
Math 37600 PR (19364) Test 2 Solutions Fall 2024

In each of the following problems, X1, X2, . . . is an iid sequence of
random variables each with mean µ and variance σ2.

1- (i) State Chebyshev’s Inequality for a random variable Y with
mean µ and variance σ2.

(ii) Assume that the the rv’s in the iid sequence X1, X2 . . . , have the
pdf f(x, θ). Let Tn(X1, . . . , Xn) be a statistic for each n = 1, 2, . . . .

Define what it means for the sequence {Tn} to be a consistent se-
quence of estimators for θ.

(iii) Prove: If each Tn is an unbiased estimator and the variance of Tn
is σ2

n with the sequence {σ2
n} tending to zero, then {Tn} is a consistent

sequence of estimators for θ.

(i) P (|Y − µ| ≥ kσ) ≤ 1
k2

.

(ii) Limn→∞Pθ(|Tn − θ| ≥ ε) = 0 for any ε > 0. Equivalently, the
sequence {Tn} converges to the constant θ in probability (i.e. converges
(P)) with respect to the pdf f(x, θ).

(iii) Eθ(Tn) = θ because each Tn is unbiased. So for ε > 0

Pθ(|Tn − θ| ≥ ε) = Pθ(|Tn − θ| ≥ (
ε

σn
)σn) ≤ σ2

n

ε2
.

So the limit is 0 as n→∞.

2- Assume that the the rv’s in the iid sequence X1, X2 . . . , have the
uniform distribution Unif(0, θ).

(i) For each positive n we use X1, . . . , Xn as a sample. Explain why
Mn = max(X1, . . . , Xn) is the MLE for θ, and compute the MLE for
the mean µ of the distribution Unif(0, θ).

(ii) Compute the cdf, pdf and expected value of Mn. Show that Mn

is a biased estimate of θ.

(iii) Prove that the sequence {M1,M2, . . . } is a consistent estimator
sequence for θ (Hint: Use the cdf of Mn).

(i) L(θ;x1, . . . , xn) = 1/θn provided x1, . . . , xn ≤ θ and = 0 oth-
erwise. Because 1/θn is a decreasing function of θ, the maximum
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occurs at the smallest value with θ ≥ x1, . . . , xn, or, equivalently,
θ ≥ max(x1, . . . , xn). This means that the MLE is θ̂ = Mn.

The mean value µ of X is θ/2 and so the MLE for the mean is Mn/2
and not X̄.

(ii) The cdf is FX(t) = t
θ
, 0 < t < θ. Since Mn ≤ t if and only if

X1, . . . , Xn ≤ t, the cdf of Mn is FMn(t) = ( t
θ
)n, 0 < t < θ and so the

pdf of Mn is fMn(t) = F ′Mn
(t) = n t

n−1

θn
and so

Eθ(Mn) =

∫ θ

0

n
tn

θn
dt =

n

n+ 1
θ.

So the estimate is biased.

(iii) For 0 ≤ t ≤ θ, |t− θ| ≥ ε exactly when t ≤ θ− ε. So with θ and
ε > 0 fixed,

Pθ(|Mn − θ| ≥ ε) = Pθ(Mn ≤ θ − ε) = (
θ − ε
θ

)n.

Since 0 ≤ θ−ε
θ
< 1 this tends to 0 as n→∞.

Technically, this needs ε ≤ θ. If ε > θ, then Pθ(|Mn − θ| ≥ ε) = 0.

3- Assume that the the rv’s in the iid sequence X1, X2 . . . , have the
pdf f(x, θ) with f(x, θ) > 0 for all x ∈ R and θ ∈ Ω. That is, the
support of the rv’s is the entire real line. Let C be a subset of Rn.

We will use {X1, . . . , Xn} as a sample to choose between the Null
Hypothesis θ = θ0 and the Alternative Hypothesis θ = θ1.

(i) What does it mean to use C as a critical region for the choice?
That is, define what a critical region is.

(ii) Given α > 0, what does it mean to say that C has size α? That
is, define the size of a critical region.

(iii) If C has size α, what does it mean to say that C is a best critical
region of size α?

(i) We use C as a critical region when we choose by rejecting the
null hypothesis if the realized value (x1, . . . , xn) lies in C,and so choose
θ = θ1. Otherwise, we accept the null hypothesis, choosing θ = θ0.

(ii) The size of the critical region C is the probability of landing in C
assuming the null hypothesis is true. That is, it is Pθ0((X1, . . . , Xn) ∈
C). This is the probability of a Type I error. So size α means α =
Pθ0((X1, . . . , Xn) ∈ C).
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(iii) C is a best critical region when for any other critical region A
of size α, the power of C is greater than or equal to that of A. That is,

Pθ0((X1, . . . , Xn) ∈ C) = Pθ0((X1, . . . , Xn) ∈ A) =⇒

Pθ1((X1, . . . , Xn) ∈ C) ≥ Pθ1((X1, . . . , Xn) ∈ A).

4- (i) Recall that X̄n = 1
n

∑n
i=1 Xi is the sample mean. Compute the

expected value E(X̄n), the variance V ar(X̄n) and the second moment
E(X̄2

n) (Hint:For an rv Y how are the variance V ar(Y ) and the second
moment E(Y 2) related?).

(ii) Verify that X̄n is an unbiased estimate for the mean µ. Verify the
Weak Law of Large Numbers which says that the the sequence {X̄n}
converges in probability to the constant µ and so {X̄n} is a consistent
sequence of estimators for the mean µ (Hint: you may use the result
quoted in Problem 1).

