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Sec. 1.4

1.4.8: For a randomly chosen spring

P(1) = .30, P(Il) = .25, P(Ill) = .45. Let D be the event that
the chosen spring is defective.

P(D|I) = .01, P(D|!l) = .04, P(D|!Il) = .02.

(a) P(D) = P(D|1)P(1)+ P(D[INP(I)+ P(D|IINP(IIT) =
.003 + .01 + .009 = .022.

(b) P(1l|D) = P(D|I)P(Il) = P(D) = .01 = .022 = .45,
1.4.10: P(G) = 2,P(G) = L. P(C|G) = 2, P(C|G) = &.

So P(C):P(C|C1)P(C1)+P(C|C2)P(C2) %
P(G|C) = P(C|G)P(G) ~ P(C) = %-
P(G[C) =1- P(G[C).



Sec. 1.5, 1.6

1.5.5: Hypergeometric (a)fx(k) = (%) (53f’k) + (552) for
-0,1,...,5

(b) P(X < 1) = fx(0) + x(1).

1.5.6:
P(D1) = [} 2x/9dx =1/9, P(D;) = [} 2x/9 dx = 1—(4/9).



1.6.2: For k=1,...,10
C %-1-1 . 9-8...9-(k—-2) 1

fx (k) 10 10-9...(10—(k—1)) 10

Why is it % for all k7 Arrange the balls with the red ball first.
X = k if when the balls are rearranged with each of the 10!
rearrangements equally likely, the red ball is in the k™ place.
Instead of building the rearrangement by choosing a ball for
each place, choose a place for each ball. X = k if the place
chosen for the red ball is the k™ place. There are 10 equally
likely places for it and so P(X = k) = 5.



For the ten balls originally listed 1,2,...,10, let X1, X5,... be
the places in a rearrangement with all rearrangements equally
likely. So P(X; = i) = ;5. It is tempting to say

P(X> = k) = ¢, but that is wrong. What is true is:

1/9 for k # 1,

P(Xzzk’xlzi):{o for k = i

In fact P(X, = k) = 15 because if we don’t know what X; was
the places for ball 2 are all equally likely.



Observe the Law of Total Probability:

10
P(Xg—k): P(XQ—k|X1:I) P(X]_—I)
i=1
1 1 1 1
9 10 * 10 10

with the 0 where i = k. We will see this again when we look
at order statistics

1.69: Y=1when X =41and Y =0 when X =0. So

fr(1) = 5, 7(0) = 3.



Sec. 1.7

1.7.6: |[X| < lifand only if =1 < X < 1. X? <9 if and only
if -3 <X <3. .
(@) P(X|<1) = [}, Bdx =2 [ Sdx= L. P(X? <9) = 1.

—118

1.7.9 (b): If m is the median, then 1 = [™ 3x%dx. So

T =m® mis the cube root of 3.

2

1.7.12(b): Fx(x) =0for x < land Fx(x) = [, Hdt =1—1.

1.7.14: P(X > 3/4[X >1/2) = [, 2xdx + f11/2 Oxdx =
(7/16) = (3/4) = 7/12.



Sec. 1.8
1.8.7[1.8.6]:
E(A) = E(X(1— X)) = [, 3x(1 — x)x* dx = 3/20.
1.8.9[1.8.8]: (a) E(1/X) = [y (1/x)2xdx = 2.

(b) Fy(y) =0fory <1. Fory > 1, Y <y if and only if
X = (1/y).

Frly) = / [ =1 R =R =2

= [T y(2/y?)dy = 2.

1.8.12[1.8.11]: ( = [1x3(3x%)dx = 1/2.

(b)Y = X31/§ y if and onIy if X < y'/3,
Fy(y)= [y 3x%dx =y. fy(y) = 1. Uniform.



Sec. 1.9

1 9 1 = [ x(2/x3)dx = 2.
fl 2/x )dx Integral diverges. No variance.

1.9.4: The difference is the variance which is non-negative.

1.9.5: If ¢ = 0 then symmetry means that f(x) is an even
function. So xf(x) is an odd function and, if the integral
converges, [*° xf(x)dx = 0.

In general, if X has pdf fx(x) then Y = X — ¢ has pdf
fy(y) = fx(y + ¢). So fy is symmetric about 0 and E(Y) = 0.



Sec. 3.1

3.1.15[3.1.14]: X is Geom(p), fx(x) = pq*, with p = 3. For
any positive integer k, Gx(k) = P(X > k) = ¢~

So for x > k, P(X = x|X > k) = pg*~*. That is, the
conditional distribution of X — k assuming X > k, is the same
Geom(p) distribution as that of X.

