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Sec. 8.1: Most Powerful Simple Tests

In this section we consider a simple test for a family f (x ; θ) of
pdf’s or pmf’s. That is, the simple null hypothesis H0 : θ = θ0
against the simple alternative H1 : θ = θ1.

The samples X = X1, . . . ,Xn lie in Sn where S is the support
of the family of rv’s. We are assuming that the support does
not depend on θ. A critical region is a subset of Sn so that we
reject H0 when X ∈ C and accept it when X ∈ C c .

For a critical region C , the size or significance α = Pθ0(C ), the
probability of a Type I error, and the power of the test is
γC (θ1) = Pθ1(C ), the probability of correctly rejecting the null
hypothesis. That is, that the power is 1 minus the probability
of a Type II error.



HMC Definition 8.1.1: A critical region C of size α is a best
critical region of size α if, whenever A is a critical region of
size α,

Pθ1(C ) ≥ Pθ1(A).

That is, the power of the region C is the maximum power
possible for a critical region of size α.

We use the likelihood function L(θ)

L(θ; x) = L(θ; x1, . . . , xn) =
n∏

i=1

f (xi ; θ)

Since θ0 and θ1 are known values, we can compute

Λ(θ0, θ1; x) =
L(θ0; x)

L(θ1; x)

and use it to define a critical region.



Neyman-Pearson Theorem

HMC Theorem 8.1.1: (Neyman-Pearson Theorem) If a
subset C of the sample space satisfies:

I Pθ0(C ) = α;

I Λ(θ0, θ1; x) ≤ k for all x ∈ C ;

I Λ(θ0, θ1; x) ≥ k for all x ∈ C c ;

for some positive constant k , then C is a best critical region of
size α.

Proof: We will temporarily write L(θ;A) for
∫
A
L(θ; x)dx.

This is just alternate notation for Pθ(A). So, for example,



L(θ;C ) = L(θ;Ac ∩ C ) + L(θ;A ∩ C ).

L(θ;A) = L(θ;A ∩ C c) + L(θ;A ∩ C ),

Subtracting and cancelling the common terms we see that for
any θ.

L(θ;C )− L(θ;A) = L(θ;Ac ∩ C )− L(θ;A ∩ C c)



If A is any other critical region of size α we want to show

L(θ1;C )− L(θ1;A) ≥ 0.

Because of the assumptions about C and C c , we have
L(θ1;Ac ∩ C ) ≥ k−1L(θ0;Ac ∩ C ) because for x ∈ C ,
L(θ0; x) ≤ kL(θ1; x).

Also, −L(θ1;A ∩ C c) ≥ −k−1L(θ0;A ∩ C c) because for
x ∈ C c , L(θ0; x) ≥ kL(θ1; x)



Thus, we have:

L(θ1;Ac ∩ C ) ≥ k−1L(θ0;Ac ∩ C ),

−L(θ1;A ∩ C c) ≥ −k−1L(θ0;A ∩ C c).

L(θ1;C )− L(θ1;A) =

L(θ1;Ac ∩ C )− L(θ1;A ∩ C c) ≥
k−1[L(θ0;Ac ∩ C )− L(θ0;A ∩ C c)]

= k−1[L(θ0;C )− L(θ0;A)].

Because C and A are critical regions of size α,
L(θ0;C ) = L(θ0;A) = α.

So L(θ1;C )− L(θ1;A) ≥ 0.



The Neyman-Pearson Theorem works with the same proof
with C and A randomized tests. From that we get

HMC Corollary 8.1.1: If C is a best critical region of size α for
H0 : θ = θ0 against H1 : θ = θ1 , then Pθ1(C ) ≥ α. That is,
the power is greater than or equal to the size.

Proof: We compare C with the trivial randomized test which
uses Y ∼ Bern(α), and we use A = {Y = 1}. So the power
equals the size for this test because Pθ(A) = α for all θ.

By the Neyman-Pearson Theorem Pθ1(C ) ≥ Pθ1(A) = α.



Here θ0 and θ1 are known parameter values. So Λ(θ0, θ1; x) is
a statistic and so for any k we can define the critical region
Ck = {Λ(θ0, θ1; x) ≤ k}. The Neyman-Pearson Theorem then
says that Ck is a best critical region of its size

If we start with size α, then we choose k so that Pθ0(Ck) = α.

We can often express Λ in terms of a single statistic T (X)
separate from θ0 and θ1. In the next section we will see how
this is done in general.



Example 8.1.2 and 8.2.3: Let X ∼ N (θ, 1) so that

f (x ; θ) = 1√
2π
exp(− (x−θ)2

2
). We test for θ0 against θ1 > θ0.

Notice first that

(−
∑n

i=1(xi − θ0)2

2
)− (−

∑n
i=1(xi − θ1)2

2
) =

−(θ1 − θ0)
n∑

i=1

xi +
n

2
(θ21 − θ20).

So

Λ(θ0, θ1;X) = exp(−(θ1 − θ0)
n∑

i=1

Xi +
n

2
(θ21 − θ20))

= exp(n(θ1 − θ0)[−X̄ +
θ1 + θ0

2
]),

and we use

Ck = {Λ(θ0, θ1;X) ≤ k} = {X̄ ≥ θ1 + θ0
2

− ln k

n(θ1 − θ0)
}.



For any θ,
√
n(X̄ − θ) ∼ N (0, 1). So if 1−Φ(zα) = α, Ck has

size α with θ = θ0 when Ck = {X̄ ≥ θ0 + zα√
n
}. We can solve

this for k .

k = exp[(θ1 − θ0)[
(θ1 − θ0)

2
− zα√

n
].

However, we don’t need to determine k .
If θ = θ1, then X − θ1 ∼ N (0, 1) and so√
n(X̄ − θ1) ∼ N (0, 1). The power is given by

γCk
(θ1) = Pθ1(Ck) = P(

√
n(X̄ − θ1) ≥ zα −

√
n(θ1 − θ0))

= 1− Φ(zα −
√
n(θ1 − θ0)) ≥ 1− Φ(zα) = α.



As HMC remark, although we have been assuming that the
pdf’s or pmf’s come from a parameterized family, this need
not so For the Neyman-Pearson result. All that is needed is
that the two distributions of the two simple hypotheses have
the same range.
Example 8.1.3: Here the authors test the Poiss(1) pmf
H0 : f0(x) = e−1/x! against the Geom(1

2
) H1 : (1

2
)x+1 for

x = 0, 1, . . . .

Λ(X) = (e−n/x1! . . . xn!)÷((1/2)n(1/2)x1+...xn) =
(2e−1)n2

∑
xi∏

xi !
.

For any k , Ck = {Λ ≤ k} defines a best critical region for
α = P0(Ck). However, as the book illustrates, computing
what the set C is can be complicated enough that this is really
only of theoretical interest.

In theory, theory and practice are the same thing,
but in practice, they are really not.



Remark 8.1.2: Recall that the size α = Pθ0(C ) is the
probability of a Type I error and β = Pθ1(C

c) = 1− Pθ1(C ) is
the probability of a Type II error. With d0, d1 > 0, suppose
that we want to minimize d0α + d1β. In the notation of the
proof of the Neyman-Pearson Theorem, this is

d0

∫
C

L(θ0) + d1

∫
C c

L(θ1) = d1 +

∫
C

[d0L(θ0)− d1L(θ1)].

Clearly we minimize this by choosing

C = {d0L(θ0)− d1L(θ1) < 0} = {Λ <
d1
d0
}.

Given α this is the same as minimizing β, ie. maximizing the
power γC (θ1). That is, choosing a best critical region.



Sec. 8.2: Uniformly Most Powerful Tests

We continue to test the simple hypothesis H0 : θ = θ0, but
now against a composite set of alternatives H1 : θ ∈ ω1.