(iii) The sample variance S2
n is given by the equivalent formulae:

S2
n =

1

n− 1
[
n∑
i=1

(Xi − X̄n)2] =
n

n− 1
[(

1

n

n∑
i=1

X2
i )− X̄2

n].

Note that one of the terms on the right is the sample mean for {X2
1 , . . . , X

2
n}.

Compute the expected value E(S2
n) and the limit in probability of

the sequence {S2
n}. Verify that S2

n is an unbiased estimate of σ2 and
that the sequence {S2

n} is a consistent estimate of σ2.

(iv) Explain why the sequence
√
S2
n is a consistent sequence of esti-

mators for the standard deviation σ. Use Jensen’s Inequality to show
that

√
S2
n is a biased estimator of σ, that is, it is not an unbiased

estimator.

(i) In general,

E(X̄n) = E(
1

n

n∑
i=1

Xi) =
1

n

n∑
i=1

E(Xi) =
1

n
nµ = µ.

Because the rv’s are independent

V ar(X̄n) = V ar(
1

n

n∑
i=1

Xi) =
1

n2

n∑
i=1

V ar(Xi) =
1

n2
nσ2 =

σ2

n
.
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In general, V ar(Y ) = E(Y 2) − E(Y )2 and so E(Y 2) = E(Y )2 +
V ar(Y ). So

E(X̄2
n) = µ2 +

σ2

n
.

(ii) Since E(X̄n) = µ, X̄n is an unbiased estimate for the mean.

Since the variance V ar(X̄n) = σ2

n
→ 0 as n → ∞, it follows from (iii)

of problem 1, that the sequence {X̄n} is consistent, and so {X̄n} → µ
in probability.

(iii)Because 1
n

∑n
i=1 X

2
i is the sample mean for the iid sequence {X2

i }
it follows that

E(
1

n

n∑
i=1

X2
i ) = E(X2) = E(X)2 + V ar(X) = µ2 + σ2

Furthermore,

{ 1

n

n∑
i=1

X2
i )} → E(

1

n

n∑
i=1

X2
i )) = µ2 + σ2 (P ).

Since, E(X̄2
n) = µ2 + σ2

n
it follows that

E(S2
n) =

n

n− 1
[E(

1

n

n∑
i=1

X2
i )−E(X̄2

n)] =
n

n− 1
[(µ2+σ2)−(µ2+

σ2

n
)] = σ2.

So S2
n is an unbiased estimate of σ2.

On the other hand, since the limit of {X̄n} = µ, it follows that the
limit of {X̄2

n} = µ2

Lim{S2
n} = Lim(

n

n− 1
)[Lim{ 1

n

n∑
i=1

X2
i }−Lim{X̄2

n}] = 1·[(µ2+σ2)−µ2)] = σ2,

and the sequence is consistent.

(iv) Because {S2
n} converges to σ2 (P), it follows that {

√
S2
n} con-

verges to σ (P) and so the sequence {
√
S2
n} is consistent for the stan-

dard deviation σ.
However, because the function x 7→

√
x is concave down (bent down)

for x > 0, it follows that for any non-constant, nonnegative rv Y , that√
E(Y ) > E(

√
Y ). Therefore,

σ =
√
E(S2

n) > E(
√
S2
n ),

and so the estimate
√
S2
n for σ is biased.
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5- Assume that the the rv’s in the iid sequence X1, X2 . . . , have the
pdf f(x, θ) = θxθ−1 with 0 < x < 1 and θ > 0.

(i) Compute the MLE for θ using the sample X1, . . . , Xn.

(ii) In choosing between the Null Hypothesis of θ0 = 1 against the
alternatives θ > 1, explain why Cn = {(x1, . . . , xn) : x1 · · · · · xn ≥ k} is
a UMP (= uniformly most powerful) critical region of its size for any
k between 0 and 1.

(iii) With n = 2, so that C2 = {(x1, x2) : x1 · x2 ≥ k}, compute the
size of the test.

(i) The likelihood function is given by

L(θ;x1, . . . , xn) = (θn)(x1 · . . . xn)θ−1

and so the log-likelihood is

`(θ;x1, . . . , xn) = n ln(θ) + (θ − 1) ln(x1 · . . . xn).

Taking the derivative with respect to θ and setting it equal to zero we
obtain θ̂ = −n/ ln(x1 · . . . xn). So that MLE is the statistic −n/ ln(X1 ·
. . . Xn).

(ii) The ratio Λ for the likelihoods for θ0 and an alternative θ1 is
given by

Λ = (
θ0
θ1

)n(x1 · . . . xn)θ0−θ1 .

If θ1 > θ0 then the exponent is negative and so g(θ0, θ1, t) = ( θ0
θ1

)ntθ0−θ1

with 0 < t < 1 is a decreasing function of t. This is the Monotone Like-
lihood Condition.

Hence, for any k with 0 < k < 1

x1 · . . . xn ≥ k ⇐⇒ Λ ≤ (
θ0
θ1

)nkθ0−θ1 .

So by the Neyman-Pearson Theorem, Ck = {(x1, . . . , xn) : x1 ·
. . . xn ≥ k} is a best critical region of its size for any choice of the
null hypothesis θ = θ0 against any alternative θ = θ1 with θ1 > θ0. So
it is a Uniformly Most Powerful Test.

(iii) With θ0 = 1, the density is uniform on [0, 1]. So with n = 2 and
0 < k < 1, the size is∫ 1

k

∫ 1

k/x1

dx2dx1 =

∫ 1

k

1− k

x1
dx1 = 1− k + k ln(k).