3.1.27[3.1.23]: X is Geom(p) and so for any positive integer
k, Gx(K) = P(X > k) = ¢*.

P(X = k+j|X = k) = Gx(k +j) + Gx(k) = ¢ = Gx()).



Sec. 2.1

2.1.7[2.1.6]: X and Y are independent Exp(1)rv's. Suppose in
general the X and Y are independent continuous rv's, and
Z=X+Y. Forany z:

Fa(z) = / / N () dydx

X=0Q

_ / i (x)Fy (z — x)dx.

Differentiating with respect to z,
fz2(z) = Fy(z) = fx > fx(x)fy(z — x)dx.

X=—00



Here
fx(x) = e (x>0), fy(y) = e (y>0)

and = 0 otherwise.
So
fx(X)fy(z—x)=¢e* (x,z—x>0),

i.e. for 0 < x < z.

X=Z

oo = [ et = 0 <2)

=0

In terms of Gamma distributions, X, Y ~ Exp(1) and so
X,Y ~T(1,1). Since X and Y are independent,
X+Y ~T(21).



2.1.8[2.1.7]: For any z € (0, 1),
1—Fz(z) = Gz(z) = P(Z > 2)

/X 1/ Z/X)dydx—l—(z—zln( z)).

Differentiating with respect to z, fz(z) = —G%(z) = —In(2).

E(2) = /O ~zin(z)dz = —32[n(2) ~ 31ls = ;



Sec. 2.3

2.3.2: (a) fy(y)dy = cay*dy for 0 <y < 1. So
=6 fol y*dy = ¢/5. So ¢; = 5.
fxy (x]y)dx = cix/y?dx for 0 < x < y. So
1=c/y? [/ xdx =c1/2. So ¢ = 2.
(b) fx,y(x,y)dxdy = fxjy(x|y)dx - fy(y)dy = 10xy? for
O<x<y<l
fe(x)dx = [10x [ y2dyldx = 2x[1 — x%]. for 0 < x < 1.

1

() PE<X<ily=3)=2 (82" Exdx

(d) P(E < X < 1) =20 "7 (1 - x¥)dx.

NN



2.3.3: fx.y(x,y)dxdy = 21x?y3dxdy for 0 < x <y < 1.

=1 21
fx(x)dx = [21x2/ y3dyldx = Ixz(l — x*)dx.

y=x

E(X") = 241/0 x"2[1 — x*dx =
21 1 21
T3, 7—i—n]_( +n)(7+n)

4
So E(X) = % and Var(X) = 22 — (55)* = .036

X=y

fy(y)dy = 21[y3/ X2dx]dy = 7y°dy.

x=0



fxiy (x|y)dx = (21x%y)+(7y®)dx = 3x*/y’dx for0 < x <y.

EX7Y = y) = / " (3¢ )y dx

So Z=E(X|Y)=23Y. and

Var(X|Y) = [2 - (34) Y2 = 2y2

E(Z) = 3E(Y) — '~ £(X). and
Var(Z) = (2)?Var(Y) = .007.



Sec. 2.4, 2.5

2.4.2[2.5.2]: fx y(x,y) =2e > Ydxdy for 0 < x < y < 0.
From the shape of the region the pair is dependent.
y=00
fx(x)dx = 2e™| e Ydy]dx = 2 **dx.
y=x
x=y

fy(y)dy =2e7] e Xdx]dy =2e7’[1 —e™].

x=0

fx,y is not the product of the two marginals.



Sec. 2.2, 2.7

2.7.4: Xl = Yl,X2 = Y2 - Y17X3 = Y3 - Y2. Since
0<X1,X2,X3<O0,0< Yi< Y < Y3<OO.

X1 1 0 0 )41
X2 = -1 1 0 N %)
X3 0 —-11 Y3

So the determinant J = 1.

Favavs (Y1, v2, ¥3) dyidyadys =

fxixoxs (Y1, Y2 — Y1, ¥3 — ¥2) J dyrdyadys =

e e e dyidyydys = e dydyadys,
for 0<yp<y<ys <@



y3=00

friva(y1, y2) dyadys = | e ™ dys] dyidy, =

Y3=y2
e 2 dyidy, for 0<y; <y <00

Yi=y2
fro(y2) dy2 = | / e dy]dy, =
y1=0
yoe 2 dys for 0<y,<oo

As it is the sum of two independent Exp(1) variables,
Y, ~T(2,1).



