then
Eθ[φ(Y )− ψ(Y )] = θ − θ = 0 and so φ(Y )− ψ(Y ) = 0 ae by
completeness. That is, φ(Y ) = ψ(Y ) ae.

If Z is any unbiased estimator, then the Rao-Blackwell
Theorem says that E (Z |Y ) is an unbiased estimator which is a
function of Y and with a variance no greater than that of Z .
So E (Z |Y ) is the unique unbiased estimator which is a
function of Y and so it is an MVUE.



Notice that if Y is a sufficient statistic which is not complete
then there exists a nonzero function g such that
Eθ(g(Y )) = 0 for all θ. If φ(Y ) is an unbiased estimator, then
for each real t, ψt(Y ) = φ(Y ) + tg(Y ) is a different unbiased
estimator which is a function of Y .

If Cov(g(Y ), φ(Y )) 6= 0 then

t = −2Cov(g(Y ), φ(Y ))/Var(φ(Y )) =⇒ Var(φ) = Var(ψt).

Example 7.4.1 uses the uniqueness of the Laplace transform to
show that

∑n
i=1 Xi is a complete sufficient statistic for the

family h(θ; x) = 1
θ
e−x/θ and so X̄ is the MVUE for θ. This

estimator was the mle and was efficient.



In Example 7.3.1 the family considered was f (θ; z) = θe−θx .
Exchanging the parameter for its reciprocal does not affect
completeness or the choice of a sufficient statistic. On the
other hand, the estimators are changed. We saw that the mle
1/X̄ = n/

∑
i Xi , the reciprocal of the mle for the reciprocal

parameter. This estimate was, however, biased. The unbiased
estimator was shown to be (n − 1)/

∑
i Xi . By completeness

this is indeed the MVUE.



Example 7.4.2: For the family of uniform distributions with
f (x ; θ) = 1

θ
, 0 < x < θ, 0 < θ, we have seen that

Y = max(X1, . . . ,Xn) is the MLE and is a sufficient statistic.
We also saw that it is biased and that Z = n+1

n
Y is an

unbiased estimate for θ.

To prove completeness we must show that for any function
u, Eθ(u(Y )) = 0 for all θ > 0 implies u(y) = 0.

We have seen that the pdf of Y is g(y ; θ) = nyn−1

θn
0 < y < θ

and so



Eθ(u(Y )) =

∫ θ

0

u(t)
ntn−1

θn
dt.

This is = 0 for all θ if and only if
∫ θ

0
u(t) · tn−1dt = 0 for all

θ. Differentiating with respect to θ this is equivalent to
u(θ)θn−1 = 0 for all θ > 0. That is, the function u(Y ) is
identically zero.

Since the unbiased estimate Z is a function of the sufficient
statistic, it is the MVUE. Notice that because this family is
not regular we cannot use efficiency to show this result.



Sec. 7.5: Exponential Families

For sufficient statistics a convenient class of examples come
from exponential families. Let f (x ; θ) be a family of pdf’s or
pmf’s for an rv X with the parameter θ varying in a real
interval. We call the family an exponential family when

f (x ; θ) = exp[p(θ)K (x) + H(x) + q(θ)],

for x in the support.

We make the following regularity assumptions.
I The support S does not depend on θ.
I The functions p(θ) and q(θ) are twice continuously

differentiable functions with p(θ) not a constant.
I If X is a continuous rv, then K (x) is continuously

differentiable with K ′(x) never zero and H(x) is
continuous.
If X is discrete, then K (x) is a non-constant function on
the support S.



For a sample X = X1, . . . ,Xn we see that

L(θ; x) = f (x; θ) = exp[p(θ)
n∑

i=1

K (xi) +
n∑

i=1

H(xi) + nq(θ)],

From the Factorization Theorem, it is clear that
Y =

∑n
i=1 K (Xi) is a sufficient statistic.

HMC Theorem 7.5.1: The pdf or pmf of Y =
∑n

i=1 K (Xi) is
given by

fY (y ; θ) = R(y)exp[p(θ)y + nq(θ)]

where neither the support SY nor the function R depend on θ.
In addition,

Eθ(Y ) = −nq′(θ)/p′(θ), Varθ(Y ) =
n

p′(θ)3

∣∣∣∣q′(θ) p′(θ)
q′′(θ) p′′(θ)

∣∣∣∣



We derive the formula for fY (y ; θ) in the discrete case where

fY (y ; θ) =
∑

x∈Sn(y)

f (x; θ).

Here Sn(y) = {x ∈ Sn :
∑n

i=1 K (xi) = y}. So

exp[p(θ)y + nq(θ)] pulls out as a common factor. The
remaining factor is

R(y) =
∑

x∈Sn(y)

exp[
n∑

i=1

H(xi)].

For the expectation and variance we differentiate the identity∫
Sn f (x; θ)dx = 1 with respect to θ and then differentiate

again to get:



0 =

∫
(p′(θ)y + nq′(θ))R(y)exp[p(θ)y + nq(θ)]dy

=

∫
(p′(θ)y + nq′(θ))fY (y ; θ)dy ,

0 =

∫
(p′′(θ)y + nq′′(θ)) + (p′(θ)y + nq′(θ))2fY (y ; θ)dy .

That is,

p′(θ)E (Y ) + nq′(θ) = 0,

p′′(θ)E (Y ) + nq′(θ) + E [(p′(θ)Y + nq′(θ))2] = 0.



Therefore, E (Y ) = −nq′/p′ and

(p′)2E (Y 2)− (p′)2E (Y )2 =

−p′′E (Y )− nq′′ − 2np′q′E (Y )− (nq′)2 − (nq′)2.

The last three terms the right add to zero and the remaining
two add to (np′′q′ − nq′′p′)/p′.

Thus, Var(Y ) = (np′′q′ − nq′′p′)/(p′)3.



Using the uniqueness of the Laplace transform it is possible to
show

HMC Theorem 7.5.2: For the above exponential family the
sufficient statistic Y =

∑n
i=1 K (Xi) is complete.

Thus, if we can find an unbiased estimate which is a function
of Y , i.e. φ(Y ) such that Eθ(φ(Y )) = θ then φ(Y ) is ae
unique and is an MVUE.



HMC Example 7.5.1: The pmf for the Poisson distribution
Poiss(θ) can be written

f (x , θ) = exp[ln(θ)x + ln(1/x!) + (−th)]

and so it is an exponential family.

HMC Example 7.5.2: With variance σ2 known the pdf for the
normal distribution N (θ, σ2) can be written

f (x , θ) = exp[
θ

σ2
x − x2

σ2
− ln(

√
2πσ2)− θ2

σ2
].

and so it is an exponential family.



Finally, we observe, following HMC Sec. 8.2, that if p(θ) is an
increasing function then the likelihood ratio is:

Λ(θ1, θ2, x) =
exp[p(θ1)

∑
i K (xi) +

∑
i H(xi) + nq(θ1)]

exp[p(θ2)
∑

i K (xi) +
∑

i H(xi) + nq(θ2)]

= exp[(p(θ1)− p(θ2))
∑
i

K (xi) + n(q(θ1)− q(θ2))].

and for θ1 < θ2 this is a decreasing function of
∑n

i=1 K (xi).

If p(θ) is a decreasing function then for θ1 < θ2 the likelihood
ratio is an increasing function of

∑n
i=1 K (xi).

Thus, when p(θ) is a monotone function, the exponential
family has monotone likelihood ratio in the sufficient statistic∑n

i=1 K (xi).
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