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Introduction

I The book is Introduction to Mathematical Statistics by
Robert V. Hogg, Joseph W. McKean and Allen T. Craig
Eighth Edition (hereafter HMC).

I READ THE BOOK. Keep up with the homework. I will
be collecting homework.

I Ask questions.

I The course information sheet and the term’s homework
assignments are posted on my site:

https : //math.sci .ccny .cuny .edu/peoplename = EthanAkin



I I will be posting there a pdf of the slides I am using here.
The first batch for the course is already up. I will post the
remaining pieces as we get to them.

I The class will meet from 2pm to 3:40 on Tuesdays and
Thursdays in NAC 6/114. If due to inclement weather, I
am unable to come in, or if we are switched to online
mode, we will meet at the scheduled time using
Blackboard Collaborate Ultra.

I Office: MR (Marshak) 325A

Office Hours: Tuesday 11:00am-1:00pm,
Thursday 11:00am-12:00.

Email: eakin@ccny.cuny.edu



Sec 1.3: Probability Properties

An event A is a subset of the sample space S , the set of
possible outcomes. We write Ac for the complementary event
S \ A. Two events corresponding to disjoint sets are said to be
mutually exclusive .

Each event A is assigned a probability P(A). The axioms are
given in HMC Def. 1.3.1:

I P(A) ≥ 0 for every event A.

I P(S) = 1.

I If A1,A2, ... is a sequence of mutually exclusive events
(Ai ∩ Aj = ∅ if i 6= j), then

P(
⋃
i

Ai) =
∑
i

P(Ai).

Imagine S is a subset of the plane with area 1 and for A ⊂ S ,
think of P(A) is the area of A.



We review the elementary consequences of the axioms given as
HMC Thm. 1.3.1 - 1.3.6.

I P(Ac) = 1− P(A) for every event A.
In particular, P(∅) = 0.

I If A ⊆ B , then P(A) ≤ P(B).
In particular, 0 ≤ P(A) ≤ 1.

I P(A ∪ B) = P(A) + P(B)− P(A ∩ B).

I If A1,A2, ... is an increasing sequence of events, then

P(
⋃
i

Ai) = lim
i→∞

P(Ai) = sup{P(Ai)}.

I If A1,A2, ... is a decreasing sequence of events, then

P(
⋂
i

Ai) = lim
i→∞

P(Ai) = inf{P(Ai)}.



Sec 1.3: Permutations and Combinations

We count the number of ways we can make k choices from a
set of size n. Think of k blanks and we are filling them in, one
blank after the other from the n set.

Sampling WITH Replacement You make k selections - in
order. After each choice is recorded, the object is replaced. So
for each of the k selections there are n choices. Thus, there
are nk = n · n . . . n possible samples.

Sampling WITHOUT Replacement You make k selections
- in order. After each choice is recorded, the object is not
replaced. After the first selection with n choices is made, there
are now only n − 1 choices for the second selection. Thus,
there are nk = n · n − 1 · ...n − (k − 1) possible samples.



In particular, the number of permutations of the set, that is,
the number of ways of rearranging the order of the elements is
nn = n! (n factorial). Notice that nk = n!÷ (n − k)!.

To count the number of subsets of size k , we first count the
number of samples of size k without replacement. Each is a
list of k elements where the order in which they have been
chosen matters. There are nk such lists or ordered samples.
Each rearrangement of a sample yields the same set. For a list
of k elements, there are k! rearrangements or permutations.
To count the subsets, we group together the k! samples which
give the same subset.



For example, from a deck of n = 52 we have
525 = 52 · 51 . . . 48 deals of five cards. Here a deal is a list of
five cards dealt in order. So there are 525 deals of cards.

For a hand of cards the order in which the cards were dealt
does not matter. Each of the 5! rearrangements of the original
deal yields the same hand. So we divide by 5! to get the
number of hands.

Thus, the number of subsets of size k which can be chosen
from a set of size n is(

n

k

)
= nk ÷ k! =

n!

k!(n − k)!
.

The symbol
(
n
k

)
is read n choose k .



A flush in hearts consists of five different cards each of which
is among the 13 cards which make up the suit of hearts. We
compute the probability of a flush in hearts two ways.

For the first method, our sample space is all deals of five
cards. We have seen there are 525 such deals. The number of
deals from the heart suit alone is 135. So the probability of a
flush in hearts is (135)/(525) = 13·12·11·10·9

52·51·50·49·48
.

For the second method, our sample space is all hands of five
cards. We have seen there are

(
52
5

)
= 525 ÷ 5! such hands.

The number of hands from the heart suit alone is(
13
5

)
= 135 ÷ 5!. So the probability of a flush in hearts is(
13

5

)
/

(
52

5

)
= (135 ÷ 5!)/(525 ÷ 5!) = (135)/(525)

because the 5!’s cancel out.

So the two methods give the same answer.



Let us look at HMC Exercise 1.3.13: Three distinct integers
are chosen from among the first twenty positive integers.
What is the probability that (a) that the sum is even, (b) that
the product is even. Note that event (b) is the complement of
all three odd, while (a) is the union of the mutually exclusive
events: all three even or exactly one is even. On the other
hand, that the sum is odd is the union of the mutually
exclusive events: all three odd or exactly one is odd. Since
there are the same number of evens and odds, we see that the
probability that sum is even is 1

2
whether we use sampling with

or without replacement. For (b) we get different answers.

With Replacement: P(All three odd) = 1
8

and so the
product is even with probability = 7

8
= .875.

Without Replacement: P(All three odd) (Just like the flush
in hearts) = 10·9·8

20·19·18
and so the product is even with probability

.895.



In general, if we add up an odd number of numbers between 1
and 20, the probability that the sum is even equals the
probability that the sum is odd. Here we use a trick. Look at
the function x 7→ y = 21− x . This maps evens to odds and
vice versa. Furthermore, if the sum of the x ’s is even, then the
sum of the y ’s is odd and vice-versa, because the odd number
of 21’s has an odd sum. Thus, we see that the number of lists
with an even sum is the same as the number of lists with an
odd sum. So the probability of each is 1

2



Notice that the sum problem becomes more complicated if we
have an even number of integers picked out. It is possible to
show that with replacement we still get that the probability of
an even sum and the probability of an odd sum each equals 1

2
.

Without replacement. It is possible to prove that if 2k integers
are added up, we get:

The probability of an odd sum is greater than the probability
of an even sum if k is odd, but

The probability of an even sum is greater than the probability
of an odd sum if k is even.

To be continued.



Sec 1.4: Conditional Probability

For events A and B the conditional probability of A given B is

P(A|B) =
P(A ∩ B)

P(B)
.

In particular, if A ⊂ B then P(A|B) = P(A)
P(B)

. These require

P(B) > 0.

Of great importance is the simple re-write of the definition:

P(A|B) · P(B) = P(A ∩ B).



Think of P(A) as the probability that a point in the sample
space is in the set A. Now suppose we know that B is true.
We are given that the point is in B . In that case the point is
in A exactly when it is in both A and B , and so is in A ∩ B .

Now P(A|B) is the new probability given the information that
B is true and so we can exclude the points of Bc .

The definition P(A|B) is P(A∩B)
P(B)

with both the top and the

bottom computed from the original sample space. Often,
however, we will regard B as the new sample space and
compute P(A|B) directly.

Let us go back HMC Exercise 1.3.13.



Think of choosing two integers from 1 to 20 without
replacement. Suppose the event A is that the second one is
even and B is the probability that the first one is even. It is
easy to see that P(B) = 1

2
. Also, P(A) = 1

2
. Think of putting

the first integer in my left hand and the second in my right.
For either one the probability is the same.

The event A ∩ B is that both are even.

P(A ∩ B) =
102

202
=

10 · 9
20 · 19

=
1

2
· 9

19
.

So

P(A|B) = P(A ∩ B)/P(B) = (
1

2
· 9

19
)÷ (

1

2
) =

9

19
.

Now lets compute it the other way. Given B is true, our new
sample space consists of 19 integers, 9 of which are even and
10 of which are odd. Now A is true when we choose an even
integer in this sample space. So the probability of A given B is
9

19
.



Now let us return to problem HMC Exercise 1.3.13.

We are choosing 2k integers from among {1, 2, . . . , 20}
For example, if k = 1 so that we have two integers, we get an
even sum if we have either EE or OO each with probability
10
20
· 9

19
. We get an odd sum if we have either EO or OE each

with probability 10
20
· 10

19
. So the difference in the probabilities is

P(odd)− P(even) = 1
19

.

With k = 2 and so there are four integers we get an even sum
with either EEEE or OOOO or a rearrangement of EEOO. We
get an odd sum with either a rearrangement of EOOO or
OEEE. From this we can compute that
P(even)− P(odd) = 9

2·19·17
.



Let us see how to compute the probability that one out of the
four integers chosen is even. So the list is a rearrangement of
EOOO. The probability that the list is of the type EOOO is

10

20
· 10

19
· 9

18
· 8

17
.

The other arrangements are OEOO, OOEO, and OOOE. To
see why there are four, think of choosing one blank out of the
four for the E (

(
4
1

)
= 4 choices) and then the rest are O’s.

Each arrangement has the same probability: 101·103

204
. So the

probability that one out of the four integers chosen is even
equals

4 · 101 · 103

204
.



There is another, probably easier, way of computing the
probability of the event that one out of the four integers
chosen are even.

Our sample space consists of all subsets of 4 integers out of
20. There are

(
20
4

)
= 204 ÷ 4! such sets.

For our event we choose 1 integer out of the 10 evens and 3
integers out of the 10 odds. This shows that there are(

10

1

)
·
(

10

3

)
= (101 ÷ 1!) · (103 ÷ 3!)

subsets in the event. So the probability equals(
10

1

)
·
(

10

3

)
÷
(

20

4

)
= (4!/(1!3!)) · 101 · 103

204
.

The same as before.



The remaining cases of an odd sum are rearrangements of
OEEE resulting in the same probability that we just computed.
So the probability of an odd sum is

8 · 101 · 103

204
.

What about the even sums? The cases EEEE and OOOO
each has probability

104

204
=

(
10

4

)
÷
(

20

4

)
.

As an exercise you should compute the probability for the
remaining cases of an even sum. These are rearrangements of
EEOO with two out of the four even.



In the important equation:

P(A|B) · P(B) = P(A ∩ B),

notice that A and B play symmetric roles in P(A ∩ B) but not
in P(A|B).

From this we obtain Bayes’ Theorem which relates P(A|B)
and P(B |A).

P(B |A) =
P(A ∩ B)

P(A)
=

P(A|B) · P(B)

P(A)
.



A list of events B1,B2, . . . ,Bk is a partition of S when the sets
are mutually exclusive and exhaustive. From a partition we
obtain the Law of Total Probability (LOTP) for an event A:

P(A) =
k∑

i=1

P(A ∩ Bi) =
k∑

i=1

P(A|Bi) · P(Bi).

The most common partition consists of B and its complement
Bc . Using the LOTP we get a useful version of Bayes’
Theorem:

P(B |A) =
P(A|B) · P(B)

P(A|B) · P(B) + P(A|Bc) · P(Bc)
.



Notice that we used:

P(A) = P(A∩B)+P(A∩Bc) = P(A|B)·P(B)+P(A|Bc)·P(Bc).

It is not true that

P(A) = P(A|B) + P(A|Bc).

In fact, because P(B) + P(Bc) = 1, we see that P(A) is a
weighted average of P(A|B) and P(A|Bc) and so lies between
them.



Look at the following idea:

P(A|B) + P(A|Bc) =
P(A ∩ B)

P(B)
+

P(A ∩ Bc)

P(Bc)

=??

P(A ∩ B) + P(A ∩ Bc)

P(B) + P(Bc)
=

P(A)

1
= P(A)

But the addition of fractions at =?? is incorrect.



What is true is the sum for A1 and A2 mutually exclusive

P(A1|B) + P(A2|B) =
P(A1 ∩ B)

P(B)
+

P(A2 ∩ B)

P(B)
=

P(A1 ∩ B) + P(A2 ∩ B)

P(B)
=

P((A1 ∪ A2) ∩ B)

P(B)
= P(A1∪A2|B).

