Math 37600 PR (19364) Test 1 Solutions Fall 2024

- 1-(12 points) (a) For a bounded, nonconstant, rv X, which is larger $E(X)^2$ or $E(X^2)$? Justify your answer in detail.
- (b) Let X_1 and X_2 be independent -nonconstant- rv's with $E(X_1) = E(X_2) = 0$ and for i = 1, 2

$$E(X_i^2) = A_i, \quad E(X_i^3) = B_i, \quad E(X_i^4) = C_i.$$

Let $Z = X_1 + X_2$. Show that $E(Z^2) = A_1 + A_2$ and $E(Z^3) = B_1 + B_2$. Compute $E(Z^4)$ and show, in particular, that $E(Z^4) \neq C_1 + C_2$.

(a) The rv $(X - E(X))^2$ is non-negative and is not identically zero because X is not constant. Therefore

$$0 < E((X - E(X))^{2}) = E(X^{2} - 2E(X)X + E(X)^{2}) =$$
$$E(X^{2}) - 2E(X)E(X) + E(X)^{2} = E(X^{2}) - E(X)^{2}.$$

So $E(X^2) > E(X)^2$.

(b) By the binomial theorem, or direct multiplication:

$$E(Z^{2}) = E(X_{1}^{2} + 2X_{1}X_{2} + X_{2}^{2}) = A_{1} + 2E(X_{1}X_{2}) + A_{2},$$

$$E(Z^{3}) = E(X_{1}^{2} + 3X_{1}^{2}X_{2} + 3X_{1}X_{2}^{2} + X_{2}^{3}) = B_{1} + 3E(X_{1}^{2}X_{2}) + 3E(X_{1}X_{2}^{2}) + B_{2},$$

$$E(Z^{4}) = E(X_{1}^{4} + 4X_{1}^{3}X_{2} + 6X_{1}^{2}X_{2}^{2} + 4X_{1}X_{2}^{3} + X_{2}^{4})$$

$$= C_{1} + 4E(X_{1}^{3}X_{2}) + 6E(X_{1}^{2}X_{2}^{2}) + 4E(X_{1}X_{2}^{3}) + C_{2}.$$

By independence,

$$E(X_1X_2) = E(X_1)E(X_2) = 0, \quad E(X_1^2X_2) = E(X_1^2)E(X_2) = 0,$$

 $E(X_1X_2^2) = E(X_1)E(X_2^2) = 0,$

$$E(X_1^3 X_2) = E(X_1^3) E(X_2) = 0, \quad E(X_1 X_2^3) = E(X_1) E(X_2^3) = 0,$$

 $E(X_1^2 X_2^2) = E(X_1^2) E(X_2^2) = A_1 A_2.$

Because the rv's are nonconstant, $A_1, A_2 > 0$. Therefore,

$$E(Z^2) = A_1 + A_2, \quad E(Z^3) = B_1 + B_2,$$

$$E(Z^4) = C_1 + 6A_1A_2 + C_2 > C_1 + C_2.$$

- 2-(18 points) Let $X \sim Poiss(\lambda)$ so that the pmf of X is $f_X(n) = \frac{\lambda^n}{n!} \cdot e^{-\lambda}$.
- (a) Compute the MGF $E(e^{tX})$ and use it to compute E(X) and Var(X).
 - (b) Let X_1 and X_2 have Poisson distributions each with mean λ .
- (i) Show that if X_1 and X_2 are independent, then $X = X_1 + X_2$ has a Poisson distribution. Explain where independence is used.
- (ii) Show that if $X_1 = X_2$ then $X = X_1 + X_2$ does not have a Poisson distribution. Compute P(X = 1) and P(X = 2).

(a)
$$f_X(n) = e^{-\lambda} \frac{\lambda^n}{n!}$$
. So
$$M_X(t) = E(e^{tX}) = \sum_{k=0}^{\infty} e^{tk} e^{-\lambda} \frac{\lambda^k}{k!} = e^{-\lambda} \sum_{k=0}^{\infty} \frac{(\lambda e^t)^k}{k!}.$$

So $M_X(t) = exp(\lambda(e^t - 1)).$

(b) (i) If $X_1 \sim Poiss(\lambda_1), X_2 \sim Poiss(\lambda_2)$ then $M_X(t) = E(e^{tX_1 + tX_2}) = E(e^{tX_1}e^{tX_2})$. For independent rv's the expectation of the product is the product of the expectations and so

$$M_X(t) = M_{X_1}(t)M_{X_2}(t) = exp((\lambda_1 + \lambda_2)(e^t - 1)).$$

Because the MGF characterizes the distribution, $X \sim Poiss(\lambda_1 + \lambda_2)$.

