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Sec. 1.4

1.4.8: For a randomly chosen spring
P(I ) = .30,P(II ) = .25,P(III ) = .45. Let D be the event that
the chosen spring is defective.
P(D|I ) = .01,P(D|II ) = .04,P(D|III ) = .02.

(a) P(D) = P(D|I )P(I ) + P(D|II )P(II ) + P(D|III )P(III ) =
.003 + .01 + .009 = .022.

(b) P(II |D) = P(D|II )P(II )÷ P(D) = .01÷ .022 = .45.

1.4.10: P(C1) = 2
3
,P(C2) = 1

3
. P(C |C1) = 3

10
,P(C |C2) = 8

10
.

So P(C ) = P(C |C1)P(C1) + P(C |C2)P(C2) = 14
30
.

P(C1|C ) = P(C |C1)P(C1)÷ P(C ) = 6
14
.

P(C2|C ) = 1− P(C1|C ).



Sec. 1.5, 1.6

1.5.5: Hypergeometric (a)fX (k) =
(
13
k

)(
39
5−k

)
÷
(
52
5

)
for

k = 0, 1, . . . , 5.

(b) P(X ≤ 1) = fX (0) + fX (1).

1.5.6:
P(D1) =

∫ 1

0
2x/9 dx = 1/9,P(D2) =

∫ 3

2
2x/9 dx = 1−(4/9).



1.6.2: For k = 1, . . . , 10

fX (k) =
9k−1 · 1

10k
=

9 · 8 . . . (9− (k − 2))

10 · 9 . . . (10− (k − 1))
=

1

10
.

Why is it 1
10

for all k? Arrange the balls with the red ball first.
X = k if when the balls are rearranged with each of the 10!
rearrangements equally likely, the red ball is in the k th place.
Instead of building the rearrangement by choosing a ball for
each place, choose a place for each ball. X = k if the place
chosen for the red ball is the k th place. There are 10 equally
likely places for it and so P(X = k) = 1

10
.



For the ten balls originally listed 1, 2, . . . , 10, let X1,X2, . . . be
the places in a rearrangement with all rearrangements equally
likely. So P(X1 = i) = 1

10
. It is tempting to say

P(X2 = k) = 1
9
, but that is wrong. What is true is:

P(X2 = k |X1 = i) =

{
1/9 for k 6= i ,

0 for k = i .

In fact P(X2 = k) = 1
10

because if we don’t know what X1 was
the places for ball 2 are all equally likely.



Observe the Law of Total Probability:

P(X2 = k) =
10∑
i=1

P(X2 = k |X1 = i) · P(X1 = i)

= 9 · 1

9
· 1

10
+ 0 · 1

10
=

1

10
.

with the 0 where i = k . We will see this again when we look
at order statistics

1.6.9: Y = 1 when X = ±1 and Y = 0 when X = 0. So
fY (1) = 2

3
, fY (0) = 1

3
.



Sec. 1.7

1.7.6: |X | < 1 if and only if −1 < X < 1. X 2 < 9 if and only
if −3 < X < 3.
(a) P(|X | < 1) =

∫ 1

−1
x2

18
dx = 2

∫ 1

0
x2

18
dx = 1

27
. P(X 2 < 9) = 1.

1.7.9 (b): If m is the median, then 1
2

=
∫ m

0
3x2dx . So

1
2

= m3. m is the cube root of 1
2
.

1.7.12(b): FX (x) = 0 for x ≤ 1 and FX (x) =
∫ x

1
1
t2
dt = 1− 1

x
.

1.7.14: P(X ≥ 3/4|X ≥ 1/2) =
∫ 1

3/4
2xdx ÷

∫ 1

1/2
2xdx =

(7/16)÷ (3/4) = 7/12.



Sec. 1.8

1.8.7[1.8.6]:

E (A) = E (X (1− X )) =
∫ 1

0
3x(1− x)x2 dx = 3/20.

1.8.9[1.8.8]: (a) E (1/X ) =
∫ 1

0
(1/x)2xdx = 2.

(b) FY (y) = 0 for y ≤ 1. For y > 1, Y ≤ y if and only if
X ≥ (1/y).