As the authors put it: Conditional probability given B is a
probability.



Testing for a rare disease: Suppose the disease affects 1% of
the population and it has a test which is 95% accurate.
Suppose that D is the event that a random person has the
disease and T is the probability that a person being tested
tests positive.

The assumption about the prevalence of the disease means
P(D) = .01. About the accuracy, we assume that both the
sensitivity of the test P(T |D) and the specificity of the test
P(T c |Dc) are .95. What we want is P(D|T ), the probability
of the disease given a positive test. P(D|T ) =

P(T |D) · P(D)

P(T |D) · P(D) + P(T |Dc) · P(Dc)
=

.95× .01

.95× .01 + .05× .99
.

This is approximately .16.



Suppose that in a population of 10, 000, 100 have the disease,
so D contains 100 people, 1% of the population.

If the sensitivity of the test is 95% then 95 out of those 100
will test positive.

If the specificity of the test is 95%, then only 5% of the
remaining population will test positive, but that is 5% of
9, 900 people which is 495 false positives.

The set T of those who test positive contains 495 + 95 = 590
people of whom 95 actually have the disease.

So P(D|T ) = 95/590 = .16.



Notice that P(T |D) + P(T |Dc) = .95 + .05 = 1 > P(T ).

If the sensitivity is 95% but the specificity is only 90%, then

P(T |D) = .95, ,P(T c |Dc) = .90, P(T |Dc) = .10.

In that case, P(T |D) + P(T |Dc) = 1.05 > 1 and so is not a
probability at all.



Let us look at HMC Exercise 1.4.9: Bowl I contains 6R and
4B chips. Five are moved to Bowl II (previously empty) and
then one chip is selected from BowlII. Given that the selected
chip was B what is the probability that 2R and 3B were moved
to Bowl II?

Look first at the following: Suppose Bowl I contains n chips
and one of them is X. Move k chips to Bowl II and select one.
What is the probability that the selected chip is X?

Let EX be the event that X is included among the k moved.
P(EX ) =

(
n−1
k−1

)
÷
(
n
k

)
= k

n
.

Let SX be the event that X is the selected chip. Notice that
SX ⊂ EX . P(SX |EX ) = 1

k
.

Therefore,

P(SX ) = P(SX |EX ) · P(EX ) =
1

k
· k
n

=
1

n
.



This is just the probability that when one chip is selected from
Bowl I, it is X. Applying this to each of the 4 B chips, we see
that for the event SB that a B chip was selected, we have
P(SB) = 4

10
= 2

5
.

Now let E(2R3B) be the event that two R’s and three B’s
were moved. P(E (2R3B)) = (

(
6
2

)
·
(

4
3

)
)÷

(
10
5

)
= 5

21
.

We want P(E (2R3B)|SB) which is not easy to see directly.
Instead we apply Bayes’ Theorem.

P(SB |E (2R3B)) = 3
5
. So P(SB&E (2R3B)) = 3

5
· 5

21
= 1

7
and

P(E (2R3B)|SB) = P(SB&E (2R3B))÷ P(SB) =
5

14
.



Sec 1.4: Independence

Events A and B are independent when

P(A ∩ B) = P(A) · P(B).

This is a strong condition describing when we can multiply
probabilities this way.

Notice that P(A ∩ Bc) = P(A)− P(A ∩ B) and
P(A) · P(Bc) = P(A)− P(A) · P(B). So if A and B are
independent, then A and Bc are independent.

Independence is true in an uninteresting way if either P(A) or
P(B) equals 0.

When P(B) > 0, A and B are independent exactly when

P(A|B) = P(A).



To illustrate this, look back at sampling. When we sample
with replacement, the outcome of the second choice is
independent of the outcome of the first.

When we sample without replacement, the outcome of the
second choice depends to some extent on the result of the first
choice. For example, what was chosen as the first pick cannot
occur as the choice of the second pick.

Going back to the case of choosing an integer from among the
first twenty, if the first choice is even (event B), the probability
that the second choice is even (event A) is 9

19
, but if the first

choice was odd, then the probability that the second choice is
even is 10

19
. Meanwhile, recall that P(A) = P(B) = 1

2
. That is,

P(A|B) =
9

19
, P(A|Bc) =

10

19
, P(A) =

10

20
=

1

2
.



Sec 1.5, 1.6, 1.7: Random Variables

A random variable(= rv) X is a real-valued function defined
on the sample space. What is “random” is the location of the
point s of the sample space S . For each location s ∈ S X (s)
is the value of the function X at s.

The range of X is just the set of values of the function. So a
function X : S → [a, b] has range contained in the interval
[a, b].

The cumulative distribution function (cdf) FX and the survival
function GX of X are defined by

FX (x) = P(X ≤ x), GX (x) = P(X ≥ x)

The expression {X ≤ x} is shorthand for the event
{s ∈ S : X (s) ≤ x}.



HMC Theorem 1.5.1 lists the properties of FX . It is
non-decreasing, tending to 0 and 1 as x tends to −∞ and
+∞, respectively. While it may have jumps, it is continuous
from the right.

An rv X is discrete when its range is finite or countably infinite.
In our examples, the discrete rv’s will have range contained in
the set of integers. The support SX of a discrete rv consists of
those values which occur with positive probability.

The probability mass function (pmf) of a discrete rv X is
defined by

fX (x) = P(X = x),

FX (x) =
∑
y≤x

fX (y).

Thus, fX (x) > 0 exactly at the values in the support of the rv
X . The cdf FX has jumps exactly at the values in the support
of X . Between two adjacent such values it is constant.



For us, an rv X is continuous when the cdf FX is continuous
and is differentiable except at a finite set of points.

The probability density function (pdf) of a continuous rv X is
defined by

fX (x) = F ′X (x). =
dFX

dx
.

So the cdf and pdf are related by:

fX =
dFX

dx
, FX (x) =

∫ x

−∞
fX (t) dt.

Notice that the variable t in the definite integral is a dummy
variable which is integrated away.

For X a continuous rv the support SX is the set of points of
positive density, i.e. fX (x) > 0. This despite the fact that
P(X = x) = 0 for every number x .

Notice that fX (x) is not the probability that X = x . Instead
fX (x)dx is the probability that X is in a little interval of length
dx which contains x . We label such an interval as [x + dx ].



Sec 1.8: Expectation

The expectation E (X ) of an rv X is defined in HMC
Definition 1.8.1.

E (X ) =


∑

x xfX (x) if X is discrete,

∫∞
−∞ xfX (x) dx if X is continuous.

That is, it is the weighted average of the values of the rv.
Think of a complicated bet on a game with payoff Vi if event
Ai occurs with A1, . . . ,Ak mutually exclusive. The expected
value is

∑k
i=1 ViP(Ai).



If an rv Y = g(X ) with g : R→ R, then the definition of the
expectation E (Y ) uses the pmf or pdf of Y . However, we can
compute it by using the pmf or pdf of X :

E (Y ) = E (g(X )) =


∑

x g(x)fX (x) if X is discrete,

∫∞
−∞ g(x)fX (x) dx if X is continuous.

These require that the sum, when the support is infinite, and
the integral, when the support is unbounded so that the
integral is improper, converge absolutely. We need only sum or
integrate over the set of values in the support of X . While the
proof uses matters from Chapter 2, we will use the linearity of
expectation:

E (cX1 + X2) = cE (X1) + E (X2).



A list of rv’s X1,X2, . . . ,Xn is independent when for every list
of real numbers x1, x2 . . . xn,

P(X1 ≤ x1,X2 ≤ x2, . . . ,Xn ≤ xn) = FX1(x1)·FX2(x2)·. . . FXn(xn).

That is, the probability of the intersection of the events
{Xi ≤ xi} is the product of the probabilities.

It then follows that g1(X1), g2(X2), . . . , gn(Xn) is independent
for any list of functions g1, g2, . . . , gn.

If X1 and X2 are independent, then

E (X1 · X2) = E (X1) · E (X2).

This is usually not true without independence.



Sec 1.9: Mean, Variance, Moment Generating Function

For an rv X the mean of X is the expectation (if it exists)
µX = E (X ).

The variance Var(X ) is given by

Var(X ) = E ((X − µX )2) = E (X 2 − 2µXX + µ2
X )

= E (X 2)−2µXE (X )+µ2
X = E (X 2)−µ2

X = E (X 2)−E (X )2.



Var(cX ) = E ((cX − cµX )2) = c2Var(X ).

If X1 and X2 are independent, then

Var(X1 + X2) = E ((X1 − µ1 + X2 − µ2)2) =

E ((X1 − µ1)2) + 2E ((X2 − µ2)(X1 − µ1)) + E ((X2 − µ2)2)

= Var(X1) + Var(X2).

Again this is usually not true without independence.



The moment generating function (the mgf) MX is defined by

MX (t) = E (etX ).

M ′X (t) = E (XetX ),M ′′X (t) = E (X 2etX ), . . .M
(n)
X (t) = E (X netX ).

E (X ) = M ′X (0),E (X 2) = M ′′X (0), . . . ,E (X n) = M
(n)
X (0).

HMC Theorem 1.9.2 says that the mgf characterizes the
distribution of its rv.



If X is a continuous rv with support in the interval [a, b], then

MX (t) =

∫ b

a

etx fX (x)dx ,

where fX is the pdf of X .

In particular, if the support is [0,∞), then MX is the Laplace
transform of the density function.

If X is a discrete rv with range in Z+, then

MX (t) =
∞∑
x=0

etx fX (x),

where fX is the pmf of X .



If Y = a + mX , then

MY (t) = E (eat+mtX ) = eat ·MX (mt).

If X1 and X2 are independent, then

E (et(X1+X2)) = E (etX1 · etX2) = E (etX1) · E (etX2).

That is, MX1+X2 = MX1 ·MX2 .



Sec 3.1: Bernoulli,Binomial and Geometric Distributions

For an event A the indicator IA is the rv taking the values 0, 1
with

IA(s) =

{
1 for s ∈ A,

0 for s 6∈ A.

Thus, A = {IA = 1} and Ac = {IA = 0}.
In general, an rv I is a Bernoulli rv with probability p, written
I ∼ Bern(p) when I has range in {0, 1} and P(I = 1) = p.
We usually write P(I = 0) = 1− p = q, so that
fI (1) = p, fI (0) = q. The expectation E (I ) = p. In particular,
for the indicator function IA, E (IA) = P(A).

If I ∼ Bern(p), then I 2 = I and so E (I 2) = E (I ) = p. It
follows that

Var(I ) = E (I 2)− E (I )2 = p − p2 = pq.



If I ∼ Bern(p), then the mgf MI is given by MI (t) = pet + q.

A binomial rv X ∼ Bin(n, p) counts the number of successes
in n independent Bernoulli trials. Thus, X = I1 + I2 + . . . In,
where I1, I2, . . . In are independent, identically distributed (iid)
rv’s with each Ii ∼ Bern(p).

We use this to compute the mean, variance and mgf without
using the pmf of X :

µX = np, Var(X ) = npq, MX (t) = (pet + q)n.

The rv X has range {0, 1, . . . , n} and pmf given by
fX (k) =

(
n
k

)
pkqn−k . for k = 0, 1, . . . , n.



The sequence I1, . . . , In is the list of outcomes of the n trials.
If X = k , then the list has k 1’s, k successes, and n − k 0’s,
n − k failures. Since Ii = 1 has probability p and the Ii ’s are
independent, the probability of such a list is pkqn−k .

There are 2n such lists, which is the number of ways of filling
in n slots each with either a 1 or a 0. To obtain a list with k
1’s we choose k of the slots to be where the successes occur.
There are

(
n
k

)
ways of choosing a subset of size k from among

the n slots. That is, there are
(
n
k

)
lists with exactly k

successes. So

P(X = k) =

(
n

k

)
pkqn−k .

If Y counts the number of failures before the first success of a
sequence of independent Bern(p) trials, then Y is a geometric
rv written Y ∼ Geom(p).



The range of Y is the set of non-negative integers and
fY (k) = qkp for k = 0, 1, . . . .

That is, Y = k when the list of outcomes begins with k 0’s
and then a 1.