Alternatively, $P(X=n)=\sum_{k=0}^n P(X_1=k\&X_2=n-k)$. By independence this equals

$$\sum_{k=0}^{n} e^{-\lambda_1} \frac{\lambda_1^k}{k!} e^{-\lambda_2} \frac{\lambda_1^{n-k}}{(n-k)!} = \frac{e^{-(\lambda_1 + \lambda_2)}}{n!} \sum_{k=0}^{n} \binom{n}{k} \lambda_1^k \lambda_2^{n-k}.$$

By the Binomial Theorem this equals $e^{-(\lambda_1+\lambda_2)}\frac{(\lambda_1+\lambda_2)^n}{n!}$. So $X \sim Poiss(\lambda_1+\lambda_2)$.

If
$$\lambda_1 = \lambda_2 = m$$
 then $X \sim Poiss(2\lambda)$.

(ii) If $X_1 = X_2$ then $X = 2X_1$ has range only the even nonnegative integers and so is not Poisson. In particular, P(X = 1) = 0 and $P(X = 2) = P(X_1 = 1) = \lambda e^{-\lambda}$.

3-(20 points) Let X, Y be rv's with joint density

 $f_{X,Y}(x,y) = C(x+y)dxdy$ for 0 < x,y < 1 and = 0 otherwise.

- (i) Compute the constant C so that this defines a joint pdf.
- (ii) Compute the marginal distributions for X and Y and determine whether X and Y are independent (justifying your answer).
 - (iii) Compute the conditional pdf of Y given X, i.e. $f_{Y|X}(y|x) dy$.
- (iv) For Z = XY, compute the survival function G_Z and the pdf of Z.
 - (v) Compute the expectations of X, Y and Z.
- (i), (ii) $f_X(x) = (\int_0^1 f_{X,Y}(x,y) dy) dx = (\int_0^1 x + y dy) dx = (x + \frac{1}{2}) dx$ for 0 < x < 1.

$$\int_0^1 \int_0^1 x + y dy dx = \int_0^1 x + \frac{1}{2} dx = 1$$

and so $f_{X,Y}$ is a pdf with C=1.

By symmetry, $Y \sim X$ and $f_Y(y) = y + \frac{1}{2}$.

They are not independent because the joint density is not the product of the marginals.

- (iii) $f_{Y|X}(y|x) dy = [f_{X,Y}(x,y) dydx] \div (f_X(x) dx) = \frac{x+y}{x+1/2} dy$, for 0 < x, y < 1.
 - (iv) For 0 < z < 1,

$$G_Z(z) = P(z \le Z) = \int_{x=z}^{x=1} \int_{y=z/x}^{y=1} (x+y) dy dx = \int_{x=z}^{x=1} x + \frac{1}{2} - z - \frac{z^2}{2x^2} dx = 1 - 2z + z^2 = (1-z)^2.$$

Hence, the pdf $f_Z(z) = -G'_Z(z) = 2(1-z)$.

Alternatively, but harder, one can transform, mapping $(x,y) \rightarrow (w,z)$ with w=x,z=xy. This maps the square with 0 < x,y < 1 to the triangle 0 < z < w < 1. The inverse map is $(w,z) \rightarrow (x,y)$ with x=w,y=z/w.

The Jacobian matrix is given by

$$\frac{\partial(x,y)}{\partial(w,z)} = \begin{pmatrix} \frac{\partial x}{\partial w} & \frac{\partial x}{\partial z} \\ \frac{\partial y}{\partial w} & \frac{\partial y}{\partial z} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ -z/w^2 & 1/w \end{pmatrix}.$$

So the Jacobian factor $\left|\frac{\partial(x,y)}{\partial(w,z)}\right| = 1/w$.

$$f_{W,Z}(w,z)dwdz = f_{X,Y}(x(w,z),y(w,z)) \left| \frac{\partial(x,y)}{\partial(w,z)} \right| dwdz$$
$$= (w+z/w) \cdot (1/w)dwdz = (1+z/w^2)dwdz$$

$$f_Z(z)dz = (\int_z^1 (1+z/w^2)dw)dz = (w-z/w)|_z^1 dz = 1-z-z+1 = 2(1-z).$$

(v)

$$E(X) = \int_0^1 x(x + \frac{1}{2})dx = \frac{1}{3} + \frac{1}{4} = \frac{7}{12}.$$
$$E(Z) = \int_0^1 z2(1 - z)dz = 1 - \frac{2}{3} = \frac{1}{3}.$$

Since $X \sim Y$, E(Y) = E(X).

4-(14 points) Assume that X_1, \ldots, X_5 are independent rv's each with distribution Unif(0,1). Let Y_1, \ldots, Y_5 be the order statistics.

- (i) Compute the densities $f_{Y_5}(y_5)dy_5$, $f_{Y_4}(y_4)dy_4$, and $f_{Y_4Y_5}(y_4, y_5)dy_4dy_5$,.
- (ii) Compute the expectations $E(Y_5)$ and $E(Y_4)$.