HMC Definition 8.2.1: A set C ⊂ Sn is a uniformly most
powerful critical region (UMP) for the simple hypothesis
H0 : θ = θ0, the set of alternatives H1 : θ ∈ ω1 when it is a
best critical region of size α for θ0 against each θ ∈ ω1. A test
using such a critical region is called a UMP test.

UMP tests occur in the following situation:

HMC Definition 8.2.2: The likelihood function L(θ; x) has the
monotone likelihood ratio property (mlr) in the statistic T (X)
if the likelihood ratio function Λ(θ1, θ2, x) is either a monotone
increasing function of T (x) for all θ1 < θ2 or a monotone
decreasing function of T (x) for all θ1 < θ2.



Let us pause to see what this means. For two parameter
values θa, θb,

Λ(θa, θb, x) =
L(θa, x)

L(θb, x)
.

To say that this is a monotone increasing function of T (x) is
to say that there is a positive, increasing function of a real
variable t, g(θa, θb, t) such that Λ(θa, θb, x) = g(θa, θb,T (x)).

Notice that the function g of t depends, like Λ, on the
parameters θa and θb. To say that g(θa, θb, t) is an increasing
function of t is to say that it preserves inequalities: if t1 < t2
then g(θa, θb, t1) < g(θa, θb, t2). In particular, for any c ,

t < c ⇐⇒ g(θa, θb, t) < g(θa, θb, c).



Notice what happens when we reverse the parameters.
Λ(θb, θa, x) is the reciprocal of Λ(θa, θb, x) and taking the
reciprocal reverses inequalities between positive numbers. So

Λ(θb, θa, x) = g(θb, θa,T (x)) = 1/g(θa, θb,T (x)).

So g(θb, θa, t) is a decreasing function of t. It reverses
inequalities: if t1 < t2 then g(θb, θa, t1) > g(θb, θa, t2). In
particular, for any c ,

t > c ⇐⇒ g(θb, θa, t) < g(θb, θa, c).



Suppose Λ(θa, θb, x) = g(θa, θb,T (x)) and whenever
θa < θb, g(θa, θb, t) is a monotone increasing function of t
Whenever θa < θb we define for any real number m the critical
region

Cm = {T ≤ m} = {Λ(θa, θb, x) ≤ g(θa, θb,m)}, so that

X ∈ Cm ⇔ T (X) ≤ m ⇔ Λ(θa, θb,X) ≤ g(θa, θb,m),

X ∈ C c
m ⇔ T (X) > m ⇔ Λ(θa, θb,X) > g(θa, θb,m).

As a test of the null hypothesis H0 : θ = θa the size is
Pθa(Cm) = Pθa(T ≤ m). The Neyman-Pearson Theorem says
that Cm is a best critical region of this size against any
alternative H1 : θ = θb with θa < θb. The power of the test is
Pθb(Cm) = Pθb(T ≤ m).



When we reverse the parameters, Λ(θb, θa, x) = g(θb, θa,T (x))
and whenever θb > θa, g(θb, θa, t) = 1/g(θa, θb, t) is a
monotone decreasing function of t Whenever θb > θa we
define for any real number M the critical region

CM = {T ≥ M} = {Λ(θb, θa, x) ≤ g(θb, θa,M)}, so that

X ∈ CM ⇔ T (X) ≥ M ⇔ Λ(θb, θa,X) ≤ g(θb, θa,M),

X ∈ C c
M ⇔ T (X) < M ⇔ Λ(θb, θa,X) > g(θb, θa,M).

As a test of the null hypothesis H0 : θ = θb the size is
Pθb(CM) = Pθb(T ≥ M). The Neyman-Pearson Theorem says
that CM is a best critical region of this size against any
alternative H1 : θ = θa with θb > θa. The power of the test is
Pθa(CM) = Pθa(T ≥ M).



When L(θ; x) has the mlr, we can use the Neyman-Pearson
Theorem to obtained a UMP test for either of the one-sided
alternatives: H0 : θ = θ0 vs H1 : θ > θ0 or else H0 : θ = θ0 vs
H1 : θ < θ0.

Suppose that the likelihood ratio function Λ(θ1, θ2, x) is a
monotone decreasing function of T (x) for all θ1 < θ2.

To get a UMP test of size α for H0 : θ = θ0 against
H1 : θ > θ0. We choose M so that Pθ0(T ≥ M) = α and use
as our critical region CM = {X : T (X) ≥ M}, so that CM is a
critical region of size α.

For any θ > θ0, Λ(θ0, θ, x) is a decreasing function of T (x) so
there is a k (which may depend on θ) such that
CM = {X : Λ(θ0, θ,X) ≤ k}.
The Neyman-Pearson Theorem says that CM is a best critical
region testing the null hypothesis θ = θ0 against any θ > θ0.



Corollary: With CM = {T ≥ M} the power function
γC (θ) = Pθ(CM) is a nondecreasing function of θ.

Proof: Fix θ1 < θ2 and let β = Pθ1(CM). The above argument
shows that CM provides a best critical region of size β for
H0 : θ = θ1 against H1 : θ = θ2. Corollary 8.1.1 then implies

Pθ2(CM) ≥ β = Pθ1(CM).

Notice that the Corollary is true for all θ1 < θ2 on both sides
of θ0. Therefore for CM = {T ≥ M}, it follows that

α = max
θ≤θ0

Pθ(CM).

This means that CM provides a UMP critical region for
H0 : θ ≤ θ0 vs H1 : θ > θ0.



To get a UMP test of size α for H0 : θ = θ0 against
H1 : θ < θ0. We choose m so that Pθ0(T ≤ m) = α and use
as our critical region Cm = {X : T (X) ≤ m}, so that Cm is a
critical region of size α.

For any θ < θ0, Λ(θ0, θ, x) = 1/Λ(θ, θ0, x) is an increasing
function of T (x) so there is a k (which may depend on θ)
such that Cm = {X : Λ(θ0, θ,X) ≤ k}.
The Neyman-Pearson Theorem says that Cm is a best critical
region testing the null hypothesis θ = θ0 against any θ < θ0.

Corollary: With C2 = {T ≤ m} the power function
γC (θ) = Pθ(Cm) is a nonincreasing function of θ.

Proof: Again fix θ1 < θ2 and this time let β = Pθ2(Cm). The
above argument shows that Cm provides a best critical region
of size β for H0 : θ = θ2 against H1 : θ = θ1 < θ2. Again
Corollary 8.1.1 then implies Pθ1(Cm) ≥ β = Pθ2(Cm).



We look back at example 8.1.2 and at examples 8.2.2 and
8.2.4.

Example 8.2.2: Our family is N (0, θ), ie. normal rv’s with
mean 0 and variance the unknown positive parameter θ. So
the likelihood function is

L(θ; x) = (
1

2πθ
)n/2exp[− 1

2θ

n∑
i=1

x2i ].

and the likelihood ratio is

Λ(θ0, θ1; x) = (
θ1
θ0

)n/2exp[−(
θ1 − θ0
2θ0θ1

)
n∑

i=1

x2i ].

When θ1 > θ0, Λ is a decreasing function of t =
∑n

i=1 x
2
i . So

we use as the critical region

C = {
n∑

i=1

X 2
i ≥ c}.



Since X/
√
θ ∼ N (0, 1), it follows that 1

θ

∑n
i=1 X

2
i is a χ2 rv

with n degrees of freedom. If Ψn is the cdf of such a
distribution, and Qα is chosen so that 1−Ψn(Qα) = α, then
for H0 : θ = θ0 the critical region has size α when c/θ0 = Qα,
or c = θ0Qα. We thus and obtain a UMP test for H0 : θ = θ0
against H1 : θ > θ0.

The power function is then given by

γC (θ) = 1−Ψn(
θ0
θ
Qα).

This is an increasing function of θ.



Example 8.2.4: Suppose the family is Poiss(θ) with
f (θ; x) = e−θθx/x! for x = 0, 1, . . . .