FY (y) =

∫ 1

1/y

2xdx = 1− (1/y 2). fY (y) = F ′Y (y) = 2/y 3.

(c) E (Y ) =
∫∞
1

y(2/y 3)dy = 2.

1.8.12[1.8.11]: (a) E (X 3) =
∫ 1

0
x3(3x2)dx = 1/2.

(b) Y = X 3 ≤ y if and only if X ≤ y 1/3.

FY (y) =
∫ y1/3

0
3x2dx = y . fY (y) = 1. Uniform.



Sec. 1.9

1.9.1(c): E (X ) =
∫∞
1

x(2/x3)dx = 2.
E (X 2) =

∫∞
1

x2(2/x3)dx Integral diverges. No variance.

1.9.4: The difference is the variance which is non-negative.

1.9.5: If c = 0 then symmetry means that f (x) is an even
function. So xf (x) is an odd function and, if the integral
converges,

∫∞
−∞ xf (x)dx = 0.

In general, if X has pdf fX (x) then Y = X − c has pdf
fY (y) = fX (y + c). So fY is symmetric about 0 and E (Y ) = 0.



Sec. 3.1

3.1.15[3.1.14]: X is Geom(p), fX (x) = pqx , with p = 1
3
. For

any positive integer k , GX (k) = P(X ≥ k) = qk .

So for x ≥ k , P(X = x |X ≥ k) = pqx−k . That is, the
conditional distribution of X − k assuming X ≥ k , is the same
Geom(p) distribution as that of X .

3.1.27[3.1.23]: X is Geom(p) and so for any positive integer
k , GX (k) = P(X ≥ k) = qk .

P(X ≥ k + j |X ≥ k) = GX (k + j)÷ GX (k) = qj = GX (j).



Sec. 2.1

2.1.7[2.1.6]: X and Y are independent Exp(1)rv’s. Suppose in
general the X and Y are independent continuous rv’s, and
Z = X + Y . For any z :

FZ (z) = P(Z ≤ z) =

∫ x=∞

x=−∞

∫ y=z−x

y=−∞
fX (x)fY (y)dydx

=

∫ x=∞

x=−∞
fX (x)FY (z − x)dx .

Differentiating with respect to z ,
fZ (z) = F ′Z (z) =

∫ x=∞
x=−∞ fX (x)fY (z − x)dx .



Here

fX (x) = e−x (x > 0), fY (y) = e−y (y > 0)

and = 0 otherwise.
So

fX (x)fY (z − x) = e−z (x , z − x > 0),

i.e. for 0 < x < z .

fZ (z) =

∫ x=z

x=0

e−z dx = ze−z(0 < z).

In terms of Gamma distributions, X ,Y ∼ Exp(1) and so
X ,Y ∼ Γ(1, 1). Since X and Y are independent,
X + Y ∼ Γ(2, 1).



2.1.8[2.1.7]: For any z ∈ (0, 1),

1− FZ (z) = GZ (z) = P(Z ≥ z)

=

∫ x=1

x=z

∫ 1

y=(z/x)

dydx = 1− (z − z ln(z)).

Differentiating with respect to z , fZ (z) = −G ′Z (z) = − ln(z).

E (Z ) =

∫ 1

0

−z ln(z)dz = −1

2
z2[ln(z)− 1

2
]|10 =

1

4
.



Sec. 2.3

2.3.2: (a) fY (y)dy = c2y
4dy for 0 < y < 1. So

1 = c2
∫ 1

0
y 4dy = c2/5. So c2 = 5.

fX |Y (x |y)dx = c1x/y
2dx for 0 < x < y . So

1 = c1/y
2
∫ y

0
xdx = c1/2. So c1 = 2.

(b) fX ,Y (x , y)dxdy = fX |Y (x |y)dx · fY (y)dy = 10xy 2 for
0 < x < y < 1.

fX (x)dx = [10x
∫ y=1

y=x
y 2dy ]dx = 10

3
x [1− x3]. for 0 < x < 1.