Sec. 3.4

3.4.1: Use the change of variables u = —w.

3.4.6: With Z = £,

1 o 2 [ 2
E(|Z|):E/ |z|e % /?dz = \/;/0 ze % /2dz.

With substitution u = 22/2, [ ze #'/2dz = 1.



Sec. 4.4

4.15: (a) P(Y, = X;) = 1 = (=1t
(b) P(Yi=X,, Yo=X;) =2 — _ L

n! n(n—1)"

(c) No mean because the series is harmonic. No second
moment and hence no variance.

445 P(Y,>3)=1—-P(Ys<3)=1-Fx(3)*~
X ~ Exp(1) and so Fx(x) =1—e™*.
P(Y,>3)=1—(1-¢e3)*

4.4.6: With f(x) = 2x, the median £ = {5 is given by

fog 2xdx = 3. 50 £ = %



(a) For Xy, X5, X3 iid with any continuous pdf,
P(Y1>&5) = P(X > &5)° = (5)*.

(b) fv,v;(y2, y3)dyadys = 3 - 2Fx(y2)fx(y2) fx(y3)dy2dys. for
O0<y,<ys <1

fv,v, (Y2, y3)dyadys = 6y3 - 2y, - 2y3dyadys = 24y3ysdysdys.

fro(y2)dy2 = 3 2Fx(y2) fx (v2)(1 — Fx(y2))dy> = 12y5(1 — y3).

fv,(y3)dys = 3Fx(y3)*fx(y3)dys = 6y3.



o, 24
E(YZ) = 12}’2(1 Y2)d}’2 35
0

1
6 30
1
E(Y22):/0 12y3(1 — y3)dy> =

. 6 3
E(Y32) /6)’3d}’3 §:Z

y3=1 ry:=y3
Y2 Y3 / / 24y2 Y3 dy2 dy3



24-6 147144 3

3
Cov(Y,. Ys) = = — — > — 012.
ov(Y2, Y3) = g~ 355 245 245 0
1 24
Var( Y2) = 5 — (£)2 = .030.
3 6
Var(Y;) = i (=)? = .015.

Corr(Ya, Y3) = .012 + /030 - .015 = .57.

4427 P(Y1 <& < Y,)=1—[P({s < Y1) +
P(Yn<&s)]=1-2-27".

This is > .99 when —In(100) > In(2) — nIn(2). So when
n > In(200)/ In(2) = 7.64.



Sec. 4.1

4.1.1: (b) As in Example 4.1.1, § = X = 101.15.
(c) The median of the data is 1(53 + 58) = 55.5.
(

d) The median {5 for an Exp(0) is given by
3= JEle/Pdx =1 — e¥/%. So ¢ = #In(2). With
0 =101.15,¢ = 70.11.

4.1.2: (b)As in Example 4.1.3, 6 = X = 201. and

52 = 1(32, X2) — X? = 203.92.

—

So & = 1/293.92 = 17.14, (/o)

/6 =11.73.



4.1.3: (a) f(0,x) = e "% So

n

aaanwm:—w+Q:mm@—§]Mm)

i=1

Taking the derivative we obtain 6 = X.

Because Ey(X) = 6, the estimate is unbiased.

(b)f=X=095



4.1.8: The MLE is § = X = 2.13. So

e 79 = 253,
= e—993/3! = .191,
e~ 003 /51 = .043.

>
—~~

'—l
N

p(0) = e ¥ = 119,
p(2) = e 762/2 = 270, p(3)
p(4) = e 063 /a1 = 102, p(5) =



Sec. 4.2

4.2.2: x =101.1,n = 20 and
s = nﬁl[% S X2 — X?]=11121.7 So
s =105.5,s/y/n = 23.6.

The confidence interval is (101.1 — 23.6z,/»,101.1 4+ 23.62,/>)

With a = 5%, z,/» = 1.96. The interval has endpoints
101.1+41.2, i.e. (59.9,142.3).



4.2.3[4.2.4]: (a) If X ~T(1,0) then 2X /6 ~T(1,2) and
2511 Xi ~T(n,2) which is x(2n).

(b) Choose g" and Q" so that with W ~ x?(n),
P(W < ql)=P(W > Q) =a/2

The confidence interval for 0 is

(227 X/ @3 2570 Xi/ a3

(c) With 2n = 40 degrees of freedom,
G025 = 24.4, Q025 = 59.3. The confidence interval is given by

(40-101.1/59.3,40 - 101.1/24.4) = (68.2,165.7).