Λ(θ0, θ1;X) = en(θ1−θ0)(
θ0
θ1

)
∑

i Xi .

(Notice that the x1! . . . xn! factors cancel out).
With θ1 > θ0 this is a decreasing function of

∑
i Xi . So we can

use as our critical region C = {
∑n

i=1 Xi ≥ k}.
From the properties of the Poisson distribution,∑n

i=1 Xi ∼ Poiss(nθ). We can use this to choose k so that the
size is approximately α and to compute the power of the test.
When n is large we can use the normal approximation from the
CLT to choose c with approximate size α.



Sec. 1.10: Inequalities

HMC Theorem 1.10.2 (Markov’s Inequality): Assume X is a
nonnegative rv with mean µ and that c > 0.

P(X ≥ c) ≤ µ

c
.

Proof: Let Y = X
c

and let I be the indicator function of the
event {Y ≥ 1}. Recall that E (I ) = P(Y ≥ 1). Observe that
Y ≥ I . So E (Y ) ≥ E (I ).

HMC Theorem 1.10.3 (Chebyshev’s Inequality): Assume X
is an rv with mean µ and variance σ2. For every k > 0

P(|X − µ| ≥ kσ) ≤ 1

k2
.

Proof: Z = (X − µ)2 is a nonnegative rv with mean σ2. By

Markov’s Inequality P(Z ≥ (kσ)2) ≤ σ2

(kσ)2
.



Let φ : (a, b)→ R be a differentiable function. We call φ
(strictly) concave upwards or convex when the derivative φ′ is
a (strictly) increasing function. For any c ∈ (a, b) this means
that the graph of φ is above the tangent line at c . That is, for
all x ∈ (a, b)

φ(x) ≥ φ(c) + φ′(c)(x − c).

Proof: The function x 7→ φ(x)− [φ(c) + φ′(c)(x − c)] has a
minimum at x = c .

It suffices that the second derivative φ′′ be non-negative and
for strict convexity that φ′′ be positive.



HMC Theorem 1.10.3 (Jensen’s Inequality): Assume that φ
is convex on (a, b) and X is an rv with mean µ and range
contained in (a, b).

E (φ(X )) ≥ φ(E (X )),

and if φ is strictly convex, then the inequality is strict unless X
is a constant rv.

Proof: With c = µ in the above inequality, we have
φ(X ) ≥ φ(µ) + φ′(µ)(X − µ). Take the expected value.

We look at HMC Examples 1.10.1 and 1.10.4.



Example 1.10.1: Suppose f (x) = 1
2θ
, −θ < x < θ and = 0

otherwise. Thus µ = 0.

Var(X ) =
1

2θ

∫ +θ

−θ
x2dx =

1

θ

∫ +θ

0

x2dx =
θ2

3
.

Therefore, σ = θ√
3
.

P(|X − µ| ≥ kσ) = 1− 1

2θ

∫ +kθ/
√
3

−kθ/
√
3

dx = 1− k√
3
.

Chebyshev’s Inequality says that this probability is bounded by
1/k2 which is always larger. One can show using calculus that

the function q(t) = t√
3

+ 1
t2

has a minimum where t3m =
√
3
2

and
q(tm) = tm ·

√
3 > t3m ·

√
3 = 3/2 > 1.



Example 1.10.4: A finite rv X takes a finite number of values
which we can list as X1, . . . ,Xn. The pmf of X , is given by
fX (i) = pi = P(X = Xi).

The mean E (X ) =
∑n

i=1 piXi is the weighted average of the
values of X . It is the arithmetic mean with weights p1, . . . , pn.

For any positive rv X the geometric mean is
G (X ) = exp(E (ln(X )). In the finite case

G (X ) = exp(
n∑

i=1

pi ln(Xi)) =
n∏

i=1

X pi
i .

Because the function t 7→ − ln(t) is concave upward, Jensen’s
Inequalty implies E (− ln(X )) > − ln(E (X )). Multiplying by
(−1) reverses the inequality. We then exponentiate and get for
any positive rv X :

E (X ) > exp E (ln(X )) = G (X ).



For any positive rv X the harmonic mean is
H(X ) = 1/E (1/X ). In the finite case H(X ) = 1/

∑n
i=1

pi
Xi
.

For any positive rv X we have E (X ) > G (X ) > H(X ).

Proof: We saw that E (X ) > G (X ). Notice for any real
exponent a

G (X a) = exp(E (ln(X a))) = exp(aE (ln(X )))

= [exp(E (ln(X )))]a = G (X )a.

In particular, with a = −1 if we let Y = 1/X , then
G (Y ) = G (1/X ) = 1/G (X ).

But E (Y ) > G (Y ). So E (1/X ) > 1/G (X ). Taking the
reciprocals reverses the inequality.

We can see directly that E (X ) > H(X ) by applying Jensen’s
Inequality to the function t 7→ 1/t.



Sec. 5.1: Pointwise Convergence and Convergence in
Probability

Throughout Chapter 5 we have a sequence of rv’s {Xn} and a
target rv X . We consider different meanings for the phrase
{Xn} converges to X .

A sequence of numbers {an} converges to a number a when

For every ε > 0, eventually (i.e. for n ≥ N for some
N) |an − a| < ε.

So the sequence {an} does not converge to a when

For some ε > 0, infinitely often (i.e. for infinitely many
n ) |an − a| ≥ ε.



The sequence {Xn} converges to X pointwise when for every
point s of the sample space S the sequence of numbers
{Xn(s)} converges to the number X (s).

In probability theory we must allow a set of exceptions of
probability zero. So we define:

Definition: {Xn} converges to X almost everywhere (written
ae) when the set of s ∈ S such that {Xn(s)} does not
converge to the number X (s) has probability zero.

So {Xn} converges to X , when only with probability zero does
it happen for s ∈ S that there exist some ε > 0 (which ε may
depend on s) so that infinitely often |Xn(s)− X (s)| ≥ ε.



Define for ε > 0 the event, that is the subset of the sample
space, En(ε) = {|Xn − X | ≥ ε}.
So {Xn(s)} does not converge to X (s) when for some ε > 0 s
is in the set

∞⋂
N=1

∞⋃
n=N

En(ε).

This means that {Xn} converges to X ae when for every ε > 0,

P(
∞⋂

N=1

∞⋃
n=N

En(ε)) = 0

Because the sequence {
⋃∞

n=N En(ε)} is a decreasing sequence
in N , we obtain

Theorem: {Xn} converges to X ae if and only if for every ε > 0

LimN→∞P(
∞⋃

n=N

En(ε)) = 0.



Since EN(ε) ⊂
⋃∞

n=N En(ε). we get

Corollary: If {Xn} converges to X ae then for every ε > 0

LimN→∞P(EN(ε)) = 0.

From this we define a weaker notion of convergence.

HMC Definition 5.1.1: {Xn} converges to X in probability
(written (P)) when for every ε > 0

Limn→∞P(En(ε)) = 0.

That is,
Limn→∞P(|Xn − X | ≥ ε) = 0.



Both limit ideas satisfy the usual properties that we expect for
limits. These can be collected by the following

Theorem: Let g(x , y) be a continuous function defined on a
subset D of R2. Let {Xn}, {Yn} be sequences of rv’s and X ,Y
be rv’s such that the pairs (Xn,Yn) and (X ,Y ) all have range
in the subset D.

If {Xn} converges to X ae and {Yn} converges to Y ae, then
{g(Xn,Yn)} converges to g(X ,Y ) ae.

If {Xn} converges to X (P) and {Yn} converges to Y (P),
then {g(Xn,Yn)} converges to g(X ,Y ) (P).

Since continuity preserves limits, this is easy to prove for
convergence ae. The proof is a bit trickier for convergence in
probability. We will omit both proofs and just use the results.



Of great importance are the Laws of Large Numbers. We will
state both but only give a proof of the weak law.
HMC Theorem 5.1.1: Let {Xn} be an iid sequence of rv’s with
common mean µ. Let X̄n = 1

n

∑n
i=1 Xi .