(c) P(1
4
< X < 1

2
|Y = 5

8
) = 2 · (8

5
)2
∫ x= 1

2

x= 1
4

xdx .

(d) P(1
4
< X < 1

2
) = 10

3

∫ x= 1
2

x= 1
4

x(1− x3)dx .



2.3.3: fX ,Y (x , y)dxdy = 21x2y 3dxdy for 0 < x < y < 1.

fX (x)dx = [21x2
∫ y=1

y=x

y 3dy ]dx =
21

4
x2(1− x4)dx .

E (X n) =
21

4

∫ 1

0

xn+2[1− x4]dx =

21

4
[

1

3 + n
− 1

7 + n
] =

21

(3 + n)(7 + n)
.

So E (X ) = 21
32

and Var(X ) = 21
45
− (21

32
)2 = .036

fY (y)dy = 21[y 3

∫ x=y

x=0

x2dx ]dy = 7y 6dy .



E (Y n) = 7

∫ 1

0

y 6+ndy =
7

7 + n
.

So E (Y ) = 7
8

and Var(Y ) = 7
9
− (7

8
)2 = .012

fX |Y (x |y)dx = (21x2y 3)÷(7y 6)dx = 3x2/y 3dx for 0 < x < y .

E (X n|Y = y) =

∫ y

0

xn · (3x2/y 3)dx =
3

3 + n
yn.

So Z = E (X |Y ) = 3
4
Y . and

Var(X |Y ) = [3
5
− (3

4
)2]Y 2 = 3

80
Y 2.

E (Z ) = 3
4
E (Y ) = 21

32
= E (X ). and

Var(Z ) = (3
4
)2Var(Y ) = .007.



Sec. 2.4, 2.5

2.4.2[2.5.2]: fX ,Y (x , y) = 2e−x−ydxdy for 0 < x < y <∞.
From the shape of the region the pair is dependent.

fX (x)dx = 2e−x [

∫ y=∞

y=x

e−ydy ]dx = 2e−2xdx .

fY (y)dy = 2e−y [

∫ x=y

x=0

e−xdx ]dy = 2e−y [1− e−y ].

fX ,Y is not the product of the two marginals.



Sec. 2.2, 2.7

2.7.4: X1 = Y1,X2 = Y2 − Y1,X3 = Y3 − Y2. Since
0 < X1,X2,X3 <∞, 0 < Y1 < Y2 < Y3 <∞.x1

x2
x3

 =

 1 0 0
−1 1 0
0 −1 1

 ·
y1
y2
y3


So the determinant J = 1.

fY1Y2Y3(y1, y2, y3) dy1dy2dy3 =

fX1X2X3(y1, y2 − y1, y3 − y2) J dy1dy2dy3 =

e−y1 · e−y2+y1 · e−y3+y2 dy1dy2dy3 = e−y3 dy1dy2dy3,

for 0 < y1 < y2 < y3 <∞



fY1Y2(y1, y2) dy1dy2 = [

∫ y3=∞

y3=y2

e−y3 dy3] dy1dy2 =

e−y2 dy1dy2 for 0 < y1 < y2 <∞

fY2(y2) dy2 = [

∫ y1=y2

y1=0

e−y2 dy1]dy2 =

y2e
−y2 dy2 for 0 < y2 <∞

As it is the sum of two independent Exp(1) variables,
Y2 ∼ Γ(2, 1).



Sec. 3.4

3.4.1: Use the change of variables u = −w .

3.4.6: With Z = X−µ
σ

,

E (|Z |) =
1√
2π

∫ ∞
−∞
|z |e−z2/2dz =

√
2

π

∫ ∞
0

ze−z
2/2dz .

With substitution u = z2/2,
∫∞
0

ze−z
2/2dz = 1.



Sec. 4.4

4.1.5: (a) P(Y1 = X1) = 1
n

= (n−1)!
n!

.

(b) P(Y1 = Xn,Y2 = X1) = (n−2)!
n!

= 1
n(n−1) .

(c) No mean because the series is harmonic. No second
moment and hence no variance.