The mgf is given by

MY (t) =
∞∑
k=0

qkpetk = p
∞∑
k=0

(qet)k =
p

1− qet
.

E (Y ) = M ′Y (0) =
q

p
, E (Y 2) = M ′′Y (0) =

q + q2

p2
.

So Var(Y ) = q
p2 .

Because Y ≥ k exactly when the first k trials are failures, the
survival function GY (k) = P(Y ≥ k) = qk .



Urn Examples, Hypergeometric Distribution

An urn contains r red balls and b blue balls for a total of
N = r + b. It is assumed that when a choice is made, all of
the balls are equally likely. If X is the number of red balls
chosen given n independent choices, then there are two
different cases:

Sampling WITH Replacement There are n independent
choices each Bern(p) with p = r

N
. So X ∼ Bin(n, p) and

fX (k) =
(
n
k

)
· rkbn−k

Nn .

Sampling WITHOUT Replacement Now it is necessary
that n ≤ N and X ≤ r . This time X has a hypergeometric
distribution. There are

(
N
n

)
ways of choosing n balls from the

urn. Among these we want to count the number with exactly
k red balls. There are

(
r
k

)
ways of choosing k red balls and(

b
n−k

)
to choose there remaining blue balls. Therefore

fX (k) =
(
r
k

)
·
(

b
n−k

)
÷
(
N
n

)
.



To see these results in parallel, we consider a list of the n
outcomes in order which contains exactly k red balls so that
the remaining n − k are blue. Observe that there are

(
n
k

)
such

lists.

Sampling WITH Replacement The probability of a
particular list is pkqn−k = rkbn−k

Nn . So

fX (k) =

(
n

k

)
· r

kbn−k

Nn
,

Sampling WITHOUT Replacement This time the
probability of a particular list is rkbn−k

Nn
. So

fX (k) =

(
n

k

)
· rkbn−k

Nn
.

You should check that this formula is the same as the one
given above (write everything in terms of factorials).



Thus, the hypergeometric distribution is the analogue of the
binomial distribution, but without replacement. Back to the
urn and let Y be the number of blue balls which are drawn
before the first red ball is chosen.

Sampling WITH ReplacementThere is a sequence of
independent choices each Bern(p) with p = r

N
. So

Y ∼ Geom(p) with

fY (k) =
bkr

Nk+1
.

Sampling WITHOUT Replacement Now it is necessary
that Y ≤ b. For Y = k it is first necessary that the first k
choices are all blue. This has probability

(
b
k

)
÷
(
N
k

)
= bk

Nk
. This

is the probability that Y ≥ k . Assuming this, Y = k when the
next choice out of the remaining N − k balls is red. So the
conditional probability is r

N−k .

fY (k) = [

(
b

k

)
· r ]÷ [

(
N

k

)
· (N − k)] =

bkr

Nk+1



Again to see these results in parallel, we consider a list of the
outcomes in order with exactly k blue balls first and then 1 red
ball. There is one such list of length k + 1

Sampling WITH Replacement The probability of a
particular list is qkp = bk r

Nk+1 . So

fY (k) =
bkr

Nk+1
.

Sampling WITHOUT Replacement This time the
probability of a particular list is bk r

Nk+1
. So

fY (k) =
bkr

Nk+1
.



Consider the special case when r = 1 (as in Exercise 1.6.2).
For Sampling WITH Replacement we have

fY (k) =
(N − 1)k

Nk+1
,

But for Sampling WITHOUT Replacement we have for
k = 0, . . . ,N − 1

fY (k) =
(N − 1)k
Nk+1

=
N − 1

N
·N − 2

N − 1
. . .

N − k

N − k + 1

1

N − k
=

1

N
.

To see why this uniformity holds, imagine pulling all of the
balls out, one at a time and lining them up. Y = k when the
red ball is in slot k + 1. There are N equally likely slots in
which the red ball could land as all of the rearrangements are
equally likely. So the probability that it lands in slot k + 1, i.e.
that Y = k is 1

N
.



Sec 3.2: Poisson Distributions

An rv X is Poisson-m, written X ∼ Poiss(m), when it has

range the non-negative integers and fX (k) = e−mmk

k!
for

k = 0, 1, . . . .

The mgf is given by:

MX (t) =
∞∑
k=0

etke−m
mk

k!
= e−m

∞∑
k=0

(met)k

k!
= em(et−1).

E (X ) = M ′X (0) = m, E (X 2) = M ′′X (0) = m2 + m.

So that Var(X ) = m.
From the mgf we see that if X1 ∼ Poiss(m1) and
X2 ∼ Poiss(m2) and X1 and X2 are independent, then
X1 + X2 ∼ Poiss(m1 + m2).



We illustrate the series methods by computing not E (X n) but
E (Xn) with Xn = X · (X − 1) . . . (X − (n − 1)) for some

positive integer n. E (Xn) =
∑∞

k=0 kne
−mmk

k!
. Notice that

kn = 0 for k = 0, . . . , n − 1. So

E (Xn) =
∞∑
k=n

kne
−mmk

k!
=
∞∑
k=n

k!

(k − n)!
e−m

mk

k!

= mn
∞∑
k=n

e−m
mk−n

(k − n)!
= mn

∞∑
j=0

e−m
mj

j !
= mn.

So with n = 1, E (X ) = m.

With n = 2, E (X 2)− E (X ) = E (X (X − 1)) = m2.

Var(X ) = E (X (X −1)) +E (X )−E (X )2 = m2 +m−m2 = m.



Uniform Distributions

An rv X is uniform on an interval (a, b), written
X ∼ Unif (a, b) when the pdf fX (x) is constant for x ∈ (a, b)
and is 0 elsewhere. To obtain a pdf, the constant must be the
reciprocal of the length of the interval, 1

b−a .

If U ∼ Unif (0, 1) then by direct computation, E (U) = 1
2

and
E (U2) = 1

3
so that Var(U) = 1

12
.

The mgf is given by MU(t) = et−1
t

for t 6= 0 (and MU(0) = 1).

If X ∼ Unif (a, b) then U = 1
b−a(X − a) ∼ Unif (0, 1). So

E (X ) = a+b
2
,Var(X ) = (b−a)2

12
.



Universality of the Uniform

If U ∼ Unif (0, 1), then the cdf satisfies
FU(x) =

∫ x

0
1 du = x , for 0 < x < 1 and this cdf

characterizes the uniform distribution on (0, 1).

Now suppose that X is a continuous rv with support (a, b) for
−∞ ≤ a < b ≤ ∞. That is, the density fX (x) is positive on
(a, b) and is 0 elsewhere. So FX : (a, b)→ (0, 1) is a strictly
increasing function.

If we define Û = FX (X ), then for x ∈ (0, 1):

FÛ(x) = P(FX (X ) ≤ x) = P(X ≤ F−1
X (x)) = FX (F−1

X (x)) = x .

That is, Û = FX (X ) ∼ Unif (0, 1).

So by applying the cdf of an arbitrary continuous rv to the rv
itself we obtain a uniform rv on (0, 1).



On the other hand, if F : (a, b)→ (0, 1) is a strictly increasing
continuous function with F−1 : (0, 1)→ (a, b) and U is a

Unif (0, 1) rv, then we define X̂ = F−1(U).

FX̂ (x) = P(F−1(U) ≤ x) = P(U ≤ F (x)) = F (x).

That is, X̂ is a continuous rv with FX̂ = F .

So by using a uniform rv we can build a continuous rv with an
arbitrary increasing function F : (a, b)→ (0, 1) as its cdf.



Exponential Distributions

An exponential rv X ∼ Exp(λ) has range (0,∞) and pdf
fX (x) = λe−λx .

∫
ze−zdz = −(z + 1)e−z ,

∫
z2e−zdz = −(z2 + 2z + 2)e−z .

So if Z ∼ Exp(1), E (Z ) = Var(Z ) = 1. The mgf is given by

MZ (t) =

∫ ∞
0

etxe−xdx =
1

1− t

for t < 1.



If X ∼ Exp(λ), then

FX (x) =

∫ x

0

λe−λtdt = 1− e−λx .

So if X ∼ Exp(λ), and Z = λX , then

FZ (x) = P(Z ≤ x) = P(X ≤ x/λ) = FX (x/λ) = 1− e−x .

Thus, Z = λX ∼ Exp(1). Hence, E (X ) = 1
λ
,Var(X ) = 1

λ2

MX (t) = MZ (
t

λ
) =

λ

λ− t
for t < λ.



Sec. 2.1: Joint Distribution for Two Random Variables:
Discrete Case

We regard a pair of rv’s (X ,Y ) as a map from the sample
space to the plane R2.

The Joint PMF of a discrete pair X ,Y is given by

fX ,Y (x , y) = P((X ,Y ) = (x , y)) = P(X = x ,Y = y),

with (x , y) ∈ R2. That is, fX ,Y (x , y) is the probability of the
event that, simultaneously, X is x and Y is y .

For a subset A ⊂ R2, the event (X ,Y ) ∈ A has probability

P((X ,Y ) ∈ A) =
∑

(x ,y)∈A

fX ,Y (x , y).



Just as we usually compute double integrals as iterated
integrals, we usually compute such sums by first fixing x and
sum over the y ’s such that (x , y) is in A, obtaining a value for
each x and then sum over all x ∈ R.

For example, the PMF of X is obtained from the joint PMF as
the marginal PMF fX (x) = P(X = x) =

∑
y fX ,Y (x , y).

Notice that fX (x) = 0 if and only if fX ,Y (x , y) = 0 for all
y ∈ R.



The conditional PMF of Y given X is

fY |X (y |x) = P(Y = y |X = x) =
P(X = x ,Y = y)

P(X = x)
=

fX .Y (x , y)

fX (x)
.

It is still a function of the pair (x , y) but we write y |x as a
reminder that it is the probability that Y = y , assuming that
X = x . While fX ,Y (x , y) is defined for all (x , y) ∈ R2,
fY |X (y |x) is only defined when x is in the support of X . That
is when fX (x) > 0.

Recall that Bayes’ Rule says

P(X = x |Y = y) =
P(Y = y |X = x) · P(X = x)

P(Y = y)
.

which says in PMF notation

fX |Y (x |y) =
fY |X (y |x) · fX (x)

fY (y)
.



Sec. 2.1: Joint Distribution for Two Random Variables:
Continuous Case

For a pair of continuous distributions (X ,Y ) we have the
Joint PDF fX ,Y (x , y). This time it is the density, probability
per unit area, so that fX ,Y (x , y)dxdy is the probability of a
little dx × dy rectangle containing the point (x , y). That is,
we think of

P(X ∈ [x + dx ],Y ∈ [y + dy ]) = fX ,Y (x , y)dxdy .

For a subset A ⊂ R2 we integrate to get the probability.

P((X ,Y ) ∈ A) =

∫
A

fX ,Y (x , y)dxdy .



As before we use iterated integrals and, in particular, we obtain
the density of X as the marginal density by integrating away y .

fX (x) =

∫ y=∞

y=−∞
fX ,Y (x , y)dy .

The conditional PDF of Y given X is

fY |X (y |x) =
fX .Y (x , y)

fX (x)
.

It is helpful to use the following version of the actual
conditional probability formula:

fY |X (y |x)dy =
fX .Y (x , y)dxdy

fX (x)dx
.

This indicates the usefulness of the notation fY |X (y |x) as
compared with fX .Y (x , y). The latter is a density per unit
area, but fY |X (y |x) like fY (y) is a density per unit length, but
the density function in general depends on the value of x .



As usual we can rewrite this as

fX .Y (x , y)dxdy = (fY |X (y |x)dy) · (fX (x)dx).

In particular, we have the continuous version of the LOTP

fY (y)dy =

∫ x=∞

x=−∞
fX ,Y (x , y)dxdy =

∫ x=∞

x=−∞
(fY |X (y |x)dy ·fX (x))dx .

The continuous version of Bayes Rule is best thought of as

fY |X (y |x)dy =
(fX |Y (x |y)dx) · (fY (y)dy)

fX (x)dx
.



Sec. 2.5: Independent Random Variables

Random variables X ,Y are independent when their joint
distribution is the product of the marginals.