Strong Law of Large Numbers: The sequence {X̄n}
converges ae to the constant µ.

Weak Law of Large Numbers: The sequence {X̄n}
converges (P) to the constant µ.

For the proof of the weak law we assume that the rv’s have a
finite variance σ2 so that Var(X̄n) = σ2

n
. We apply

Chebyshev’s Inequality:

P(|X̄n − µ| ≥ ε) = P(|X̄n − µ| ≥
ε
√
n

σ
· σ√

n
)

≤ σ2

nε2
→ 0.



HMC Definition 5.1.2 (Consistency) Let X be an rv with cdf
F (x , θ), θ ∈ Ω. Let {Xn} be an iid sequence with distribution
that of X so the X1, . . . ,Xn is a sample of size n. Let
Tn(X1, . . . ,Xn) be a statistic. The sequence {Tn} is called a
consistent estimator of θ if {Tn} → θ (P).

If {Tn} is a consistent estimator of θ and {an} is a sequence
of numbers converging to 1, then {an · Tn} is a consistent
estimator of θ as well.

Theorem: Assume that each Tn is an unbiased estimator and
that each Tn has finite variance σ2

n. If σ2
n → 0, then {Tn} is a

consistent estimator of θ.

Proof: E (Tn) = θ for all n because the estimator is unbiased.
Apply Chebyshev’s Inequality:

P(|Tn − θ| ≥ ε) = P(|Tn − θ| ≥
ε

σn
· σn) ≤ σ2

n

ε2
→ 0.



Example 5.1.1: For an infinite sequence X1,X2, . . . of iid’s with
mean µ and variance σ2, the sample mean X̄n = 1

n

∑n
i=1 Xi is

an unbiased estimator of µ. That is, E (X̄n) = µ. Recall that
Var(X̄n) = σ2/n. The Law of Law Numbers implies that the
sequence {X̄n} provides a consistent estimate of µ as well.
Notice that this is a special case of the above theorem.

Now consider the sample variance.

S2
n =

1

n − 1

n∑
i=1

(Xi − X̄n)2 =

n

n − 1
[
1

n

n∑
i=1

(Xi − X̄n)2] =
n

n − 1
[(

1

n

n∑
i=1

X 2
i )− (X̄n)2].

By the Law of Large Numbers applied to {X 2
i } the sequence

{ 1
n

∑n
i=1 X

2
i } converges to E (X 2

i ) and {(X̄n)2} converges to
E (Xi)

2 = µ2.



It follows that {S2
n} is a consistent estimate for σ2.

Hence, {Sn =
√

S2
n} is a consistent estimate for σ.

It is not unbiased. Jensen’s Inequality applied to the concave
function t 7→ −

√
t implies that

E (
√
S2
n ) <

√
E (S2

n ) = σ.



Example 5.1.2: Let X1, . . . be an iid sequence of the uniform
distribution on (0, θ). Recall that using the sample X1, . . . ,Xn

the maximum Yn = max(X1, . . . ,Xn) is the MLE estimator for
θ.

The cdf of Yn is FYn(t) = (t/θ)n for 0 ≤ t ≤ θ and so the
density fYn(t) = n

θn
tn−1 for 0 ≤ t ≤ θ. Therefore,

E (Yn) =
n

θn

∫ θ

0

tndt =
n

n + 1
θ,

E (Y 2
n ) =

n

θn

∫ θ

0

tn+1dt =
n

n + 2
θ2,

so Var(Yn) =
n

n + 2
θ2 − (

n

n + 1
θ)2 =

n

(n + 1)2(n + 2)
θ2.

So n+1
n
Yn is an unbiased estimate with variance 1

n(n+2)
θ2 and

so it is a consistent estimator. Hence, the biased estimate Yn

is consistent as well.



We can see directly that {Yn} → θ (P) because

P(|Yn−θ| ≥ ε) = P(Yn ≤ θ−ε) = FYn(θ−ε) = (
θ − ε
θ

)n → 0.

Recall that X̄n is an unbiased and consistent estimator for the
mean µ = θ/2. It follows that 2X̄n is an unbiased and
consistent estimator for θ.

Var(X̄n) = Var(Xi)/n = 1
12n
θ2 and so Var(2X̄n) = 1

3n
θ2. This

is n+2
3

times the variance of n+1
n
Yn.

Thus, while both 2X̄n and n+1
n
Yn are unbiased and consistent

estimators of θ, the latter is a better choice because its
variance is much smaller.



Sec. 5.2: Convergence in Distribution

Now we turn to a notion of convergence which is even weaker
but nonetheless of great importance. For it we refer to the
cdf’s FXn and FX of the random variables. We let C (FX )
denote the set of points x ∈ R at which the distribution
function FX is continuous.

HMC Definition 5.2.1: {Xn} converges to X in distribution
(written (D)) when

Limn→∞FXn(x) = FX (x) for all x ∈ C (FX ).



Example 5.2.4: As in Example 5.1.2 we let X1, . . . be an iid
sequence of the uniform distribution on (0, θ) and consider
Yn = max(X1, . . . ,Xn). Let Zn = n(θ − Yn).

E (Zn) = n(θ − E (Yn)) = n(θ − n

n + 1
θ) =

n

n + 1
θ,

Var(Zn) = n2Var(Yn) =
n3

(n + 1)2(n + 2)
θ2.

FZn(t) = P(Zn ≤ t) = P(Yn ≥ θ − t

n
) =

1− (
θ − (t/n)

θ
)n = 1− (1− t/θ

n
)n → 1− exp(−(t/θ)).

That is, Zn → Z where Z ∼ Γ(1, θ), i.e. it has an exponential
distribution with mean θ.



In order to compare convergence in probability with
convergence in distribution, we remember that, for example,
FX (x) = P(X ≤ x).

FX (x − ε) ≤ FXn(x) + P(|X − Xn| ≥ ε),

FXn(x) ≤ FX (x + ε) + P(|X − Xn| ≥ ε).

Therefore,

FX (x)− FXn(x)− [FX (x)− FX (x − ε)]

= FX (x − ε)− FXn(x) ≤ P(|X − Xn| ≥ ε),

FXn(x)− FX (x)− [FX (x + ε)− FX (x)]

= FXn(x)− FX (x + ε) ≤ P(|X − Xn| ≥ ε).

Because |a − b| = max(a − b, b − a) we put these two
together to get:



|FXn(x)− FX (x)| ≤ max([FX (x)− FX (x − ε)], [FX (x + ε)− FX (x)])

+ P(|X − Xn| ≥ ε).

Notice that if X is a continuous with density fX (x) bounded
by some constant M , then

max([FX (x)− FX (x − ε)], [FX (x + ε)− FX (x)]) ≤ Mε.

Let δ > 0. If x is a continuity point we can choose ε > 0 so
that max([FX (x)− FX (x − ε)], [FX (x + ε)− FX (x)]) ≤ δ/2. If
X has a density bounded by M then we can choose ε = δ/2M
which will work for all x .



Now assume that Xn → X (P). Having chosen ε so that
max([FX (x)− FX (x − ε)], [FX (x + ε)− FX (x)]) ≤ δ/2 we can
now choose N so that when n ≥ N , P(|X −Xn| ≥ ε) ≤ δ/2.

It follows that when n ≥ N , |FXn(x)− FX (x)| ≤ δ.

Thus, we have proved:

HMC Theorem 5.2.1: If {Xn} converges to X in probability,
then {Xn} converges to X in distribution.

Furthermore, if X is a continuous rv with a bounded density
function, then

Limn→∞ sup
x∈R
|FXn(x)− FX (x)| = 0.



The converse is not true in general, but it is true if the limit rv
is a constant.

HMC Theorem 5.2.2: If {Xn} converges to b in distribution,
then it converges to b in probability.