4.4.5: P(Y4 ≥ 3) = 1− P(Y4 < 3) = 1− FX (3)4.
X ∼ Exp(1) and so FX (x) = 1− e−x .
P(Y4 ≥ 3) = 1− (1− e−3)4.

4.4.6: With f (x) = 2x , the median ξ = ξ.5 is given by∫ ξ
0

2xdx = 1
2
. so ξ = 1√

2
.



(a) For X1,X2,X3 iid with any continuous pdf,
P(Y1 > ξ.5) = P(X > ξ.5)3 = (1

2
)3.

(b) fY2Y3(y2, y3)dy2dy3 = 3 · 2FX (y2)fX (y2)fX (y3)dy2dy3. for
0 < y2 < y3 < 1.

fY2Y3(y2, y3)dy2dy3 = 6y 2
2 · 2y2 · 2y3dy2dy3 = 24y 3

2 y3dy2dy3.

fY2(y2)dy2 = 3 · 2FX (y2)fX (y2)(1− FX (y2))dy2 = 12y 3
2 (1− y 2

2 ).

fY3(y3)dy3 = 3FX (y3)2fX (y3)dy3 = 6y 5
3 .



E (Y2) =

∫ 1

0

12y 4
2 (1− y 2

2 )dy2 =
24

35
.

E (Y3) =

∫ 1

0

6y 6
3dy3 =

6

7
=

30

35
.

E (Y 2
2 ) =

∫ 1

0

12y 5
2 (1− y 2

2 )dy2 =
1

2
.

E (Y 2
3 ) =

∫ 1

0

6y 7
3dy3 =

6

8
=

3

4
.

E (Y2Y3) =

∫ y3=1

y3=0

∫ y2=y3

y2=0

24y 4
2 y

2
3dy2dy3 =

3

5
.



Cov(Y2,Y3) =
3

5
− 24 · 6

35 · 7
=

147− 144

245
=

3

245
= .012.

Var(Y2) =
1

2
− (

24

35
)2 = .030.

Var(Y3) =
3

4
− (

6

7
)2 = .015.

Corr(Y2,Y3) = .012÷
√
.030 · .015 = .57.

4.4.27: P(Y1 < ξ.5 < Yn) = 1− [P(ξ.5 < Y1) +
P(Yn < ξ.5)] = 1− 2 · 2−n.

This is ≥ .99 when − ln(100) ≥ ln(2)− n ln(2). So when
n ≥ ln(200)/ ln(2) = 7.64.



Sec. 4.1

4.1.1: (b) As in Example 4.1.1, θ̂ = X̄ = 101.15.

(c) The median of the data is 1
2
(53 + 58) = 55.5.

(d) The median ξ.5 for an Exp(θ) is given by
1
2

=
∫ ξ
0

1
θ
e−x/θdx = 1− eξ/θ. So ξ = θ ln(2). With

θ̂ = 101.15, ξ̂ = 70.11.

4.1.2: (b)As in Example 4.1.3, θ̂ = X̄ = 201. and
σ̂2 = 1

n
(
∑

i X
2
i )− X̄ 2 = 293.92.

So σ̂ =
√

293.92 = 17.14, (̂µ/σ) = µ̂/σ̂ = 11.73.



4.1.3: (a) f (θ, x) = e−θ θ
x

x!
. So

`(θ; x1, . . . , xn) = −nθ + (
n∑

i=1

xi) ln(θ)−
n∑

i=1

ln(xi !).

Taking the derivative we obtain θ̂ = X̄ .

Because Eθ(X̄ ) = θ, the estimate is unbiased.

(b) θ̂ = X̄ = 9.5



4.1.8: The MLE is θ̂ = X̄ = 2.13. So

p̂(0) = e−θ̂ = .119, p̂(1) = e−θ̂θ̂ = .253,

p̂(2) = e−θ̂θ̂2/2 = .270, p̂(3) = e−θ̂θ̂3/3! = .191,

p̂(4) = e−θ̂θ̂3/4! = .102, p̂(5) = e−θ̂θ̂3/5! = .043.

p̂(≥ 6) = .022.