In the discrete case, this means fX ,Y (x , y) = fX (x) · fY (y) for
all (x , y) ∈ R2.

This is equivalent to fY |X (y |x) = fY (y) for all y ∈ R and all
values x in the range of X (so that fX (x) > 0).

In the continuous case, this means
fXY (x , y)dxdy = fX (x)dx · fY (y)dy for all (x , y) ∈ R2.

This is equivalent to fY |X (y |x)dy = fY (y)dy for all y ∈ R and
all values x in the support of X (so that fX (x) > 0).



Sec. 2.3: Expectation

For a function g(x , y) the rv g(X ,Y ) has expectation using
the joint distribution.

E (g(X ,Y )) =

{∑
(x ,y) g(x , y)fX ,Y (x , y) for (X ,Y ) discrete,∫ ∫
g(x , y)fX ,Y (x , y)dxdy for (X ,Y ) continuous.

We can now explain results given earlier:
E (X + Y ) = E (X ) + E (Y ) and, when X and Y are
independent E (X · Y ) = E (X ) · E (Y ). We will just give the
proofs in the continuous case. It is similar for the discrete case.



E (X + Y ) =

∫ ∫
(x + y)fXY (x , y)dxdy

=

∫ ∫
xfX ,Y (x , y)dxdy +

∫ ∫
yfX ,Y (x , y)dxdy .

∫ ∫
xfX ,Y (x , y)dxdy =

∫ x=∞

x=−∞
x(

∫ y=∞

y=−∞
fX ,Y (x , y)dy)dx

=

∫ x=∞

x=−∞
xfX (x)dx = E (X ).

Similarly, for
∫ ∫

yfX ,Y (x , y)dxdy .



E (X · Y ) =

∫ ∫
xyfX ,Y (x , y)dxdy

If X and Y independent, then

E (X · Y ) =

∫ ∫
xyfX (x)fY (y)dxdy =

∫
yfY (y)[

∫
xfX (x)dx ]dy

= E (X ) ·
∫

yfY (y)dy = E (X ) · E (Y ).



For a function g(x , y) we have the conditional expectation

E (g(x ,Y )|X = x) =

{∑
y g(x , y)fY |X (y |x) for (X ,Y ) discrete,∫
g(x , y)fY |X (y |x)dy for (X ,Y ) continuous.

In each case we are summing or integrating away the y
variable and we are left with a function of x . When we
compose this function of x with the rv X , we obtain the new
rv E (g(Y )|X ) which is a function of the rv X .

Notice that for h(x)g(x , y) we obtain

E (h(X )g(X ,Y )|X ) = h(X )E (g(X ,Y )|X ).

HMC Theorem 2.3.1 says

E (g(Y )) = E (E (g(Y )|X ))).



That is, from g(Y ) we obtain E (g(Y )|X = x) which is a
function of x .

The rv g(Y ) obtained from g(y) and is a function of Y while
the rv E (g(Y )|X )) obtained from E (g(Y )|X = x) and is a
function of X . But they have the same expectation.
We call this the computation of E (g(Y )) by first conditioning
on X .

We will do the computation for the continuous case.



Recall that fY |X (y |x)fX (x) = fX ,Y (x , y).

E (E (g(Y )|X ))) =

∫
x

[

∫
y

g(y)fY |X (y |x)dy ]fX (x)dx

=

∫
x

[

∫
y

g(y)fY |X (y |x)fX (x)dy ]dx

=

∫
x

[

∫
y

g(y)fX ,Y (x , y)dy ]dx

=

∫
y

[

∫
x

g(y)fX ,Y (x , y)dx ]dy

=

∫
y

g(y)[

∫
x

fX ,Y (x , y)dx ]dy

=

∫
y

g(y)fY (y)dy = E (g(Y )).



If we take the variance of Y with respect to the conditional
distribution of y |x we obtain the conditional variance:

Var(Y |X ) = E ([Y − E (Y |X )]2|X ) = E (Y 2|X )− E (Y |X )2.

This is an rv, it is a function of X not to be confused with the
number

Var(E (Y |X )) = E (E (Y |X )2)− E (E (Y |X ))2

= E (E (Y |X )2)− E (Y )2.

In fact, the second part of HMC Theorem 2.3.1 shows:

Var(Y ) = E (Var(Y |X )) + Var(E (Y |X )).



Let us see why this is true.

First observe: E (Y 2|X )− E (Y )2 is a function of X whose
expectation is E (Y 2)− E (Y )2 = Var(Y ).

But

E (Y 2|X )− E (Y )2 =

[E (Y 2|X )− E (Y |X )2] + [E (Y |X )2 − E (Y )2]

= [Var(Y |X )] + [E (Y |X )2 − E (Y )2].

These are all function of X . When we take the expected
values we get

Var(Y ) = E [Var(Y |X )] + Var [E (Y |X )].



Sec. 2.4: Covariance and Correlation

For an rv X , Var(X ) = E ((X − µX )2), and the standard

deviation is defined to be σX =
√

Var(X ). For a pair of rv’s
X ,Y , the covariance and correlation are defined by:

Cov(X ,Y ) = E ((X − µX )(Y − µY )) = E (XY )− µXµY ,

Corr(X ,Y ) = Cov(X ,Y )÷ [σXσY ].

Thus, Var(X ) = Cov(X ,X ). If Z = tX + sY then
µZ = tµX + sµY and

Var(Z ) = t2Var(X ) + s2Var(Y ) + 2stCov(X ,Y )

= t2σ2
X + s2σ2

Y + 2stσXσY ρ,

where ρ = Corr(X ,Y ).



From the formula above we see that always |ρ| ≤ 1.

With Z = tX + Y we have for all real numbers t, that
t2σ2

X + 2tσXσY ρ + σ2
Y = Var(Z ) ≥ 0. So this quadratic

function of t cannot have two different real roots.

In the quadratic formula for the roots of At2 + Bt + C = 0,
this means that the discriminant B2 − 4AC ≤ 0.

So
4(σXσY ρ)2 − 4σ2

Xσ
2
Y ≤ 0.

This means (ρ)2 ≤ 1 and so −1 ≤ ρ ≤ 1.



Sec. 2.3: Extension to Several Variables

We think of (X1, . . . ,Xn) as an rv with values in Rn.

In the discrete case there is a joint pmf and in the continuous
case a joint pdf.

Again independence means that the joint pmf or pdf is the
product of the marginals.

We will frequently use the case where the list X1, . . . ,Xn are
iid’s (= independent, identically distributed rv’s). So if fX (x)
is the pmf or pdf of any of them, then the joint pmf or pdf is
given by

f(X1,...,Xn)(x1, . . . , xn) = fX (x1)fX (x2) . . . fX (xn).



Sec. 1.7.2[1.7.1], 2.2, 2.7: Transformations

Suppose that z : (a, b)→ (c , d) is a differentiable function
and that X is a continuous rv with range in (a, b). Let
Z = z(X ). We assume that z ′ is never 0. If z ′ > 0 then z is
an increasing function which preserves inequalities. If z ′ < 0
then z is a decreasing function which reverses inequalities.

X ≤ x ⇐⇒

{
Z ≤ z(x) if z ′ > 0,

Z ≥ z(x) if z ′ < 0.

FX (x) =

{
FZ (z(x)) if z ′ > 0,

GZ (z(x)) if z ′ < 0.

Differentiating we obtain the u substitution formula:

fX (x)dx = fZ (z(x)) · |z ′(x)|dx = fZ (z)dz .



Linear Change of Variables

We will omit the general results about change of variable, but
we will need the special case of a linear change of variables
from (x , y) to (u, v)

u = ax + by
v = cx + dy

In order that the change be reversible, it is necessary that the

determinant J =

∣∣∣∣a b
c d

∣∣∣∣ = ad − bc be nonzero. Then we can

solve using Cramer’s rule to get

Jx = du + −bv
Jy = −cu + av .

.



Notice that the coefficient matrix is the same as the Jacobian
matrix of partial derivatives(

a b
c d

)
=

(
∂u/∂x ∂u/∂y
∂v/∂x ∂v/∂y

)
.

So we will write ∂(u,v)
∂(x ,y)

for the determinant J .

By analogy with the one-dimensional change of variables we
write dudv = |∂(u,v)

∂(x ,y)
|dxdy (note the absolute value - these are

comparing areas). With (U ,V ) = (aX + bY , cX + dY )

fX ,Y (x , y)dxdy = fU,V (ax + by , cx + dy) · |∂(u, v)

∂(x , y)
|dxdy

= fU,V (u, v)dudv .



Observe that

tU + sV = (at + cs)X + (bt + ds)Y .

Exponentiate and take the expected values to get for the
MGF’s

MU,V (t, s) = MX ,Y (at + cs, bt + ds).

For more variables, the formulas are similar.



Convolution

Suppose that X ,Y are independent r.v.s with CDF’s fX , fY .
Let Z = X + Y . We have already obtained the formula for the
pdf of Z in Exercise 2.1.7[2.1.6], see also Exercise 2.2.5. If
z = x + y , t = y . We consider the change of variables
(z , t)→ (x , y) by x = z − t, y = t. The determinant J = 1
and so we have

fZ ,T (z , t)dzdt = fX ,Y (z − t, t)1dzdt = fX (z − t)fY (t)dzdt.

Alternatively, we can write

fZ ,T (z , t)dzdt = P(X + Y ∈[z + dz ],Y ∈ [t + dt])

= P(X ∈ [z − t + dz ], Y ∈ [t + dt]) =

P(X ∈ [z − t + dz ]) · P(Y ∈ [t + dt]) = fX (z − t)fY (t)dzdt.



and so

fZ ,T (z , t)dzdt = fX (z − t)fY (t)dzdt.

We obtain the PDF of Z = X + Y as the marginal PDF by
integrating away the t variable.

fZ (z)dz =

∫ t=∞

t=−∞
fX (z − t)fY (t)dt.

The function fZ is called the convolution of the functions fX
and fY .



Sec. 3.3: The Gamma Distribution

The Gamma function is defined by an integral for α > 0.

Γ(α) =

∫ ∞
0

xαe−x
dx

x
=

∫ ∞
0

xα−1e−xdx .

In particular, we see that Γ(1) = 1.

From integration by parts we obtain the identity
Γ(α + 1) = αΓ(α) for all α > 0. Let u = xα, dv = e−xdx so

that du = αxα−1dx , v = −e−x .∫ ∞
0

xαe−xdx = −xαe−x |∞0 + α

∫ ∞
0

xα−1e−xdx .

In particular, it follows that Γ(n) = (n − 1)!.



Dividing by Γ(α) we obtain the Γ(α, 1) rv X with pdf

fX (x)dx =
1

Γ(α)
xαe−x

1

x
dx .

If X ∼ Γ(α, 1) and Y = βX with β > 0 we say that
Y ∼ Γ(α, β). From such a scale change we have

fY (y)dy =
1

β
fX (

y

β
)dy =

1

Γ(α)
(
y

β
)αe−

y
β

1

y
dy .



We compute the MGF of Y

E (etY ) =
1

Γ(α)

∫ ∞
0

ety (
y

β
)αe−

y
β
dy

y
.

Let µ = 1
β
− t so that 1

β
= µ + t. The integral becomes

1

Γ(α)

∫ ∞
0

((µ + t)y)αe−µy
dy

y

=
(µ + t)α

µα
1

Γ(α)

∫ ∞
0

(µy)αe−µy
dy

y

This is just (µ+t)α

µα
= ( 1

1−βt )α since the rest is the integral of

the Γ(α, 1/µ) pdf. This requires µ > 0 and so βt < 1.



Thus, if Y ∼ Γ(α, β), then

MY (t) = E (etY ) = (
1

1− βt
)α for t < β−1

.

MY (t) = (1− βt)−α, M ′(t) = αβ(1− βt)−(α+1),

M ′′Y (t) = α(α + 1)β2(1− βt)−(α+2).

So E (Y ) = M ′Y (0) = αβ,E (Y 2) = M ′′Y (0) = α(α + 1)β2 and
so Var(Y ) = αβ2.