Proof:
P(|Xn − b| ≤ ε) = FXn(b + ε)− FXn((b − ε)− 0)→ 1− 0.

We state two results from the book which we will use without
proof.

HMC Theorem 5.2.3: If g is a function continuous on D ⊂ R
and the rv’s have range in D then Xn → X (D) implies
{g(Xn)} → g(X ) (D).

HMC Theorem 5.2.4 (Slutsky’s Theorem): If
Xn → X (D),An → a (P) and Bn → b (P), then
An + BnXn → a + bX (D).



If Xn → X (D), we would like to conclude that
E (Xn)→ E (X ), but this need not be true. Among other
things, an rv with an unbounded range need not have an
expected value. What is true is the following:

Theorem: Xn → X (D) if and only if for every bounded
continuous function g : R→ R, E (g(Xn))→ E (g(X ).

If there is a bounded subset of R which contains all the ranges
of the rv’s then any continuous function is bounded on the
range and E (g(Xn))→ E (g(X )) follows. However, the
function g(x) = x is not bounded on all of R. The most
useful result for us is:

Theorem: If Xn → X (D) and there exists M > 0 such that
E (X 2

n ) ≤ M for all n, then E (Xn)→ E (X ).

Corollary: If Xn → X (D) and there exists M > 0 and h > 0
such that E (e2h|Xn|) ≤ M , then E (etXn)→ E (etX ) for all t
with |t| < h.



That is, convergence in distribution together with some
boundedness conditions implies convergence near 0 of the
mgf’s. Most important for us is the deep converse result.

HMC Theorem 5.2.10: Assume that for some h > 0 the mgf’s
MXn(t),MX (t) exist for |t| ≤ h. If MXn(t)→ MX (t) for every
t with |t| ≤ h, then Xn → X (D).

That is, we can recognize convergence in distribution by using
convergence of the moment generating functions.



Squeeze Theorem

Theorem (Squeeze Theorem) If X 1
n ≥ Yn ≥ X 2

n and
X 1
n ,X

2
n → X (P) (or (D)) then Yn → X (P) (respectively,

(D)).

Convergence in probability follows because

{|Yn − X | > ε} ⊂ {|X 1
n − X | > ε} ∪ {|X 2

n − X | > ε}.

Convergence in distribution follows because for every x

FX 1
n
(x) ≤ FYn(x) ≤ FX 2

n
(x).



Sec. 5.3: Central Limit Theorem

Let {Xn} be an iid sequence of rv’s with mean µ and variance
σ2. So {Yn = Xn−µ

σ
} is an iid sequence of rv’s with mean 0

and variance 1.

The Law of Large Numbers says that the sample means satisfy
X̄n → µ (P) or, equivalently, Ȳn → 0 (P). In fact convergence
holds ae by the Strong Law. The averaged rv’s∑n

i=1 Xi − nµ

σ
√
n

=

√
n(X̄n − µ)

σ
=

∑n
i=1 Yi√
n

all have mean 0 and variance 1. Let Z ∼ N (0, 1).

HMC Theorem 5.3.1 (Central Limit Theorem):∑n
i=1 Xi − nµ

σ
√
n

=

√
n(X̄n − µ)

σ
→ Z (D).



We will prove the result assuming that for some h > 0 X has
an mgf defined for |t| ≤ hσ. So the mgf of Y ,
M(t) = E (etY ) = e−µt/σE (e(t/σ)X ) is defined for |t| ≤ hσ.

E (et(Y1+···+Yn)/
√
n) = E (etY1/

√
n) . . .E (etYn/

√
n) = M(

t√
n

)n.

To compute the limit as n→∞ we take the log and use
L’Hôpital’s Rule after the change of variable y = 1/

√
n

Limn→∞ n lnM(
t√
n

) = Limy→0
lnM(yt)

y 2
=

Limy→0
tM ′(yt)

2yM(yt)
=

t

2
Limy→0

1

M(yt)
Limy→0

M ′(yt)

y

=
t2

2
Limy→0

1

M(yt)
Limy→0

M ′′(yt)

1
=

t2

2
.



Recall that for Z ∼ N (0, 1), E (etZ ) = et
2/2.

Thus, for each t with |t| ≤ h, E (et(Y1+···+Yn)/
√
n)→ E (etZ ).

Since the mgf’s converge it follows from HMC Theorem 5.2.10
that ∑n

i=1 Yi√
n
→ Z (D)

as n→∞.

Since S2 = 1
n−1

∑n
i=1(Xi − X̄ )2 → σ2 (P), HMC Theorems

5.2.3 and 5.2.4 imply that∑n
i=1 Xi − nµ

S
√
n

=

√
n(X̄n − µ)

S
→ Z (D).



HMC Theorem 5.2.9: If g(x) is continuously differentiable at
θ with g ′(θ) 6= 0 and {

√
n(Xn − θ)} → Z (D) with

Z ∼ N (0, σ2), then {
√
n(g(Xn)− g(θ))} → Z 1 (D) with

Z 1 ∼ N (0, σ2(g ′(θ))2).

Proof: By the Mean Value Theorem√
n(g(Xn)− g(θ)) = g ′(cn)[

√
n(Xn − θ)] with cn between θ

and Xn.

Xn → θ (D) and so (P). So by the Squeeze Theorem
cn → θ (P).

Because g ′ is continuous g ′(cn) → g ′(θ) (P). So by
Slutsky’s Theorem

{
√
n(g(Xn)− g(θ))} → g ′(θ)Z (D).

Z 1 = g ′(θ)Z ∼ N (0, σ2(g ′(θ))2).



Kolmogorov-Smirnov Test

We consider a continuous rv X with support (a, b) with
−∞ ≤ a < b ≤ ∞. That is, the pdf fX (x) is positive for
x ∈ (a, b) and is zero elsewhere. It follows that
FX : (a, b)→ (0, 1) is a strictly increasing continuous function.

When we looked at Sec 4.1.2[4.1.1], I mentioned that the best
estimate for the cdf FX of a continuous rv X is the sample cdf.
We now look at what this means.

Let X1, . . . ,Xn be a sample. The empirical distribution X[n] is
the discrete rv taking the values X1, . . . ,Xn with each value
equally likely and so with probability 1

n
. That is, we let [n] be

an independent rv with values {1, . . . , n}, so that for
i = 1, . . . , n P(X[n] = Xi) = 1

n
.

For a real number x , FX[n]
(x) counts the number of Xi ’s with

value at most x and divides by n.



We let Ix denote the indicator function of (−∞, x ] ⊂ R so
that Ix(t) = 1 if t ≤ x and = 0 otherwise. Thus,
E (Ix(X )) = P(X ≤ x) = FX (x).

FX[n]
(x) =

1

n

n∑
i=1

Ix(Xi).

It follows from the Strong Law of Large Numbers that as

Limn→∞ FX[n]
(x) = FX (x) ae

.
This says that for almost every realization x1, x2, . . . of the
sequence X1,X2, . . . the sequence of discrete realized rv’s
{x[n]} converges in distribution to X .

However, a stronger result is true.



We can define the statistic Dn = supx∈(a,b) |FX[n]
(x)− FX (x)|.

Theorem (Glivenko-Cantelli Theorem) Limn→∞Dn = 0 ae.

Amazingly, the statistic does not depend on the choice of
continuous distribution FX . To see this, recall that
U = FX (X ) ∼ Unif (0, 1), So that
U1 = FX (X1),U2 = FX (X2), . . . is an iid sequence all with the
same uniform distribution and with empirical distribution
U[n] = FX (X[n]).

We use the change of variable u = FX (x). So that

{Xi ≤ x} = {FX (Xi) ≤ FX (x)} = {Ui ≤ u}
From which we obtain FX[n]

(x) = FU[n]
(u) and

FX (x) = FU(u) = u. Therefore,

Dn = sup
x∈(a,b)

|FX[n]
(x)− FX (x)| = sup

u∈(0,1)
|FU[n]

(u)− u|.