Sec. 4.2

4.2.2: x̄ = 101.1, n = 20 and
s2 = n

n−1 [ 1
n

∑
i X

2
i − X̄ 2] = 11121.7 So

s = 105.5, s/
√
n = 23.6.

The confidence interval is (101.1− 23.6zα/2, 101.1 + 23.6zα/2)

With α = 5%, zα/2 = 1.96. The interval has endpoints
101.1± 41.2, i.e. (59.9, 142.3).



4.2.3[4.2.4]: (a) If X ∼ Γ(1, θ) then 2X/θ ∼ Γ(1, 2) and
2
θ

∑n
i=1 Xi ∼ Γ(n, 2) which is χ2(2n).

(b) Choose qn
α and Qn

α so that with W ∼ χ2(n),
P(W < qn

α) = P(W > Qn
α) = α/2.

The confidence interval for θ is
(2
∑n

i=1 Xi/Q
2n
α , 2

∑n
i=1 Xi/q

2n
α ).

(c) With 2n = 40 degrees of freedom,
q.025 = 24.4,Q.025 = 59.3. The confidence interval is given by

(40 · 101.1/59.3, 40 · 101.1/24.4) = (68.2, 165.7).



4.2.6[4.2.7]: z.05 = 1.65. We want σz.05/
√
n ≤ 1.

n = (3 · 1.65)2 = 25.

4.2.15: z.025 = 1.96. We want σz.025/
√
n ≤ σ/4.

n = (4 · 1.95)2 = 61.

4.2.17: For Poisson the sample variance equals the sample
mean which is 3.4, and n = 200. z.05 = 1.65. The confidence
interval has endpoints

x̄ ± sz.05/
√
n = 3.4± .22 i.e. (3.18, 3.62).



Sec. 4.5

4.5.3: f (x : θ) = θxθ−1; 0 < x < 1, θ ≥ 1, C = {(x1, x2) :
3
4
≤ x1x2}. [Recall that the MLE is max(1, −2

ln(x1x2)
)]. So

Pθ(C ) =

∫ x1=1

x1=3/4

∫ x2=1

x2=3/4x1

fθ(x1, x2)dx2dx1.

The null hypothesis H0 is θ = 1 which is uniform. So the size

α =

∫ x1=1

x1=3/4

∫ x2=1

x2=3/4x1

dx2dx1 = 1− (
3

4
− 3

4
ln(

3

4
)) = .034.

The power is∫ x1=1

x1=3/4

∫ x2=1

x2=3/4x1

4x1x2dx2dx1 = [1− ((
3

4
)2 − 9

8
ln(

3

4
))] = .113.



For general θ, the power function is:

∫ x1=1

x1=3/4

∫ x2=1

x2=3/4x1

θ2xθ−11 xθ−12 dx2dx1 = 1−((3/4)θ−θ(3/4)θ ln(3/4)).



4.5.5: Recall the that MLE is X̄ = 1
2
(x1 + x2).

L(2; x1, x2)

L(1; x1, x2)
=

1

4
e(x1+x2)/2.

So the critical region
C = {(x1, x2) : x1 + x2 ≤ 2 ln(2), 0 < x1, x2 <∞}.
The independent X1,X2 are Γ(1, θ) rv’s and so
X1 + X2 ∼ Γ(2, θ).

Pθ(C ) =

∫ z=2 ln(2)

z=0

1

θ2
ze−z/θdz

=

∫ u=2 ln(2)/θ

u=0

ue−udu = 1 + (
2 ln(2)

θ
+ 1)e−(2 ln 2)/θ.

With θ = 2 this is the size .15. With θ = 1 this is the power
.40.



4.5.9: If X1, . . . ,Xn is a sample from a Poiss(θ) distribution
then Y = X1 + · · ·+ Xn ∼ Poiss(nθ).
With C = {(x1, . . . , xn) :

∑n
i=1 xi ≤ 2}, then

Pθ(C ) = e−nθ(1 + nθ +
(nθ)2

2
).

With n = 12 and θ = 1
2
, the size is e−6(25) = .062.

With n = 12 and θ = 1
3
, the power is e−4(13) = .238.