The pdf is f(x)dx = 1dx and the cdf is F(x) = x for 0 < x < 1.

(i)

$$f_{Y_5}(y_5)dy_5 = 5f(y_5)F(y_5)^4dy_5 = 5y_5^4dy_5,$$

$$f_{Y_4}(y_4)dy_4 = 5 \cdot 4f(y_4)F(y_4)^3(1 - F(y_4)) = 20y_4^3(1 - y_4)dy_4.$$

$$f_{Y_4Y_5}(y_4, y_5)dy_4dy_5 = 5 \cdot 4f(y_4)f(y_5)F(y_4)^3dy_4dy_5 = 20y_4^3dy_4dy_5 \text{ for } 0 < y_4 < y_5 < 1.$$

(ii)

$$E(Y_5) = \int_0^1 5y_5^5 dy_5 = \frac{5}{6}, \quad E(Y_4) = \int_0^1 20y_4^4 (1 - y_4) dy_4 = \frac{4}{6}.$$

5-(18 points) X_1, \ldots, X_n is a sample with distribution with exponential distribution $Exp(\theta)$ so that $f_X(x)$ $dx = \theta e^{-\theta x}$ dx, and it is known that $\theta \leq 1$. Hence, the range of the parameter we wish to estimate is $0 < \theta \leq 1$. Compute the MLE for θ .

$$f_X(x) = \theta e^{-\theta x}$$
 and so $L(\theta) = \theta^n exp(-\theta \sum_{i=1}^n x_i)$ and
$$\ell(\theta) = n \ln(\theta) - \theta \sum_{i=1}^n x_i$$

$$\frac{\partial \ell}{\partial \theta} = n\theta^{-1} - \sum_{i=1}^{n} x_i$$

So $\frac{\partial \ell}{\partial \theta} = 0$ when $\theta = n \div (\sum_{i=1}^n x_i)$ with $\frac{\partial^2 \ell}{\partial \theta^2} = -n\theta^{-2} < 0$. However, θ is restricted to interval (0,1]. If $n \div (\sum_{i=1}^n x_i) \le 1$ then this is the point at which maximum ℓ is maximum. If $n \div (\sum_{i=1}^n x_i) > 1$ then $\frac{\partial \ell}{\partial \theta} > 0$ and the maximum value occurs occurs at the right endpoint $\theta = 1$. Thus, the MLE is

$$\hat{\theta} = minimum(1, 1/\bar{X}).$$

- 6- (18 points) X_1, \ldots, X_n is a sample with distribution $Unif(0, \theta)$.
- (i) Compute the MLE $\hat{\theta}$ for θ and the MLE for the mean.
- (ii) Compute the cdf, pdf and mean of $M = \hat{\theta}$. Show that $\hat{\theta}$ is a biased estimate of θ .
- (iii) For $M=\hat{\theta},$ compute the range and the cdf of $Z=\frac{M}{\theta}$ and show that this is a known distribution, i.e. it does not depend on θ . Use it as a pivot variable to obtain a 90% confidence interval for θ (Hint: Compute q so that $P(Z \le q) = .1)$

(i) $L(\theta) = (1/\theta^n)$ for $0 \le x_1, \dots, x_n \le \theta$ and = 0 otherwise. Since $(1/\theta^n)$ is decreasing in θ , the MLE $\hat{\theta} = M = \max(X_1, \dots, X_n)$.

The mean value of X is $\theta/2$ and so the MLE for the mean is M/2 and not \bar{X} .

(ii) The cdf is $F_X(t) = \frac{t}{\theta}$, $0 < t < \theta$. Since $M \le t$ if and only if $X_1, \ldots, X_n \le t$, the cdf of M is $F_M(t) = (\frac{t}{\theta})^n$, $0 < t < \theta$ and so the pdf of M is $f_M(t) = F_M'(t) = n \frac{t^{n-1}}{\theta^n}$ and so

$$E(M) = \int_0^\theta n \frac{t^n}{\theta^n} dt = \frac{n}{n+1} \theta.$$

So the estimate is biased.

(iii) The range of M is $(0,\theta)$ and so the range of Z is (0,1). For $t \in (0,1)$, $F_Z(t) = F_M(t\theta) = F_X(t\theta)^n$. $F_X(x) = x/\theta$ for $0 < x < \theta$. So $F_Z(t) = t^n$. With $q = .1^{1/n}$, $P(Z \le q) = .1$ and so P(Z > q) = .9. That is, $P(\frac{M}{q} > \theta) = .9$. On the other hand, $P(\theta > M) = 1$. Thus, the 90% confidence interval is

$$(\max(x_1,\ldots,x_n),\max(x_1,\ldots,x_n)/.1^{1/n}).$$

Notice that as n tends to infinity, $.1^{1/n} < 1$ increases with limit 1, and so $1/.1^{1/n} > 1$ decreases with limit 1.