While Dn is the supremum over an infinite set, it really
requires only 2n computations.

Let Y1 < · · · < Yn be the order statistics for X1, . . . ,Xn. Since
X is continuous, we may assume that the n values are distinct.
It follows that

FX[n]
(x) =


0 x < Y1,
i
n

Yi ≤ x < Yi+1,

1 Yn ≤ x .

Note that if G is a continuous increasing function on a interval
and c is a constant, then the maximum value of |c −G | on the
interval occurs at one of the endpoints. It easily follows that

Dn =
n

max
i=1
{| i
n
− FX (Yi)|, |

i − 1

n
− FX (Yi)|}.



The Kolmogorov-Smirnov Test uses the computed values of
this statistic to test whether an iid sample with realization
x1, . . . , xn and associated order sequence y1 < · · · < yn comes
from an rv with cdf FX . We compute

Dn =
n

max
i=1
{| i
n
− FX (yi)|, |

i − 1

n
− FX (yi)|}.

Under the null hypothesis that FX is the true distribution, it is
known that, for example, with n = 50 the probability that D50

is greater than .23 has probability .01 (there are tables for
this).

Therefore, if n = 50 and the value of Dn computed above is
greater than .23, then we reject the null hypothesis with
confidence level .01.



Sec. 6.1: Maximum Likelihood Estimation: Existence and
Consistency

We will be considering a family of pdf’s f (x ; θ) parametrized
by θ in an interval of the real line. Among the parameter
values is the true value θ0 which we desire to estimate.

For a sample X1, . . . ,Xn the likelihood,

L(θ; x) =
n∏

i=1

f (xi ; θ),

is the joint density of X = (X1, . . . ,Xn).

In Section 4.1, the maximum likelihood estimator θ̂ was
defined. For a realization x = (x1, . . . , xn) of the sample

θ̂(x1, . . . , xn) is a parameter value at which the likelihood

L(θ; x1, . . . , xn) achieves its maximum. The statistic θ̂(X) is
the maximum likelihood estimator.



We make various regularity assumptions

HMC Assumptions 6.1.1:

R0 The pdf’s are distinct: If θ1 6= θ2, then f (·, θ1) 6= f (·, θ2).

R1 The pdf’s have common support for all θ.

HMC Theorem 6.1.1: If θ1 6= θ0, then
Limn→∞Pθ0[L(θ0,X) > L(θ1,X)] = 1.

Proof: L(θ0,X) > L(θ1,X) if and only if

1

n

n∑
i=1

ln[
f (xi ; θ1)

f (xi ; θ0)
] < 0.



1

n

n∑
i=1

ln[
f (xi ; θ1)

f (xi ; θ0)
] → Eθ0[ln[

f (X , θ1)

f (X , θ0)
]] (P)

by the Law of Large Numbers.

By Assumption (R0) the rv f (X ,θ1)
f (X ,θ0)

is a nonconstant rv, which

is positive on the common support of the pdf’s (R1). So
Jensen’s Inequality implies:

Eθ0[ln[
f (X , θ1)

f (X , θ0)
]] < ln Eθ0[

f (X , θ1)

f (X , θ0)
].

But,

Eθ0[
f (X , θ1)

f (X , θ0)
] =

∫
f (x , θ1)

f (x , θ0)
· f (x , θ0) dx = 1.



So there is a positive number k so that Eθ0[ln[ f (X ,θ1)
f (X ,θ0)

]] = −k
and so

1

n

n∑
i=1

ln[
f (Xi ; θ1)

f (Xi ; θ0)
] → −k (P).

P(|1
n

n∑
i=1

ln[
f (Xi ; θ1)

f (Xi ; θ0)
]− (−k)| < k) → 1.

P(
1

n

n∑
i=1

ln[
f (Xi ; θ1)

f (Xi ; θ0)
] < 0) → 1.



HMC Example 6.1.1: f (x ; θ) = 1
2
e−|x−θ| (Laplace or double

exponential, shifted by θ.

`(θ; x) = −n ln(2)−
n∑

i=1

|xi − θ|, `′(θ) =
n∑

i=1

sgn(xi − θ).

where sgn(t) =

{
+1 t > 0,

−1 t < 0
and is undefined if t = 0.

So `′(θ) > 0 if #{xi > θ} > #{xi < θ} and
`′(θ) < 0 if #{xi > θ} < #{xi < θ}.
Let Y1, . . . ,Yn be the order statistics for the sample
X1, . . . ,Xn.

If n = 2k + 1 then θ̂ = Yk+1, the median.

If n = 2k , we can use θ̂ = (Yk + Yk+1)/2 but the maximum
value for the likelihood is achieved at any point y with
Yk < y < Yk+1.



Example 6.1.3: With the Bernoulli mass function
f (x ; θ) = θx(1− θ)1−x for x = 0, 1 we saw in Example 4.1.4

that the mle θ̂ for X is the sample mean X̄ .

But if the range is restricted to [0, 1
3
] then we are looking for

the maximum of L(θ) on this closed interval. When the critical
point x̄ lies in the interval then it is the mle. If x̄ > 1

3
then

L(θ; x) is increasing on the interval and so the mle is the right
hand endpoint.

θ̂ = min(X̄ ,
1

3
).



HMC Theorem 6.1.2: If g is a one-to-one function on the
parameter interval and η = g(θ), then the mle estimate η̂

equals g(θ̂).

Proof: For any η = g(θ), L(η; x) = L(θ; x). That is, we are
just relabeling.

If we let L̃(η, x) be the likelihood in terms of η, then L̃(η, x)
just means L(θ, x) = L(g−1(η), x).

We are assuming that L(θ̂; x) > L(θ; x) with θ 6= θ̂. Let

η̂ = g(θ̂) and let η = g(θ) be some other value of the variable.

L̃(η̂, x) = L(θ̂, x) > L(θ, x) = L̃(η; x).



HMC Assumptions 6.1.1:

R2 The true value θ0 is in the interior of the parameter
interval.

R3 The pdf f (x , θ) is twice continuously differentiable as a
function of θ.

HMC Theorem 6.1.3: There is a sequence of statistics {θ̃n} in
the interior of the parameter interval, which converges ae to θ0
and such that

Pθ0(L(θ;X1, . . . ,Xn) has a local maximum at θ̃n) → 1.

Notice that at an interior local maximum ∂L
∂θ

= 0.



Proof: Let k0 be the smallest positive integer such that the
closed interval [θ0 − 1

k0
, θ0 + 1

k0
] is contained in the interior of

the parameter interval. For each k ≥ k0 let

θ−k = θ0 −
1

k
, θ+k = θ0 +

1

k
.

so that the intervals [θ−k , θ
+
k ] each have mid-point θ0 and they

are closing in on θ0.

For each k ≥ k0 define the event

Sn,k = {X : L(θ0;X) > L(θ−k ;X)}∩ {X : L(θ0;X) > L(θ+k ;X)}.

Looking ahead, notice that if X ∈ Sn,k then on the interval
[θ−k , θ

+
k ] the function of θ L(θ;X) takes its maximum at a

point θ̃ in the interior (θ−k , θ
+
k ) rather than one of the

endpoints and so θ̃ is a local maximum for L(θ;X) on the
entire parameter interval.



Theorem 6.1.1 says that for each k ≥ k0 the probability
Pθ0(Sn,k)→ 1 as n→∞.

This means we can choose a positive integer Nk so that
Pθ0(Sn,k) > 1− 1

k
for all n ≥ Nk and so that Nk+1 > Nk .

For n < Nk0 let θ̃n(X) = θ0.

For k ≥ k0 and Nk ≤ n < Nk+1 we restrict L(θ;X) to the
parameter interval [θ−k , θ

+
k ] and let θ̃n(X) be a parameter value

in this interval at which the restricted function achieves its
maximum.