With n = 12 and θ = 1
4
, the power is e−3(8.5) = .423.



4.5.11: The cdf is FX (θ; x) = x
θ

for 0 < x < θ. With
Y = max(X1, . . . ,Xn)

FY (θ; y) = FX (θ; y)n = (
y

θ
)n.

For the critical region C = {(x1, . . . , xn) : y ≥ c},

Pθ(C ) = FY (θ; θ)− FY (θ; c) = 1− (
c

θ
)n.

With θ = 1 and size P1(C ) = .05, c = .951/n. Then the power
function is

Pθ(C ) = 1− .95

θn
.



Sec. 4.6

4.6.8: For a Bern(θ) distribution we have a sample X1, . . . ,Xn.
Y =

∑n
i=1 Xi ∼ Bin(n, θ) with mean nθ and variance

nθ(1− θ). So the sample mean X̄ = 1
n
Y has mean θ and

variance θ(1− θ)/n.

For n large

Zθ =
Y − nθ√
nθ(1− θ)

=
X̄ − θ√
θ(1− θ)/n

has approximately a standard N (0, 1) normal distribution.

The MLE for θ is X̄ which is an unbiased estimate.

To test H0 : θ = θ0 against H1 : θ > θ0, we use the critical
region C = {X̄ > c} = {Y > nc}.
Given size α we choose c so that Pθ0(C ) ≈ α.



Using the normal approximation,we want C = {Zθ0 > zα}, or
equivalently,

{X̄ > θ0 + zα
√
θ0(1− θ0))/n}, so that

c = θ0 + zα
√
θ0(1− θ0))/n.

For θ > θ0 the power is given by the probability that Y > nc
when Y ∼ Bin(n, θ). Using the normal approximation this is
the probability that the standard normal is greater than

c−θ√
θ(1−θ)/n

. That is,

1− Φ[zα

√
θ0(1− θ0)√
θ(1− θ)

− θ − θ0√
θ(1− θ)/n

].

At least for θ ≤ 1
2

this is an increasing function of θ.



Finally, for x̄ the realized value of X̄ , the p-value is
Pθ0(X̄ > x̄) or in the normal approximation

1− Φ(
x̄ − θ0√

θ0(1− θ0)/n
).

In our case, θ0 = .14 and with a sample of
n = 590, x̄ = 104/590 = .176. We use α = .01 so that
zα = 2.33. We obtain c = .173.

Since x̄ > c , we reject H0 and accept H1.

The p-value is 1− Φ(2.54) = .006 which is less α = .01 as
expected.



Sec. 8.1

8.1.2, 8.1.3: Λ(θ0, θ1; x) = (θ1/θ0)nexp[− θ1−θ0
θ0θ1

∑n
i=1 xi ].

With θ0 < θ1 this is a decreasing function of Y (x) =
∑n

i=1 xi .
So we use for our test {Y (x) ≥ c}.
The value c is chosen so that Pθ0(Y ≥ c) = α. Because
X ∼ Γ(1, θ), Y ∼ Γ(n, θ). Therefore,

Pθ(Y ≥ c) = 1− FY ;θ(c) =

∫ ∞
c

(1/(n − 1)!θn)xn−1e−x/θ dx

=

∫ ∞
c/θ

(1/(n − 1)!)un−1e−u du

which is an increasing function of θ.



If θ1 < θ0, then Λ(θ0, θ1; x) is an increasing function of Y and
so for our test we use {Y (x) ≤ d}, with d chosen so that
Pθ0(Y ≤ d) = FY ;θ0(d) = α.

8.1.5: Λ(θ0, θ1; x) = (θ0/θ1)n(
∏n

i=1 xi)
θ0−θ1 .

With θ0 < θ1 this is a decreasing function of Y (x) =
∏n

i=1 xi .
So we use for our test {Y (x) ≥ c}.

This is really the same problem as 8.1.2 and 8.1.3, because the
change of variable x = e−t converts this to θe−θt .



Sec. 8.2

8.2.1:
Λ(θ0, θ1; x) = (1− θ0/1− θ1)n[θ0(1− θ1)/θ1(1− θ0)]

∑n
i=1 xi .