4.2.6[4.2.7]: zos = 1.65. We want 0zp5/1/n < 1.
n=(3-165) = 25.

4.2.15: Z025 — 1.96. We want O'Z.025/\/E S 0'/4-
n=(4-1.95) = 6L.

4.2.17: For Poisson the sample variance equals the sample

mean which is 3.4, and n = 200. zg5s = 1.65. The confidence
interval has endpoints

% +sz05/v/n=34+22 ie (3.18,3.62).



Sec. 45

453 fx:0)=06x""1, 0<x<1,0>1, C {(x1, x2) :
3 <xix}. [Recall that the MLE is max(l, In(x 7)1 So

x1=1 xp=1
= / / fg(Xl,XQ)dXQdX;[.
x1=3/4 J x2=3/4x1

The null hypothesis Hp is # = 1 which is uniform. So the size

x1=1 xo=1
o= / / doda = 1— (> — >In(>)) = 034,
x1=3/4 J x2=3/4x1 4 4 4

The power is

x1=1 xo=1
/ / 4X1X2dX2dX1 = [1 — ((§)2 — 9 In( ))] = .113.
X1 xo=3/4x1 4 3

=3/4



For general 6, the power function is:

x1=1 xo=1
/ / 02010y — 1—((3/4)°—0(3/4)’ In(3/4)).
x1=3/4 J xo=3/4x1



4.5.5: Recall the that MLE is X = 1(x + x).
L(2;x1,x) 1

(X1+X2)/2'

L(1;x, %) 4
So the critical region
C={(x1,x%):x1+x2<2In(2),0 < xq, x2 < c0}.
The independent Xi, X, are [(1,6) rv's and so
X1+ Xo ~T(2,0).

z=21In(2) 1 26
Py(C) = /z:O g% dz

u=2In(2)/0 21n(2
= / ve du=1+( nH( ) + l)e_(2'“2)/9.
u=0

With 6 = 2 this is the size .15. With 6 = 1 this is the power
40.



45.9: If Xi,...,X, is a sample from a Poiss(6) distribution
then Y = X; + - -- + X, ~ Poiss(nf).
With C = {(x1,...,%5) : Di_y xi < 2}, then

Py(C) = e ™(1+nf + (n§)2).

With n =12 and § = 1, the size is e75(25) = .062.
With n =12 and § = £, the power is e7*(13) = .238.
With n =12 and § = 1, the power is e3(8.5) = .423.




4.5.11: The cdf is Fx(0;x) = % for 0 < x < 6. With
Y = max(Xy,..., X,)

Fr(B:y) = Fx(Biy)" = (3)"

For the critical region C = {(x1,...,x,) 1y > c},
c

Py(C) = Fy(0;0) — Fy(f;c) = 1— (5)”

With § = 1 and size P;(C) = .05, ¢ = .95'/". Then the power
function is



Sec. 4.6

4.6.8: For a Bern() distribution we have a sample Xi, ..., X),.
Y =>"" , X; ~ Bin(n, 0) with mean nf and variance

nf(1 — 6). So the sample mean X = 1Y has mean 6 and
variance 6(1 — 6)/n.

For n large
Y —no X -0
Vni(1—0)  +/0(1—0)/n

has approximately a standard A/(0, 1) normal distribution.

0

The MLE for 6 is X which is an unbiased estimate.

To test Hp : 0 = 6 against Hy : 0 > 0, we use the critical
region C ={X > c} ={Y > nc}.

Given size a we choose ¢ so that Py,(C) =~ .



Using the normal approximation,we want C = {Zy, > z,}, or
equivalently,

{X > 0y + za\/00(1 — 6p))/n}, so that
c = 60 + z, (90(1 - 90))/!7

For 0 > 6, the power is given by the probability that Y > nc
when Y ~ Bin(n,#). Using the normal approximation this is
the probability that the standard normal is greater than

—<2__ That is,
6(1 9)/

o =) 0t
a0 a0

At least for # < % this is an increasing function of 6.



Finally, for X the realized value of X, the p-value is
Py, (X > X) or in the normal approximation

X — 6y

L= Bo(1 — 0o)/n

).

In our case, #y = .14 and with a sample of
n =590, x = 104/590 = .176. We use o = .01 so that
Z, = 2.33. We obtain ¢ = .173.

Since X > ¢, we reject Hy and accept H;.

The p-value is 1 — ®(2.54) = .006 which is less v = .01 as
expected.



Sec. 8.1

8.1.2, 8.1.3: (6o, 61;x) = (61/60) exp[— %52 D7, xi].