So for Nk ≤ n < Nk+1

(i) θ−k ≤ θ̃n(X) ≤ θ+k .

(ii) If X ∈ Sn,k , then θ̃n(X) ∈ (θ−k , θ
+
k ) is a local maximum for

the unrestricted function L(θ;X).

(iii) The θ0 probability that θ̃n(X) is a local maximum for
L(θ;X) is greater than 1− 1

k
.

From (i) it follows that the sequence {θ̃n} converges to θ0.
From (iii) it follows that

Pθ0(L(θ;X) has a local maximum at θ̃n) → 1.

Notice that this is a pure existence theorem. We don’t know
what θ0 is and so none of this can be computed.



Let us summarize the proof.

(a) For θ0 in the interior of the parameter interval there is a k0
so that with k ≥ k0 the interval [θ−k , θ

+
k ] with midpoint θ0 and

of length 2/k is contained in the interior of the parameter
interval.

(b) Using Theorem 6.1.1 we get an increasing sequence of
positive integers {Nk} so that for n ≥ Nk

Pθ0[L(θ0,X) > L(θ−k ,X) & L(θ0,X) > L(θ+k ,X)] ≥ 1− (1/k).

(c) For n with Nk ≤ n < Nk+1 let θ̃n(X) be a point in [θ−k , θ
+
k ]

at which L(θ,X) has its maximum on the interval. When the
condition in (b) holds, θ̃n(X) is not an endpoint and so is a
local maximum for L(θ,X) as θ varies over the whole
parameter interval. From (a) the sequence {θ̃n(X)} converges
to θ0 for every X.



HMC Corollary 6.1.1: If the likelihood equation ∂L
∂θ

= 0 has a

unique solution θ̂(X), then P(θ̂n = θ̃n) → 1 and so θ̂ is a
consistent estimator for θ0.

Proof: When θ̃n(X) is a local maximum for L(θ;X) then it is a

solution of the likelihood equation and so equals θ̂.

It then follows from (iii) above that for

Nk ≤ n < Nk+1, P(θ̂n = θ̃n) > 1− 1
k
.

From (i) it then follows that P(|θ̂n − θ0| > 1
k

) < 1
k
, and so

θ̂n → θ0 (P).



Sec. 6.2: Information and Efficiency

HMC Assumptions 6.2.1:

R4 The integrals can be differentiated under the integral sign
as functions of θ.

Because 1 =
∫∞
−∞ f (x ; θ) dx we can differentiate to get:

0 =

∫ ∞
−∞

∂f (x ; θ)

∂θ
dx =

∫ ∞
−∞

∂ ln f (x ; θ)

∂θ
· f (x ; θ) dx

That is, the rv ∂ ln f (X ;θ)
∂θ

has expectation 0. That is,

Eθ[
∂ ln f (X ; θ)

∂θ
] = 0.



Differentiating again we have

0 =

∫ ∞
−∞

∂2 ln f (x ; θ)

∂θ2
·f (x ; θ) dx+

∫ ∞
−∞

(
∂ ln f (x ; θ)

∂θ
)2·f (x ; θ) dx

The second integral, denoted I (θ), is a variance of ∂ ln f (X ;θ)
∂θ

and is called the Fisher information. Therefore,

I (θ) = Varθ[
∂ ln f (X ; θ)

∂θ
] = −Eθ[

∂2 ln f (X ; θ)

∂θ2
].

The function ∂ ln f (x ;θ)
∂θ

is called the score function.



Note that

`(θ;X) =
n∑

i=1

ln f (Xi ; θ)

`′(θ;X) =
∂`(θ;X)

∂θ
=

n∑
i=1

∂ ln f (Xi ; θ)

∂θ
.

Examples 6.2.1- If X ∼ Bern(θ) then the pmf is
f (θ, x) = θx(1− θ)1−x with x = 0, 1 and E (X ) = θ. So

`(θ) = x ln θ + (1− x) ln(1− θ)

`′(θ) =
x

θ
− 1− x

1− θ

`′′(θ) = − x

θ2
− 1− x

(1− θ)2

I (θ) = −Eθ(`′′(θ)) = 1
θ(1−θ) .



Examples 6.2.2- For a location model we assume that the iid
sequence X1,X2, . . . are such that Xi − θ are rv’s with density
fX (x)dx , not depending on θ. For example, Xi ∼ N (θ, 1) for
all i is a location model. Hence, the common pdf of Xi ’s is
fX (x − θ)dx .
The information is given by:

I (θ) = Eθ(`
′(θ)2) =∫ ∞

−∞
(
f ′(x − θ)

f (x − θ)
)2f (x − θ)dx =

∫ ∞
−∞

(
f ′(z)

f (z)
)2f (z)dz

via the change of variables z = x − θ.

Thus, the information in this case does not depend on θ.



For a sample X = (X1, . . . ,Xn), ∂ ln L(θ;X)
∂θ

=
∑n

i=1
∂ ln f (xi ;θ)

∂θ

and so Var(∂ ln L(θ;X)
∂θ

) = nI (θ).

HMC Theorem 6.2.1 (Rao-Cramer Lower Bound): For an
rv Y = u(X), if k(θ) = Eθ(Y ), then

Varθ(Y ) ≥ k ′(θ)2

nI (θ)
.

In particular, if Y is an unbiased estimator of θ, so that
k(θ) = θ, then

Varθ(Y ) ≥ 1

nI (θ)
.



Proof:

k(θ) =

∫
Rn

u(x)L(θ; x)dx,

k ′(θ) =

∫
Rn

u(x)
∂ ln L(θ; x)

∂θ
L(θ; x)dx.

With Z = ∂ ln L(θ;X)
∂θ

, we have E (Z ) = 0,Var(Z ) = nI (θ). So

k ′(θ) = E (Y · Z ) = Cov(Y ,Z ) = ρσY
√

nI (θ).

Because the correlation coefficient ρ satisfies ρ2 ≤ 1, it follows
that

k ′(θ)2 ≤ σ2
Y · nI (θ).



For an unbiased estimator Y of θ we define its efficiency to be
1/σ2

Y nI (θ) which is at most 1 and we call Y efficient when it
is unbiased and with efficiency equal to 1. That is, its variance
is as small as possible, namely equal to 1/nI (θ).

Example 6.2.3- Consider the case with Xi ∼ Poiss(θ) so that
the mean and variance equal θ.

`(θ; x) =
n∑

i=1

ln f (xi ; θ) = (
∑
i

xi) ln θ − nθ −
∑
i

ln(xi !)

`′(θ; x) =

∑
i xi
θ
− n.

So the mle is θ̂ = X̄ with mean θ and variance θ/n. In
particular, it is unbiased.



With n = 1

I (θ) = E (`′(θ)2) = E ((
X − θ
θ

)2) =
θ

θ2
=

1

θ
.

The Rao-Cramer lower bound for the variance is
1

nI (θ)
= θ

n
= Var(X̄ ).

Thus, θ̂ is an efficient estimator.



HMC Assumptions 6.2.2:

R5 There exists a continuous function M(x) with
Eθ0(M(X )) <∞ such that for θ1, θ2 in the parameter
interval

| ∂
2 ln f (x ; θ1)

∂θ2
− ∂2 ln f (x ; θ2)

∂θ2
| ≤ M(x)|θ1 − θ2|.



We will use the notation

`(θ;X) = ln L(θ;X) =
n∑

i=1

ln f (xi ; θ),

`′(θ;X) =
∂ ln L(θ;X)

∂θ
, `′′(θ;X) =

∂2 ln L(θ;X)

∂θ2
.

As we have seen above

Eθ(`
′(θ;X)) = 0, nI (θ) = Varθ(`

′(θ;X)) = −Eθ(`′′(θ;X)).

From the Central Limit Theorem and the Law of Large
Numbers, we then get

1√
n
`′(θ0;X) → N (0, I (θ0)) (D), −1

n
`′′(θ0;X) → I (θ0) (P).