Because θ/(1− θ) is increasing in θ,
[θ0(1− θ1)/θ1(1− θ0)] > 1 when θ1 < θ0 and so this is an
increasing function of

∑n
i=1 xi . So to test H0 : θ = θ0 against

H1 : θ < θ0 we use {
∑n

i=1 xi ≤ c}.
For n = 10, and c = 1, Y ∼ Bin(10, θ) and so the power is

Pθ(Y ≤ 1) = (1− θ)10 + 10θ(1− θ)9 = (1− θ)9(1 + 9θ)

The derivative is −90θ(1− θ)8 and so the function is
decreasing.

With θ = 1/4 the size is (3/4)9 · (13/4) = .24.



8.2.2: Testing θ = θ0 against θ 6= θ0 we use Y = maxni=1 Xi

with FY (x) = FX (x)n = (x/θ)n.

Let C = {Y ≥ θ0} ∪ {Y ≤ εθ0}.

The power function is given by

γC (θ) =


1 for θ ≤ εθ0

(εθ0/θ)n for εθ0 ≤ θ ≤ θ0,

(εθ0/θ)n + [1− (θ0/θ)n] for θ > θ0.

8.2.11: This was done for Exercise 8.1.5.



Sec. 1.10

1.10.2: If X ≥ 0, then for any c > 0, Markov’s Inequality
implies

P(X ≥ c · µ) ≤ µ

cµ
=

1

c
.

1.10.3: With E (X ) = 3 and E (X 2) = 13, µ = 3, σ2 = 4.

P(−2 < X < 8) = P(|X − µ| < 5

2
σ) ≥ 1− 4

25
=

21

25
.

1.10.7[1.10.6]: On (0,∞) the functions
1/x ,− ln(x) = ln(1/x), x3 are strictly convex functions. Apply
Jensen’s Inequality.



Sec. 5.1

5.1.3:

P(|Wn − µ| ≥ ε) = P(|Wn − µ| ≥
ε

σn
· σn) ≤ b

npε2
→ 0.

5.1.7[5.1.5]: For y ≥ θ, {Yn ≥ y} = {X1, . . . ,Xn ≥ y}.

Gn(θ; y) = GX (θ; y)n = e−n(y−θ).

So P(Yn ≥ θ + ε) = e−nε → 0.

That is, Yn → θ(P) and so Yn is consistent.



5.1.9[5.1.7]:
Taking the derivative we obtain the density
fYn(y ; θ) = ne−n(y−θ) for y > θ.

E (Yn) =

∫ y=∞

y=θ

nye−n(y−θ)dy =
1

n

∫ u=∞

u=0

(u+nθ)e−udu = θ+
1

n
,

using u = n(y − θ).

That is, Yn is biased.

Tn = Yn − 1
n

is unbiased and also consistent.



Sec. 5.2

5.2.2: For x > θ, GX (x) =
∫∞
x

e−(u−θ) du = e−(x−θ).

Since {Yn ≥ x} = {X1, . . . ,Xn ≥ x}, GYn(x) = e−n(x−θ).

So FYn(x) = 1− e−n(x−θ).

For t > 0, {Zn ≤ t} = {Yn ≤ t
n

+ θ}. So FZn(t) = 1− e−t .

For every n, Zn ∼ Exp(1).

5.2.3:We assume that X has range (a, b) so that
FX : (a, b)→ (0, 1) is a continuous increasing function.
FYn(x) = FX (x)n.



{Zn ≤ t} = {F (Yn) ≥ 1− t

n
} = {Yn ≥ F−1(1− t

n
)}.

FZn(t) = 1− FX (F−1(1− t

n
))n = 1− (1− t

n
)n → 1− e−t .

Therefore Zn → Z (D) with Z ∼ Exp(1).

5.2.7: If Xn ∼ Γ(n, β) then with {Zn} a sequence independent
Γ(1, β) rv’s, then Xn ∼

∑n
i=1 Zi and 1

n
Xn ∼ Z̄n. By the Law of

Large Numbers, 1
n
Xn → E (Z1) = β.
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