With 6y < 61 this is a decreasing function of Y (x) = >_7 | x;.
So we use for our test {Y(x) > c}.

The value ¢ is chosen so that Py, (Y > ¢) = a. Because
X ~T(1,0), Y ~T(n,0). Therefore,

Po(Y > ¢c) = 1—Fyy(c) = /oo (1/(n —1)10M)x"Le™/? dx

_ /OO (1/(n— 1))u"te ¥ du

/0

which is an increasing function of 6.



If 01 < 6o, then A(6p, 01; x) is an increasing function of Y and
so for our test we use {Y(x) < d}, with d chosen so that
PQD(Y S d) = Fy;go(d) = Q.

8.1.5: A(fo, 01;x) = (0o/01)"([Tr—y x:)P 1.

n

With 6y < 6 this is a decreasing function of Y(x) = []/_; x;.
So we use for our test {Y(x) > c}.

This is really the same problem as 8.1.2 and 8.1.3, because the
change of variable x = e™* converts this to fe~%t.



Sec. 8.2

8.2.1:
A(0o, 01; %) = (1 — 0o/1 — 61)"[0o(1 — 01)/61(1 — 6)]2==1%.

Because /(1 — 0) is increasing in 6,

[0o(1 — 61)/01(1 — 65)] > 1 when 6; < 6y and so this is an
increasing function of >"" | x;. So to test Hy : 0 = 6 against
Hi: 0 < 0y weuse {> I x <c}

For n =10, and ¢ =1, Y ~ Bin(10,6) and so the power is

Po(Y <1) = (1—0)°+100(1 - 0)° = (1 — 0)°(1 + 90)

The derivative is —906(1 — 6)® and so the function is
decreasing.

With 0 = 1/4 the size is (3/4)° - (13/4) = .24.



8.2.2: Testing 0 = 0 against 0 # 6y we use Y = max/_; X;
with Fy(x) = Fx(x)" = (x/6)".

Let C = {Y > 90} U {Y < 6(90}.
The power function is given by

1 for 8 < €y
’YC(Q) = (600/6)” for 600 < 0 < 00,
(e60/60)" + [1 — (60/6)"] for 6 > bo.

8.2.11: This was done for Exercise 8.1.5.



Sec. 1.10

1.10.2: If X > 0, then for any ¢ > 0, Markov's Inequality
implies

1
cu C

1.10.3: With E(X) =3 and E(X?) =13, u = 3,02 = 4.

5 4 21
_ — _ e > - ==
P(—2 < X <8)=P(|X —p| < 20) >1 % = 5%

1.10.7[1.10.6]: On (0, c0) the functions

1/x, —In(x) = In(1/x), x> are strictly convex functions. Apply
Jensen’s Inequality.



Sec. 5.1

5.1.3:

b

— — 0.
nPe2

€

P(I\Wo —pl =€) = P(IW, —p| = U_'Un) <

5.1.7[5.1.5]: Fory > 6, {Y, >y} ={X1,.... X, > y}.
Go(B:y) = Gx(0;y)" = e "0,

So P(Y,>0+¢)=e"—0.
That is, Y, — 6(P) and so Y, is consistent.



5.1.9[5.1.7]:
Taking the derivative we obtain the density
fy,(y;0) = ne "= for y > 6.

y=00 1 u=oo 1
E( Yn) = / nyefn(yfa)dy = —/ (u+n6)e*“du =0+—,
y=60 nJu=o n

using u = n(y — 0).

That is, Y, is biased.

T,=Y,— % is unbiased and also consistent.



Sec. 5.2

5.2.2: For x > 0, Gx(x) = [° e (49 dy = e~ (<=0,

Since {Y, > x} = {Xi,..., X, > x}, Gy,(x) = e "),
So Fy,(x) =1 — e "),

Fort>0,{Z, <t} ={Y, <L +0} So Fz(t)=1—e"".
For every n, Z, ~ Exp(1).

5.2.3:We assume that X has range (a, b) so that

Fx : (a,b) — (0,1) is a continuous increasing function.
Fyn(X) = Fx(X)n.



{Zy<th = {FY) 21—} = {Y, 2 Fi1- )}

o n

Falt) = 1= F(FH(1=1)) = 1-(1—)" » 1-e*

Therefore Z, — Z (D) with Z ~ Exp(1).

5.2.7: If X, ~T(n,B) then with {Z,} a sequence independent
[(1,08) rv's, then X, ~>"" | Z; and %X,, ~ Z,. By the Law of
Large Numbers, 1X, — E(Z;) = 5.
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