We refer to `′(θ;X) = 0 as the MLE equation which is
satisfied by an interior maximum of `(θ;X).

HMC Theorem 6.2.2: Assume that 0 < I (θ0) <∞. If {θ̂n(X)}
is a consistent sequence of solutions of the MLE equations,
then

√
n(θ̂n − θ0) → N (0,

1

I (θ0)
).

Proof: We apply the Mean Value Theorem to the function
`′(θ;X).

0 = `′(θ̂) = `′(θ0) + (θ̂ − θ0)`′′(θ∗)

with θ∗(X) between θ̂ and θ0.



By Assumption R5:

n−1|`′′(θ0)−`′′(θ∗)| ≤ M̄(X)|θ0−θ∗|, with M̄(X) = n−1
n∑

i=1

M(Xi).

By the Law of Large Numbers, M̄(X)→ Eθ0(M(X )), and by
consistency and the Squeeze Theorem |θ0 − θ∗| → 0 (P).

It follows that −n−1`′′(θ∗) → I (θ0) (P).

√
n(θ̂ − θ0) =

n−1/2`′(θ0)

−n−1`′′(θ∗)
→ 1

I (θ0)
N (0, I (θ0)).



Thus, √
nI (θ0)(θ̂ − θ0)→ N (0, 1).

HMC Corollary 6.2.2:
√
n(θ̂ − θ0) = 1√

nI (θ0)
`′(θ0) + Rn with

Rn → 0 (P).

Proof: From the previous equation,

Rn = [n−1/2`′(θ0)] · [ 1

−n−1`′′(θ∗)
− 1

I (θ0)
].

The first factor tends to N (0, I (θ0)) in distribution and the
second tends to 0 in probability and so the product tends to 0
in probability.



Because I (θ) is a continuous function and θ̂ is consistent,

I (θ̂)→ I (θ0) (P).

Consequently, √
nI (θ̂)(θ̂ − θ0)→ N (0, 1).

So we can use

(θ̂n − zα/2
1√

nI (θ̂n)
, θ̂n + zα/2

1√
nI (θ̂n)

)

as an approximate (1− α)100% confidence interval for θ0.



Sec. 6.3: Maximum Likelihood Tests

We now use the mle to test the null hypothesis H0 : θ = θ0
against the alternative H1 : θ 6= θ0.

NOTICE an annoying change in notation (I follow the book).
Previously, θ0 denoted the unknown true value of θ. But now
θ0 is a known value and we are testing to see whether it equals
the true value.

We will restrict attention to cases where the likelihood L(θ;X)

has a unique interior local maximum θ̂ at which, of course, the
likelihood equation,L′ = 0, holds. That is, the likelihood
equation has a unique solution at which L(θ) has its maximum
value.



We use the ratio Λ = L(θ0)/L(θ̂) ≤ 1. If H0 is true then since

θ̂ is a consistent estimate, and so tends to the true value, Λ
should be close to 1.

So for significance level α we Reject H0 if Λ ≤ c with c chosen
so that Pθ0(Λ ≤ c) = α. Notice that we use the fact that θ0,
as opposed to the true value, is known.

For Example 6.3.1: f (x ; θ) = θ−1exp(−x/θ). So with a
sample of size n the likelihood function is
L(θ) = θ−nexp(−nX̄/θ) and the MLE is X̄ . So

Λ =
L(θ0)

L(X̄ )
= en(

X̄

θ0
)nexp(−nX̄/θ0) = g(X̄/θ0)

with g(t) = entnexp(−nt).



For the function g(t) it is easier to look at the log:

(ln g)(t) = n(1+ln(t)−t); (ln g)′(t) = n(
1

t
−1); (ln g)′′(t) = − n

t2
.

The maximum occurs at t = 1 with g(1) = 1. That is, the

max of Λ is 1 when θ0 = θ̂ = X̄ .

For 0 < c < 1 there are two values c1, c2 with
g(c1) = c = g(c2) and 0 < c1 < 1 < c2. Thus, Λ ≤ c if and
only if X̄/θ0 ≤ c1 or X̄/θ0 ≥ c2.

Observe that X/θ ∼ Exp(1) = Γ(1, 1) and so 2X/θ ∼ Γ(1, 2).

Therefore, (2/θ)
∑n

i=1 Xi ∼ Γ(n, 2) = χ2(2n).



Example 6.3.2: We consider the family {N (θ, σ2)} with σ2

known. Observe that

∑
i

(xi−θ)2 =
∑
i

[(xi−x̄)+(x̄−θ)]2 =
∑
i

(xi−x̄)2 +
∑
i

(x̄−θ)2.

The cross term vanishes as usual because
∑

i (xi − x̄) = 0.

L(θ) = (
1

2πσ2
)n/2exp(−(2σ2)−1

n∑
i=1

(xi − θ)2) = (
1

2πσ2
)n/2×

exp(−(2σ2)−1
n∑

i=1

(xi − x̄)2)exp(−(2σ2)−1
n∑

i=1

n(x̄ − θ)2).

Since θ̂ = X̄ ,

Λ = L(θ0)/L(θ̂) = exp(−(2σ2)−1
n∑

i=1

n(X̄ − θ0)2).



The condition Λ ≤ c is equivalent to −2 ln Λ ≥ −2 ln c .

−2 ln Λ = (
X̄ − θ0
σ/
√
n

)2 = W

which has a χ2(1) distribution, as it is the square of a standard
normal. Given α we choose Qα so that P(W ≥ Qα) = α.
Then with −2 ln c = Qα we obtain our test of size α.

HMC Theorem 6.3.1: Under the null hypothesis that θ0 is the
true value of θ,

−2 ln Λ → χ2(1) (D).



Proof: We use Taylor’s Theorem (the second order version of
the Mean Value Theorem to get:

`(θ̂) = `(θ0) + (θ̂ − θ0)`′(θ0) +
1

2
(θ̂ − θ0)2`′′(θ∗n),

with θ∗n between θ̂ and θ0.

We are assuming that θ0 is the true value. So as in the proof
of Theorem 6.2.2, we use Assumption R5 and the Squeeze
Theorem to get −n−1`′′(θ∗n) → I (θ0) (P). Next, Corollary
6.2.3 says that

n−1/2`′(θ0) = n1/2(θ̂ − θ0)I (θ0) + Rn

with Rn → 0 (P) Therefore



−2 ln Λ = 2(`(θ̂)− `(θ0)) =

2[
√
nI (θ0)(θ̂ − θ0)]2 · [1− (

1

2
`′′(θ∗n)/nI (θ0)] + R∗n√

nI (θ0)(θ̂ − θ0) → N (0, 1) (D) and so

[
√
nI (θ0)(θ̂ − θ0)]2 → χ2(1) (D).

1− (1
2
`′(θ∗n)/nI (θ0)) → 1

2
(P). Finally,

R∗n =
√
n(θ̂ − θ0) · Rn. Because√

n(θ̂− θ0)→ N (0, 1/I (θ0) (D) and Rn → 0 (P), the product
R∗n tends to 0 in probability as well.



With χ2
L defined to be −2 ln Λ, we have under the null

hypothesis that χ2
L → χ2(1) (D) and so we can use the test:

Reject H0 if χ2
L ≥ χ2

α(1). Here c = χ2
α(1) is the value such

that with Z 2 ∼ χ2(1).

FZ2(c) = P(Z 2 ≤ c) = 1− α.

Under the null hypothesis I (θ̂)→ I (θ0) and so with χ2
W

defined to be [
√
nI (θ̂)(θ̂ − θ0)]2 we also have that

χ2
W → χ2(1) (D) and so we can use the test: Reject H0 if
χ2
W ≥ χ2

α(1).

We can also define χ2
R = [`′(θ0)/

√
nI (θ0)]2.

The difference between any two of the statistics χ2
L, χ2

W and
χ2
R tends to 0 in probability under the null hypothesis.
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