Finally, if X and Y are independent r.v.’s

I X ∼ Γ(α1, β),Y ∼ Γ(α2, β) ⇒ X + Y ∼ Γ(α1 + α2, β).

Observe that the Γ(1, β) distribution is just the Expo(λ)
distribution with λ = 1

β
. So it follows that the sum of n

independent Expo(λ) r.v.’s has distribution Γ(n, 1/λ).



Sec. 3.3: The Chi-Squared Distribution

The special case of the Gamma Distribution with α = r/2 and
β = 2 with r a positive integer is called the χ2 distribution
with r degrees of freedom. So if Y ∼ χ2(r)

fY (y)dy =
1

Γ(r/2)
(
y

2
)r/2e−

y
2

1

y
dy with MY (t) = (

1

1− 2t
)r/2.

So E (Y ) = r ,Var(Y ) = 2r .



Sec. 3.4: The Normal Distribution

The standard normal distribution r.v. Z ∼ N (0, 1) has PDF
on R given by

φ(z) =
1√
2π

e−z
2/2.

Just as we use special notation φ for the density function fZ of
the standard normal, we use Φ for the cdf of the standard
normal, so that

Φ(z) =
1√
2π

∫ z

−∞
e−t

2/2dt.



There is a trick for computing I =
∫∞
−∞ e−x

2/2 dx which uses
polar coordinates.

I 2 =

∫ ∞
−∞

e−x
2/2 dx ·

∫ ∞
−∞

e−y
2/2 dy =∫ ∞

−∞

∫ ∞
−∞

e−(x2+y2)/2 dxdy =

∫ 2π

0

∫ ∞
0

re−r
2

dr dθ

=

∫ 2π

0

∫ ∞
0

e−u du dθ = 2π.

So
∫∞
−∞ e−x

2/2 dx = I =
√

2π.



If Z ∼ N (0, 1), then

E (etZ ) =

∫ ∞
−∞

etz
1√
2π

e−z
2/2dz

= et
2/2

∫ ∞
−∞

1√
2π

e−(z−t)2/2dz = et
2/2.

MZ (t) = et
2/2, M ′Z (t) = tet

2/2, M ′′Z (t) = et
2/2 + t2et

2/2.

So E (Z ) = M ′Z (0) = 0 and Var(Z ) = E (Z 2) = M ′′Z (0) = 1.



If X = µ + σZ , then E (X ) = µ and Var(X ) = σ2. We write
X ∼ N (µ, σ2). So if X ∼ N (µ, σ2) we convert to the
standard normal by Z = X−µ

σ
or X = σZ + µ so that

fX (x)dx = fZ (z)dz =
1

σ
φ(

x − µ
σ

)dx =
1

σ
√

2π
e−( x−µ

σ
)2/2dx .

P(X < µ + σz) = Φ(z),

P(|X − µ| < σz) = P(µ− σz < X < µ + σz) = Φ(z)− Φ(−z).

E (etX ) = eµt+σ2t2/2.

From the mgf, it follows that any linear combination of
independent normal rv’s is again normal. See HMC Theorem
3.4.2.



The importance of the Chi-Squared distribution comes from its
connection with the normal.

HMC Theorem 3.4.1: If Z ∼ N (0, 1), then V = Z 2 ∼ χ2(1).
Proof: For v > 0 :

FV (v) = P(−
√
v ≤ Z ≤

√
v) = 2

∫ √v
0

1√
2π

e−t
2/2dt.

Now use the change of variable: t =
√
u to get:

FV (v) =

∫ v

0

1√
2πu

e−u/2du.

This means that fV (v)dv = 1√
π

( v
2

)1/2e−
v
2

1
v
dv for v > 0 and

= 0 otherwise.
Recall that the density for a χ2(1) variable is

1
Γ(1/2)

( y
2

)1/2e−
y
2

1
y
dy .



This shows that V ∼ χ2(1), and, in passing, shows that
Γ(1/2) =

√
π.

It follows that if Z1, . . . ,Zr are independent N (0, 1) rv’s then

Vr =
r∑

i=1

Z 2
i ∼ χ2(r).

If W ∼ N (0, 1),V ∼ χ2(r) and W and V are independent,

then T = W ÷
√

V /r is said to have a t-distribution.



Bivariate Normal

A random vector (X1, . . . ,Xn) is said to be a multivariate
normal MVN when any mixture t1X1 + . . . ,+tnXn is a normal
r.v., including the possibility of the degenerate case of a
constant with variance zero. We will restrict our attention to
the case n = 2.

Recall that for Z ∼ N (0, 1) the MGF
MZ (t) = E (etZ ) = et

2/2. If N ∼ N (µ, σ2) then
Z = (N − µ)/σ ∼ N (0, 1) and so

MN(t) = E (et(µ+σZ)) = eµteσ
2t2/2 = eE(N)t+Var(N)t2/2.

So with t = 1 we have

E (eN) = eE(N)+Var(N)/2.



If (X ,Y ) is bivariate normal, then N = tX + sY is normal with
E (N) = tµX + sµY and Var(N) = σ2

X t
2 + σ2

Y s
2 + 2σXσY ρst,

where µX , µY are the means and σ2
X , σ

2
Y are the variances of

X and Y respectively and ρ = Corr(X ,Y ). It follows that

MX ,Y (t, s) = E (etX+sY ) = etµX +sµY + 1
2

(σ2
X t

2+σ2
Y s2+2σXσY ρst).

The distribution of a bivariate normal (X ,Y ) is thus
determined by (µX , µY , σX , σY , ρ) correlation coefficient.

In particular, if ρ = 0 then MX ,Y (t, s) = MX (t) ·MY (s) which
implies that X and Y are independent.

Independent rv’s are always uncorrelated, but the converse is
not usually true. For normals it is true.]



Just as we can begin with a standard normal Z and obtain an
arbitrary normal N ∼ N (µ, σ2) as µ + σZ , we can similarly
build an arbitrary bivariate normal by starting with Z ,W a
pair of i.i.d standard normals.

Let X = σ1Z ,Y = σ2(ρZ + ρ̄W ) with ρ̄ =
√

1− ρ2.
X and Y have mean zero, and

Var(X ) = σ2
1, Var(Y ) = σ2

2[ρ2Var(Z ) + ρ̄2Var(W )] = σ2
2.

Cov(X ,Y ) = σ1σ2[ρVar(Z ) + ρ̄Cov(Z ,W )] = σ1σ2ρ.

By adding the constant vector (µ1, µ2) to (X ,Y ) we obtain a
bivariate normal with parameters (µ1, µ2, σ1, σ2, ρ).



We obtain the joint PDF for X ,Y by using the change of
variables formula.

Z = 1
σ1
X + 0

W = − ρ
σ1ρ̄

X + 1
σ2ρ̄

Y

Since fZ ,W (z ,w) = 1
2π
exp[−1

2
(z2 + w 2)] and ∂(z,w)

∂(x ,y)
= 1

σ1σ2ρ̄
,

we get that fX ,Y (x , y) =

1

σ1σ2ρ̄2π
exp[−1

2
((

x

σ1
)2 + (− ρx

ρ̄σ1
+

y

ρ̄σ2
)2)]

=
1

σ1σ2ρ̄2π
exp[− 1

2ρ̄2
((

x

σ1
)2 + (

y

σ2
)2 − 2ρxy

σ1σ2
)].



Sec. 3.6: Sample Mean,Sample Variance, Student’s
Theorem

If X has mean µ and variance σ2, then for any c :

E ((X − c)2) = E ([(X − µ) + (µ− c)]2)

= E ((X − µ)2) + (µ− c)2 = σ2 + (c − µ)2.

Let X1, . . . ,Xn be iid’s each with mean µ and variance σ2.
Define X̄ = 1

n

∑n
i=1 Xi to be the sample mean. E (X̄ ) = µ and

Var(X̄ ) = σ2

n
. Because

∑n
i=1[(Xi − X̄ )(X̄ − µ)] = 0,

1

n

n∑
i=1

(Xi − µ)2 =
1

n

n∑
i=1

[(Xi − X̄ ) + (X̄ − µ)]2

= (
1

n

n∑
i=1

(Xi − X̄ )2) + (X̄ − µ)2.



Multiply by n and take expected value. Note that
E ((X̄ − µ)2) = Var(X̄ ) = σ2

n

We obtain nσ2 = E (
∑n

i=1(Xi − X̄ )2) + σ2.

So if we defined the sample variance by
S2 = 1

n−1

∑n
i=1(Xi − X̄ )2 we have E (S2) = σ2.

Now assume the iid’s are all N (µ, σ2). In that case, X̄ and S2

are independent. We omit the proof from HMC Theorem
3.6.3.

(n − 1)S2

σ2
+ (

(X̄ − µ)

σ/
√
n

)2 =
n∑

i=1

(
Xi − µ
σ

)2.

The right side is a χ2(n) variable and the second term on the

left is χ2(1). It follows that (n−1)S2

σ2 ∼ χ2(n − 1).



Finally, T = X̄−µ
S/
√
n

has a t-distribution with n − 1 degrees of

freedom.

Z =
X̄ − µ
σ/
√
n
∼ N (0, 1).

V =
(n − 1)S2

σ2
∼ χ2(n − 1).

Since Z and V are independent,

Z ÷
√

V /(n − 1) = X̄−µ
S/
√
n

is a t-distribution with n − 1

degrees of freedom.



Sec. 4.4: Order Statistics

Let X1, . . . ,Xn be iid continuous rv’s with pdf f (x)dx . The
possibility of a tie Xi = Xj for some i 6= j has probability zero
and so, discarding the possibility of a tie, we can rearrange the
Xi ’s in order: Y1 < Y2 < · · · < Yn. That is, Y1 is the
minimum, Y2 is the second smallest up to Yn the maximum of
the Xi ’s.

For the minimum Y1 we have, using GX = 1− FX :

GY1(y1) = P(Y1 > y1) = P(X1 > y1, . . . ,Xn > y1) = GX (y1)n.

Similarly, for the maximum FYn(yn) = FX (yn)n.

Differentiating we obtain the pdf’s:

fY1(y1) = nfX (y1)(1−FX (y1))n−1, fYn(yn) = nfX (yn)FX (yn)n−1.



That is, the event Y1 ∈ [y1 + dy1] occurs when some
Xi ∈ [y1 + dy1] and the remaining n − 1 Xj ’s are greater than
y1. The factor n is because there are n choices for Xi .

For 1 < k < n we similarly compute fYk
(yk). The event

Yk ∈ [yk + dyk ] occurs when some Xi ∈ [yk + dyk ] (n choices)
and of the remaining n − 1 Xj ’s exactly k − 1 are less than yk
(
(
n−1
k−1

)
choices) while the remaining ones are greater than yk .

fYk
(yk) = n

(
n − 1

k − 1

)
fX (yk)FX (yk)k−1(1− FX (yk))n−k

=
n!

(k − 1)!(n − k)!
fX (yk)FX (yk)k−1(1− FX (yk))n−k .



You should similarly be able to see that for 1 < k < ` < n the
joint distribution of Yk ,Y` is given by:

fYkY`(yk , y`) = n · (n − 1) ·
(
n − 2

k − 1

)(
n − k − 1

`− k − 1

)
·

fX (yk)fX (y`)FX (yk)k−1[FX (y`)− FX (yk)]`−k−1[1− FX (y`)]n−`.

Observe that: n · (n − 1) ·
(
n−2
k−1

)(
n−k−1
`−k−1

)
= n!

(k−1)!(`−k−1)!(n−`)!
.

Finally, the joint distribution of Y1,Y2, . . . ,Yn is obtained via
the n! choices of ordering for X1, . . . ,Xn:

fY1...Yn(y1, . . . , yn)dy1 . . . dyn = n!fX (y1) · . . . fX (yn).



Sec. 4.1: Samples, Realizations and Statistics

In statistics we want to use data to identify an unknown pmf
or pdf f (x). The data we use is a random sample a sequence
X1, . . . ,Xn iid rv’s with the unknown distribution. The actual
observed values x1, . . . , xn are the realizations of the sample.

A function T = T (X1, . . . ,Xn) is called a statistic of the
sample. Once the values x1, . . . , xn of the sample have been
observed, we obtain t = T (x1, . . . , xn) the realization of the
statistic.



We will be considering two situations.

Case 1 (Point Estimation): We know the form of the pmf
or pdf lies within a known family {f (x ; θ) : θ ∈ Ω} and we
want to know the true value of the unknown parameter θ
which determines the distribution. To estimate, that is, to
guess, a value for θ we use a statistic T which we call an
estimate or a point estimator for θ. The statistic T is a
function of the rv’s, of the data, it may not depend on θ.

Case 2 (Nonparametric Estimation): In this case, f (x) is
completely unknown and we use the data to estimate the
distribution.



Sec. 4.1.1[4.1]: Maximum Likelihood Estimate

For point estimation of the parameter θ, we use the notation
Eθ(X ) for the expected value with respect to f (x ; θ). An
estimator T (X1, . . . ,Xn) for θ is called an unbiased estimator
when Eθ(T ) = θ.

For example, with X̄ = 1
n

∑n
i=1 Xi , then E (X̄ ) = µX and so

the sample mean is an unbiased estimator of the true mean.

Similarly we saw that S2 = 1
n−1

∑n
i=1(Xi − X̄ )2 satisfies

E (S2) = Var(X ) and so S2 is an unbiased estimator for the
variance. Thus, 1

n

∑n
i=1(Xi − X̄ )2 has expected value

n−1
n
Var(X ) and so is biased.



With parameter θ the joint distribution is given by
fX1,...,Xn(x1, . . . , xn) =

∏n
i=1 fX (xi ; θ).

We view this as a function of θ defining the likelihood function
L(θ) by

L(θ) = L(θ; x1, . . . , xn) =
n∏

i=1

f (xi ; θ)

When the support is independent of θ it is often convenient to
use the log-likelihood function `(θ) defined for x1, . . . , xn in
the support:

`(θ) = `(θ; x1, . . . , xn) =
n∑

i=1

ln(f (xi ; θ)).

If it is unique, the value θ̂ at which L(θ) achieves its maximum
is called the maximum likelihood estimator (mle) for θ.



We consider Examples 4.1.1 - 4.1.4 of HMC. Notice that in all
cases, we think of the realization x1, . . . , xn as fixed and vary θ
to find the maximum of L or `.

We then obtain θ̂ as a function of x1, . . . , xn. The estimator, is
then the statistic θ̂(X1, . . . ,Xn).

Example 4.1.1: f (x ; θ) = θ−1e−x/θ and so this is the family of
Γ(1, θ) distributions with unknown mean θ. Alternatively this
is the family of Exp(1/θ) exponential distributions.



`(θ) = ln[
n∏

i=1

θ−1e−xi/θ] = ln[θ−ne−θ
−1

∑
i xi ]

= −n ln(θ)− θ−1
∑
i

xi .

To find the maximum we take the derivative with respect to θ:

∂`

∂θ
= −nθ−1 + θ−2

n∑
i=1

xi .

The critical point is θ̂ = 1
n

∑n
i=1 xi which is a local maximum

by the second derivative test. It is the only critical point as so
is the maximum point. The MLE is θ̂ = X̄ , the sample mean,
which is unbiased. Notice that X̄ has a Γ(n, θ/n) distribution.



Example 4.1.2: f (x ; θ) = θx(1− θ)(1−x) with x = 0 or 1. This
is the family of Bern(θ) distributions with values 0, 1. Notice
that the sum

∑n
i=1 Xi has a Bin(n, θ) distribution.

`(θ) = ln(
∏
i

θxi (1− θ)(1−xi )) = ln[θ
∑

i xi (1− θ)n−
∑

i xi ]

= (
n∑

i=1

xi) ln θ + (n −
n∑

i=1

xi) ln(1− θ).

∂`

∂θ
= θ−1(

n∑
i=1

xi)− (1− θ)−1(n −
n∑

i=1

xi) = n[
x̄

θ
− 1− x̄

1− θ
].

Again the sample mean x̄ is the estimator for θ with x̄ = k
n

where k =
∑n

i=1 xi is the number of successes in the
realization.
The MLE is θ̂ = X̄ = n−1

∑
i Xi .



Example 4.1.3: f (x ;µ, σ) = 1
σ
√

2π
e−

1
2

((x−µ)/σ)2
. This is the

family N (µ, σ2) with unknown parameters the pair (µ, σ).

`(µ, σ) = ln((
1

σ
√

2π
)nexp(−1

2

∑
i

(
xi − µ
σ

)2) =

−n

2
ln(2π)− n ln(σ)− σ−2

2

∑
i

(xi − µ)2.

∂`

∂µ
= σ−2

n∑
i=1

(xi − µ).

∂`

∂σ
= −nσ−1 + σ−3

n∑
i=1

(xi − µ)2.



Setting the first equal to zero we solve to obtain
µ̂ = 1

n

∑n
i=1 xi = x̄ , i.e. the sample mean again.

Substituting x̄ for µ in the equation ∂`
∂σ

= 0, we obtain
σ̂2 = 1

n

∑n
i=1 (xi − x̄)2.

The estimator for µ is unbiased, but the estimator for σ2 is
biased. When we return to the theory of MLE’s later we will
examine the relationship between the estimate of σ2 and that
of σ.



Example 4.1.4: This is the family Unif (0, θ) and so
f (x ; θ) = θ−1 if 0 ≤ x ≤ θ and = 0 otherwise. To be precise,
we write I[0,θ] for the indicator function of the interval [0, θ].
That is,

I[0,θ](x) =

{
1 for 0 ≤ x ≤ θ,

0 otherwise
.

Then f (x ; θ) = θ−1I(0,θ)(x). Here the range varies with θ and
so we can’t use the log likelihood function.

L(θ) =
1

θn

n∏
i=1

I[0,θ](xi).

Regardless of θ we always have xi ≥ 0 and so the product is
zero unless x1, . . . , xn ≤ θ. That is, L(θ) = 0 unless
maxi(xi) ≤ θ in which case L(θ) is θ−n. So

L(θ, x) = θ−nI[0,θ](max
i

(xi)).



Because θ−n is a decreasing function of θ we obtain the
maximum of L by choosing θ as small as possible, but
L(θ) = 0 unless θ ≥ maxi(xi). So the maximum value of L(θ)
occurs at max(x1, . . . , xn).

Thus, θ̂ = max(X1, . . . ,Xn).

Recall that with X ∼ Unif (0, θ), FX (x) = x/θ for 0 ≤ x ≤ θ
and so with M = max(X1, . . . ,Xn), FM(x) = FX (x)n = xn/θn.
Differentiating, fM(x) = nxn−1/θn and so

E (M) =
n

θn

∫ θ

0

xndx =
n

n + 1
θ.

So the estimator θ̂ = M is biased.
Now we consider an example which uses calculus and which
exhibits end-point issues.



Example: Let f (x ; θ) = θxθ−1 for 0 < x < 1 and = 0
otherwise. The parameter is assumed to satisfy θ ≥ 1. Notice
that with θ = 1 the density is uniform on (0, 1).

1

n
`(θ) = (θ − 1)

1

n
(

n∑
i=1

ln(xi)) + ln(θ) = (θ − 1)ln(x) + ln(θ).

1

n
`′(θ) = ln(x) + 1/θ.

If ln(x) ≤ −1, then 1
n
`(θ) is a decreasing function of θ and so

the maximum θ̂ = 1.

If ln(x) > −1, then θ̂ = −(1/ln(x)).

The cut-off point occurs when ln(x) = −1 or
(x1 · . . . xn)1/n = e−1.



Sec. 4.1.2[4.1.1]: Nonparametric Estimates

Given X1, . . .Xn iid rv’s from an unknown rv X , the best
estimate of X is the empirical distribution. This is the discrete
rv with values X1, ...,Xn with each Xi equally likely. The cdf
FX (x) is estimated by the sample cdf F̂ (x) given by

F̂ (x) =
1

n
#{i : Xi ≤ x}.

In Chapter 5, we will return to this to describe the sense in
which F̂ approximates F .

For now we follow HMC, considering first the case of a
discrete rv X with known values but unknown probabilities.
For each value x of X we estimate fX (x) by the average
number of occurrences of x .



That is, define the function

Ix(t) =

{
1 if t = x ,

0 if t 6= x .

Thus, for any rv X , Ix(X ) is a Bern(p) rv with p = P(X = x).
We use the estimate

p̂(x)(X1, . . . ,Xn) =
1

n

n∑
i=1

Ix(Xi) =
1

n
#{i : Xi = x}.

Notice that E (p̂(x)) = P(X = x).



For a continuous rv with density f (x),

P(x − h < X < x + h) =
∫ x+h

x−h f (t)dt ≈ f (x)2h. Define

Ix ,h(t) =

{
1 if x − h < t < x + h,

0 otherwise.

Thus, for any rv X , Ix ,h(X ) is a Bern(p) rv with
p = P(x − h < X < x + h). We use the estimate

f̂ (x)(X1, . . . ,Xn) =
1

2nh

n∑
i=1

Ix ,h(Xi)

=
1

2nh
#{i : x − h < Xi < x + h}.

Notice that E (p̂(x)) = P(x − h < X < x + h)/2h ≈ f (x).



Sec. 4.2: Confidence Intervals

Returning to point estimation for pdf f (x ; θ) we follow HMC
Def. 4.2.1 defining a confidence interval using a pair of
statistics L(X1, . . . ,Xn) < U(X1, . . . ,Xn). When for every
parameter value θ, Pθ(L < θ < U) ≥ 1− α, we call (L,U) a
(1− α) · 100% confidence interval for θ.

Once the sample is drawn, we have the realized confidence
interval (`, u). This does not mean that the probability that θ
lies in (`, u) is at least 1− α. This makes no sense because θ
is a fixed, but unknown parameter. What it does mean is that
if θ lies outside the interval (`, u) then the sample was
anomalous, representing an event of probability less than α.

We will obtain confidence intervals by using a pivot variable, a
function of the estimator of θ as well as θ itself and which has
a known distribution. The confidence interval is obtained by
using some algebraic manipulation.



Suppose we have a known rv Z with mean 0 and variance 1.
Assume that we trying to estimate the mean µ and the
variance σ2 for an rv X with X ∼ σZ + µ. We use a sample of
iid’s Xi = σZi + µ. We have

X̄ = σZ̄ + µ, and so
√
n(X̄ − µ) = σ(

√
nZ̄ ).

Notice that E (
√
nZ̄ ) = 0 and Var(

√
nZ̄ ) = 1.

If Z is a normal rv, then all of the Zi ’s and
√
nZ̄ are standard

normals.

n∑
i=1

(Xi − X̄ )2 = σ2
n∑

i=1

(Zi − Z̄ )2



In the normal case, Student’s Theorem, HMC Theorem 3.6.1
says that

∑n
i=1(Zi − Z̄ )2 has a χ2(n − 1) distribution and is

independent of Z̄ . Furthermore,

√
n(X̄ − µ)√

(
∑n

i=1(Xi − X̄ )2)/(n − 1)
=

√
nZ̄√

(
∑n

i=1(Zi − Z̄ )2)/(n − 1)

has a so-called Student’s t-distribution with n − 1 degrees of
freedom.

The important thing is that the expression on the left, except
for the unknown µ can be computed from the data. The
expression on the right has a known distribution.



In HMC Example 4.2.1, the t-distribution is used to obtain a
confidence interval for µ.

With T =
√
nZ̄√

(
∑n

i=1(Zi−Z̄)2)/(n−1)
we use the table to choose

tα/2,n−1 so that P(T < tα/2,n−1) = 1− α/2 and therefore
P(T < −tα/2,n−1) = α/2. So

1− α = P(−tα/2,n−1 < T < tα/2,n−1) =

P(−tα/2,n−1 <
√
n(X̄−µ)√

(
∑n

i=1(Xi−X̄ )2)/(n−1)
< tα/2,n−1)

= P(X̄ − tα/2,n−1S/
√
n < µ < X̄ + tα/2,n−1S/

√
n).

That is, L = X̄ − tα/2,n−1S/
√
n,U = X̄ + tα/2,n−1S/

√
n.



To get a confidence interval for σ2 we use the previous
equation.

(n − 1)S2

σ2
=

1

σ2

n∑
i=1

(Xi − X̄ )2 =
n∑

i=1

(Zi − Z̄ )2 = W

Again, the expression on the left, except for the unknown σ2

can be computed from the data. The expression on the right
has a known distribution, namely χ2(n − 1).

Given α we choose qα/2,Qα/2 so that

P(W ≤ qα/2) = P(W ≥ Qα/2) = α/2

and so P(qα/2 < W < Qα/2)) = 1− α.

That is,



P(qα/2 <
(n − 1)S2

σ2
< Qα/2) =

P(qα/2 <
1

σ2

n∑
i=1

(Xi − X̄ )2 < Qα/2) = 1− α.

Our (1− α)100% confidence interval for σ2 is

(
(n − 1)s2

Qα/2
,

(n − 1)s2

qα/2
).



For most of our examples we will use a large sample confidence
interval which uses that Central Limit Theorem. We will be
looking at the CLT in detail in Chapter 5. If X1,X2, . . . is an
infinite iid sequence from a distribution with mean µ and
variance σ2, then the rv’s Wn =

√
nZ̄ = (X̄ − µ)/(σ/

√
n) all

have mean 0 and variance 1. The Central Limit Theorem says
that as n→∞ the cdf of Wn tends to Φ the cdf of the
N (0, 1) standard normal distribution. In addition the sample
variance S2 approaches σ2 and so the cdf of
Yn = (X̄ − µ)/(S/

√
n) approaches Φ as well.

We obtain as an approximation, a large sample confidence
interval by pretending that Wn ∼ N (0, 1) or Yn ∼ N (0, 1)
which is approximately true when n is large.



This is illustrated by Example 4.2.2.

Yn = (X̄ − µ)/(S/
√
n) has cdf approximately that of the

standard normal Z with cdf Φ.

Given α < 1 we define zα/2 by Φ(zα/2) = 1− α/2 so that
Φ(−zα/2) = α/2. That is, P(−zα/2 < Z < zα/2) = 1− α.
Hence, it is approximately true that

P(−zα/2 < (X̄ − µ)/(S/
√
n) < zα/2) = 1− α.

So our large sample (1− α)100% confidence interval is
(x̄ − zα/2s/

√
n, x̄ + zα/2s/

√
n), using the realized values.



In Example 4.2.3, the Xi ’s are Bern(p) rvs with µ = p and
σ2 = p(1− p). So X̄ = p̂ the ratio of the number of successes
to the number of trials.

The Central Limit Theorem applies to

Wn = (X̄ − µ)/(σ/
√
n) = (p̂ − p)/

√
p(1− p)/n.

Again we replace
√
p(1− p) by the sample value

√
p̂(1− p̂).

So our large sample (1− α)100% confidence interval is

(p̂ − zα/2

√
p̂(1− p̂)/n, p̂ + zα/2

√
p̂(1− p̂)/n.



Exercise 4.2.3[4.2.4]: (a) If X ∼ Γ(1, θ) then 2X
θ
∼ Γ(1, 2). By

the additive property of the Gamma distribution
2
θ

∑n
i=1 Xi ∼ Γ(n, 2) = Γ(2n/2, 2) which is a χ2 distribution

with r = 2n.

(b) With F2n(x) the cdf for the χ2 distribution with 2n degrees
of freedom, we let qα/2,Qα/2 be defined by F2n(qα/2) = α/2
and 1− F2n(Qα/2) = α/2. So

P(qα/2 <
2nX̄

θ
< Qα/2) = 1− α.

The 1− α confidence interval is then given by ( 2nx̄
Qα/2

, 2nx̄
qα/2

).

(c) The large sample confidence interval is given by
(x̄ − zα/2s/

√
n, x̄ + zα/2s/

√
n).

Complete the numerical comparison for homework by using the
tables.



Example 4.4.7: Confidence Interval for the Median

We use order statistics for the median.

For a continuous rv with unknown cdf F , we want a
confidence interval for the median ξ.5 defined by F (ξ.5) = 1

2
.

Thus, the event X < ξ.5 has probability 1
2
.

For a Bin(n, 1
2
) rv S , let k = kα/2 be the largest positive

integer such that FS(k) = P(S ≤ k) ≤ α/2. By symmetry,
P(S ≥ n − k) ≤ α/2.

For a sample X1, . . . ,Xn the order statistics are
Y1 < Y2 · · · < Yn.

The indicators IXi<ξ.5 are independent Bern( 1
2
) rv’s.



Yk+1 ≥ ξ.5 when at most k among the Xi ’s are less than ξ.5.
Yn−k ≤ ξ.5 when at most k among the Xi ’s are greater than or
equal to ξ.5.

P(Yk+1 ≥ ξ.5) = P(Yn−k ≤ ξ.5) = FS(k).

So P(Yk+1 < ξ.5 < Yn−k) ≥ 1− α.

The confidence interval is (yk+1, yn−k).



Sec. 4.5: Alternative Hypotheses

We consider an rv with pdf or pmf given by f (x ; θ) where the
parameter θ varies in a parameter space Ω. The set Ω is
partitioned into two sets ω0 and ω1. That is, these sets are
disjoint and with union all of Ω.

We wish to decide whether the true parameter θ∗ lies in ω0 or
ω1.

H0 - The Null Hypothesis is θ∗ ∈ ω0. Often ω0 consists of a
single value θ0 in which case the null hypothesis is θ∗ = θ0.

H1 - The Alternative Hypothesis is θ∗ ∈ ω1.

We design a statistical procedure to decide between the two
hypotheses by using a sample X1, . . . ,Xn.



Letting Sn denote the space of possible sample values, we use
for a test a subset C ⊂ Sn which we call the critical region
and we use the decision rule:

Reject H0 (Accept H1) when (X1, . . . ,Xn) ∈ C .

Retain H0 (Reject H1) when (X1, . . . ,Xn) ∈ C c .

There are two kinds of errors which can occur. I find it helpful
to use medical terminology so that θ∗ ∈ ω0 is a negative result
(In medicine a negative result for a test is good news).

Type I error - False Positive : In fact θ∗ ∈ ω0 but we reject
the null hypothesis.

Type II error - False Negative : We accept the null
hypothesis despite the fact that θ∗ really lies in ω1.



There is a trade-off between the two sorts of errors. For a
particular critical region C we define the size or the
significance of C to be

α = max
θ∈ω0

Pθ((X1, . . . ,Xn) ∈ C ).

So in the case when ω0 contains a single value θ0, the size is
Pθ0((X1, . . . ,Xn) ∈ C ). So this is then the probability of a
Type I error when we use C for our decision.

For θ ∈ ω1 we want to maximize

1− Pθ(Type II error) = Pθ((X1, . . . ,Xn) ∈ C ).

The set ω1 usually contains more than one alternative. We
define the power function of the critical region C by

γC (θ) = Pθ((X1, . . . ,Xn) ∈ C ) θ ∈ ω1.

We look at HMC Examples 4.5.2, 4.5.3, and 4.5.4.



Example 4.5.2: We are considering the Bernoulli p family
Bern(p). The null hypothesis is H0 : p = p0 and the
alternative is H1 : p < p0.

Given a sample X1, . . . ,Xn, the sample mean 1
n

∑n
i=1 Xi = X̄

is the MLE estimate for the mean p. Intuitively, if X̄ is small
relative to p0 then we would reject H0 and accept otherwise.

Let S =
∑n

i=1 Xi . This is a Bin(n, p) rv. We choose a fixed k
so that we reject if S ≤ k . That is, the critical region is

Ck = {S ≤ k}.



Compare with a confidence interval for the mean µ of an
N (µ, σ2) distribution with the variance known.

X̄ − µ
σ/
√
n

= Z

is a standard normal and so our confidence interval is of the
form

(X̄ − zσ/
√
n, X̄ + zσ/

√
n).

We choose z so that, given α

P(−z < X̄ − µ
σ/
√
n
< z) = P(−z < Z < z) = 1− α.



Similarly, we choose k so that the size of the critical region Ck

has size α, that is, Pp0(Ck) = α.

Since S is a Bin(n, p0) rv, we want to choose k so that
Fn,p0(k) = α, where Fn,p0 is the cdf of a Bin(n, p0)
distribution.

The power function is given by

γp(Ck) = Pp(Ck) = Pp(S ≤ k) = Fn,p(k).

Because the distribution is discrete we choose k so that
Fn,p0(k) is as large as possible and at most α.



For each fixed k , the power function is a decreasing function
of p.

Proof: Let p < p1 so that p1 = p + ε with 0 < ε ≤ 1− p.
That is, 0 < ε/(1− p) ≤ 1.

If X ∼ Bern(p),W ∼ Bern(ε/(1− p)) with X and W
independent, then Y = X + (1− X )W ∼ Bern(p1). To see
this, observe that the range of Y is {0, 1} and so it is
Bernoulli. Since independence implies

E (Y ) = E (X )+E (1−X )·E (Y ) = p+(1−p)·[ε/(1−p)] = p1,

it follows that Y ∼ Bern(p1). Notice that Y ≥ X .

If X1, . . . ,Xn are iid Bern(p) rv’s and W1, . . . ,Wn are iid
Bern(ε/(1− p)) rv’s with all the Xi ’s independent of the Wi ’s,
then with Yi = Xi + (1− Xi)Wi we get Y1, . . . ,Yn iid
Bern(p1) rv’s with Xi ≤ Yi for all i . So for any k ,

P(
n∑

i=1

Yi ≤ k) ≤ P(
n∑

i=1

Xi ≤ k).



Example 4.6.3: If n is large then S = nX̄ is Bin(n, p0) and

X̄ − p0√
p0(1− p0)/n

= Z0

is approximately a standard normal. If, with α < 1
2

and we
choose zα so that Φ(zα) = 1− α then Φ(−zα) = α. We can
use the critical region

Cα = { X̄ − p0√
p0(1− p0)/n

≤ −zα}

= {X̄ ≤ p0 − zα ·
√

p0(1− p0)/n}
= {S ≤ np0 − zα ·

√
np0(1− p0)}.



Example 4.5.3: This extends what we just did. We suppose
that X has a finite mean µ and a finite variance σ2. We want
to test the simple hypothesis H0 : µ = µ0 against the
composite hypothesis H1 : µ > µ0. As usual, we use a sample
X1, . . . ,Xn.

The CLT says that X̄−µ
S/
√
n

= Z is approximately a standard

normal. Notice that here S2 is the sample variance. Given α
we choose zα so that Φ(zα) = 1− α. That is, the tail above
zα has area α. We use as our critical region

Cα = { X̄ − µ0

S/
√
n
≥ zα} = {X̄ ≥ µ0 + zαS/

√
n}.

If we actually know the variance σ2 then we would use the true
variance σ instead of the sample variance S . We can then
compute the approximate power function, formula (4.5.12) in
HMC.



γ(µ) = Pµ(X̄ ≥ µ0 + zασ/
√
n)

= Pµ(
X̄ − µ
σ/
√
n
≥ µ0 − µ

σ/
√
n

+ zα)

≈ 1− Φ(zα −
√
n(µ− µ0)

σ
)

= Φ(−zα +

√
n(µ− µ0)

σ
).

The function γ is increasing in µ.



Example 4.5.4: When X is known to be normal, then for any

n, X̄−µ
S/
√
n

= T has a t− distribution with n − 1 degrees of

freedom. We use the above critical region but with zα
replaced by tα,n−1 again chosen so that the tail above tα,n−1

has area α, but this time with the Student’s t pdf instead of
the standard normal pdf.



Sec. 4.6: Two-Sided Tests and p-Values

For a test with ω0 = θ0, against a set of alternatives ω1,
suppose we use as our test C = {Y ≤ c} for
Y = u(X1, . . . ,Xn). That is, we reject if the realized value
y < c .

For a test of size α, we choose c so that
α = Pθ0(Y ≤ c) = FY (c ; θ0).

The p-value is Pθ0(Y ≤ y) = FY (y ; θ0) where y is the
observed value, i.e. the realization of Y after the sample is
taken. See HMC Remark 4.6.1.

In the continuous rv case, FY is an increasing function. So
FY (y ; θ0) ≤ α = FY (c ; θ0) is equivalent to y ≤ c . Thus, we
need not compute c . We reject when the p-value is less than
α.



For two sided tests we use the normal approximation as in
HMC Examples 4.6.1 and 4.6.3.
Example 4.6.1: This is a variation of Example 4.5.3. We
suppose that X has a finite mean µ and a finite variance σ2.
We want to test the simple hypothesis H0 : µ = µ0 against the
composite hypothesis H1 : µ 6= µ0. As usual, we use a sample
X1, . . . ,Xn.

For the one-sided test with H1 : µ > µ0 we rejected when the
sample mean X̄ is above a certain level. By analogy, we choose
h < µ0 < k and reject when either X̄ < h or X̄ > k . That is,

C = {X̄ ≤ h} ∪ {X̄ ≥ k}
α = Pµ0(C ) = Pµ0(X̄ ≤ h) + Pµ0(X̄ ≥ k).

As before the CLT says that X̄−µ
S/
√
n

= Z is approximately a

standard normal. With zα/2 chosen so that
Φ(−zα/2) = 1− Φ(zα/2) = α/2 we use



Cα = {| X̄ − µ0

S/
√
n
| ≥ zα/2} =

{X̄ ≤ µ0 − zα/2S/
√
n} ∪ {X̄ ≥ µ0 + zα/2S/

√
n}

Notice that

C c
α = {X̄ : µ0 − zα/2S/

√
n < X̄ < µ0 + zα/2S/

√
n}

= {X̄ : X̄ − zα/2S/
√
n < µ0 < X̄ + zα/2S/

√
n}

That is, we accept the null-hypothesis H0 when µ0 lies in the
(1− α)100% confidence interval.



If we know what the variance σ2 equals, or approximately
equals, then we can substitute σ for S to compute the
approximate power function

γ(µ) = Pµ(X̄ ≤ µ0 − zα/2σ/
√
n}) + Pµ(X̄ ≥ µ0 + zα/2σ/

√
n})

≈ Φ(
µ0 − µ
σ/
√
n
− zα/2) + (1− Φ(

µ0 − µ
σ/
√
n

+ zα/2)),

because this time it is X̄−µ
σ/
√
n

which is approximately an N (0, 1)
rv.



If X is normal then assuming H0, then X̄−µ0

S/
√
n

has a t−
distribution with n − 1 degrees of freedom and we can use
tα/2,n−1 instead of zα/2 to get a more accurate test.

Example 4.6.3 (again): We consider X to be Bern(p) with
parameter p. We write p̂ for the sample mean X̄ because it is
the unbiased estimate for the mean p.

We observed that, assuming H0

p̂ − p0√
p0(1− p0)/n

= Z0

is approximately normal for n large. So we used Z0 ≤ −zα as a
test for H0 : p = p0 against H1 : p < p0.

For any p,
p̂ − p√

p̂(1− p̂)/n
= Zp

is approximately normal for n large and we can use Zp0 ≤ −zα
as a test for H0 : p = p0 against H1 : p < p0.



For a two sided test, we can use C = {|Zp0| ≥ zα/2} as a
critical region to test for H0 : p = p0 against H1 : p 6= p0.

Thus, we accept H0 using this test, when the results lie in the
complementary region

C c = {p̂ : p0 − zα/2

√
p̂(1− p̂)/n < p̂ < p0 + zα/2

√
p̂(1− p̂)/n}

= {p̂ : p̂ − zα/2

√
p̂(1− p̂)/n < p0 < p̂ + zα/2

√
p̂(1− p̂)/n}

Again, this is equivalent to p0 lying in the (1− α)100%
confidence interval.



Just a quick aside about the variance estimate.
Recall that if X ∼ Bern(p) then E (X ) = p and
Var(X ) = p(1− p). p̂ = X̄ = 1

n

∑n
i=1 Xi is the MLE estimate

for p and it is unbiased. It follows that the MLE estimate for
the variance is p̂(1− p̂). Notice that

1

n

n∑
i=1

(Xi − X̄ )2 =
1

n

n∑
i=1

X 2
i − X̄ 2 = X̄ − X̄ 2 = p̂(1− p̂),

because X 2
i = Xi for all i .

Thus, p̂(1− p̂) = n−1
n
S2 where S2 = 1

n−1

∑n
i=1(Xi − X̄ )2 is

the sample variance.



For a randomized test we use an additional rv Y independent
of the rv of the test and with pdf or pmf fY (y) for y in the
support SY .

Notice that fY does not depend on θ and so the joint
distribution is

fX,Y (x) = f (x1; θ) · . . . f (xn; θ)fY (y).

Usually Y ∼ Bern(p), i.e. it is a Bernoulli rv.

The critical region C ⊂ Sn × SY and we reject H0 when
(x, y) ∈ C .

As before, the size is maxθ∈ω0 Pθ(C ) and for θ ∈ ω1 the power
is

γC (θ) = Pθ(C ).



Sec. 8.1: Most Powerful Simple Tests

In this section we consider a simple test for a family f (x ; θ) of
pdf’s or pmf’s. That is, the simple null hypothesis H0 : θ = θ0

against the simple alternative H1 : θ = θ1.

The samples X = X1, . . . ,Xn lie in Sn where S is the support
of the family of rv’s. We are assuming that the support does
not depend on θ. A critical region is a subset of Sn so that we
reject H0 when X ∈ C and accept it when X ∈ C c .

For a critical region C , the size or significance α = Pθ0(C ), the
probability of a Type I error, and the power of the test is
γC (θ1) = Pθ1(C ), the probability of correctly rejecting the null
hypothesis. That is, that the power is 1 minus the probability
of a Type II error.



HMC Definition 8.1.1: A critical region C of size α is a best
critical region of size α if, whenever A is a critical region of
size α,

Pθ1(C ) ≥ Pθ1(A).

That is, the power of the region C is the maximum power
possible for a critical region of size α.

We use the likelihood function L(θ)

L(θ; x) = L(θ; x1, . . . , xn) =
n∏

i=1

f (xi ; θ)

Since θ0 and θ1 are known values, we can compute

Λ(θ0, θ1; x) =
L(θ0; x)

L(θ1; x)

and use it to define a critical region.



Neyman-Pearson Theorem

HMC Theorem 8.1.1: (Neyman-Pearson Theorem) If a
subset C of the sample space satisfies:

I Pθ0(C ) = α;

I Λ(θ0, θ1; x) ≤ k for all x ∈ C ;

I Λ(θ0, θ1; x) ≥ k for all x ∈ C c ;

for some positive constant k , then C is a best critical region of
size α.

Proof: We will temporarily write L(θ;A) for
∫
A
L(θ; x)dx.

This is just alternate notation for Pθ(A). So, for example,



L(θ;C ) = L(θ;Ac ∩ C ) + L(θ;A ∩ C ).

L(θ;A) = L(θ;A ∩ C c) + L(θ;A ∩ C ),

Subtracting and cancelling the common terms we see that for
any θ.

L(θ;C )− L(θ;A) = L(θ;Ac ∩ C )− L(θ;A ∩ C c)



If A is any other critical region of size α we want to show

L(θ1;C )− L(θ1;A) ≥ 0.

Because of the assumptions about C and C c , we have

L(θ1;Ac ∩ C ) ≥ k−1L(θ0;Ac ∩ C ),

−L(θ1;A ∩ C c) ≥ −k−1L(θ0;A ∩ C c).

L(θ1;C )− L(θ1;A) = L(θ1;Ac ∩ C )− L(θ1;A ∩ C c) ≥
k−1[L(θ0;Ac ∩ C )− L(θ0;A ∩ C c)] = k−1[L(θ0;C )− L(θ0;A)].

Because C and A are critical regions of size α,
L(θ0;C ) = L(θ0;A) = α. So L(θ1;C )− L(θ1;A) ≥ 0.



The Neyman-Pearson Theorem works with the same proof
with C and A randomized tests. From that we get

HMC Corollary 8.1.1: If C is a best critical region of size α for
H0 : θ = θ0 against H1 : θ = θ1 , then Pθ1(C ) ≥ α. That is,
the power is greater than or equal to the size.

Proof: We compare C with the trivial randomized test which
uses Y ∼ Bern(α), and we use A = {Y = 1}. So the power
equals the size for this test because Pθ(A) = α for all θ.

By the Neyman-Pearson Theorem Pθ1(C ) ≥ Pθ1(A) = α.



Here θ0 and θ1 are known parameter values. So Λ(θ0, θ1; x) is
a statistic and so for any k we can define the critical region
Ck = {Λ(θ0, θ1; x) ≤ k}. The Neyman-Pearson Theorem then
says that Ck is a best critical region of its size

If we start with size α, then we choose k so that Pθ0(Ck) = α.

We can often express Λ in terms of a single statistic T (X)
separate from θ0 and θ1. In the next section we will see how
this is done in general.



Example 8.1.2 and 8.2.3: Let X ∼ N (θ, 1) so that

f (x ; θ) = 1√
2π
exp(− (x−θ)2

2
). We test for θ0 against θ1 > θ0.

Notice first that

(−
∑n

i=1(xi − θ0)2

2
)− (−

∑n
i=1(xi − θ1)2

2
) =

−(θ1 − θ0)
n∑

i=1

xi +
n

2
(θ2

1 − θ2
0).

So

Λ(θ0, θ1;X) = exp(−(θ1 − θ0)
n∑

i=1

Xi +
n

2
(θ2

1 − θ2
0))

= exp(n(θ1 − θ0)[−X̄ +
θ1 + θ0

2
]),

and we use

Ck = {Λ(θ0, θ1;X) ≤ k} = {X̄ ≥ θ1 + θ0

2
− ln k

n(θ1 − θ0)
}.



For any θ,
√
n(X̄ − θ) ∼ N (0, 1). So if 1−Φ(zα) = α, Ck has

size α with θ = θ0 when Ck = {X̄ ≥ θ0 + zα√
n
}. We can solve

this for k .

k = exp[(θ1 − θ0)[
(θ1 − θ0)

2
− zα√

n
].

However, we don’t need to determine k .
If θ = θ1, then X − θ1 ∼ N (0, 1) and so√
n(X̄ − θ1) ∼ N (0, 1). The power is given by

γCk
(θ1) = Pθ1(Ck) = P(

√
n(X̄ − θ1) ≥ zα −

√
n(θ1 − θ0))

= 1− Φ(zα −
√
n(θ1 − θ0)) ≥ 1− Φ(zα) = α.



As HMC remark, although we have been assuming that the
pdf’s or pmf’s come from a parameterized family, this need
not so For the Neyman-Pearson result. All that is needed is
that the two distributions of the two simple hypotheses have
the same range.
Example 8.1.3: Here the authors test the Poiss(1) pmf
H0 : f0(x) = e−1/x! against the Geom( 1

2
) H1 : (1

2
)x+1 for

x = 0, 1, . . . .

Λ(X) = (e−n/x1! . . . xn!)÷((1/2)n(1/2)x1+...xn) =
(2e−1)n2

∑
xi∏

xi !
.

For any k , Ck = {Λ ≤ k} defines a best critical region for
α = P0(Ck). However, as the book illustrates, computing
what the set C is can be complicated enough that this is really
only of theoretical interest.

In theory, theory and practice are the same thing,
but in practice, they are really not.



Remark 8.1.2: Recall that the size α = Pθ0(C ) is the
probability of a Type I error and β = Pθ1(C c) = 1− Pθ1(C ) is
the probability of a Type II error. With d0, d1 > 0, suppose
that we want to minimize d0α + d1β. In the notation of the
proof of the Neyman-Pearson Theorem, this is

d0

∫
C

L(θ0) + d1

∫
C c

L(θ1) = d1 +

∫
C

[d0L(θ0)− d1L(θ1)].

Clearly we minimize this by choosing

C = {d0L(θ0)− d1L(θ1) < 0} = {Λ <
d1

d0
}.

Given α this is the same as minimizing β, ie. maximizing the
power γC (θ1). That is, choosing a best critical region.
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